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 regularizationL2

• Modify the loss function by adding a regularization term


•  regularization (ridge regression) for MSE: 


• Optimally: 


‣  moves  away from singularity → inverse exists, better “conditioned”


‣ Shrinks  towards 0 (as expected)


- At the expense of training MSE


• Regularization term  independent of data = prior?

L2 ℒθ = 1
2 (∥y − θ⊺X∥2 + α∥θ∥2)

θ⊺ = yX⊺(XX⊺ + αI)−1

αI XX⊺

θ

α∥θ∥2
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Gaussian distribution vs. quadratic log-prob

 


 


 


 

 

p(z) = 𝒩(z; μ, Σ) = (2π)− d
2 |Σ |− 1

2 exp (− 1
2 (z − μ)⊺Σ−1(z − μ))

log p(z) = − 1
2 (z − μ)⊺Σ−1(z − μ) + const

log p(z) = − 1
2 z⊺Az + b⊺z + c = − 1

2 (z − A−1b)⊺A(z − A−1b) + const

p(z) = 𝒩(A−1b, A−1)

log p(z, w) = − 1
2 z⊺A(w)z + b(w)⊺z + c(w) ⟹ p(z |w) = 𝒩(A−1(w)b(w), A−1(w))
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Regularization and Bayesian prediction
• Assume the data was generated using this process:


‣ Parameter vector  was sampled from a Gaussian: 


‣ Features  were sampled “somehow” (it won't matter)


‣ Labels  are linear in , but with Gaussian noise: 


• What is the joint distribution ?


‣ 


‣ 


‣

θ θ ∼ 𝒩(0,α−1I)

X

y X y = θ⊺X + ϵ ϵ ∼ 𝒩(0,I)

p(θ, X, y)

p(θ, X, y) = p(θ)p(X)p(y |θ, X) = 𝒩(θ; 0,α−1I)p(X)𝒩(y − θ⊺X; 0,I)

log p(θ, X, y) = log p(X)− 1
2 α2∥θ∥2 − 1

2 ∥y − θ⊺X∥2 + const

p(θ |X, y) = 𝒩(θ; (XX⊺ + αI)−1Xy, (XX⊺ + αI)−1)

MAP θ{
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Regularization

• Comparing unregularized and regularized regression:


• 


(Unreg.)


• 


α = 0

α = 1
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 regularizationLp

• Other popular regularizers are  norm: 


• Isosurfaces: ( )


•  = : number of nonzero parameters, natural notion of model complexity


• : maximum parameter value

Lp ∥θ∥p = (∑
i

|θi |
p )

1
p

∥θ∥p = const

L0 lim
p→0

Lp

L∞ = lim
p→∞

Lp

p = 4p = 1
Lasso

p = 2
ridge

p = 0.5

θ0

θ1
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Regularization:  vs. L1 L2

•  estimate balances training loss and regularization


• Lasso ( ) tends to generate sparser solutions than ridge ( ) regularizer


θ

L1 L2

Lasso ( )L1 ridge ( )L2

without regularization

regularized solution

some parameters may be 0
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Validation

• To select model class / model hyper-parameters  (e.g. polynomial degree)


‣ Train models on training dataset: 


‣ Evaluate models on validation dataset: 


• What if we don't get a validation set?


‣ Split training set into training + validation

ϕ

θ = 𝒜ϕ(𝒟training)

ℒ = 𝔼x,y∼𝒟validation
[ℓθ(x, y)]
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Hold-out method
• Hold out some data for validation; e.g., random 30% of the data


‣ Don't just sample training + validation with repetitions — they must be disjoint


• How to split?


‣ Too few training data points → poor training, bad 


‣ Too few validation data points → poor validation, bad loss estimate


• Can we use more splits?


θ x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 94

MSE = 331.8

training data

validation data
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-fold cross-validation methodk
• Randomly split the data into  disjoint sets


• For each of the  sets:


‣ Hold it, train on the other  sets


‣ Validate on the held-out set


• Use average validation loss to select model hyper-parameters 


• Train with selected  on full data


k

k

k − 1

ϕ

ϕ
k = 8
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-fold cross-validation methodk
• Benefits:


‣ Use all data for validation


‣ Use all data to train final model


• Drawbacks:


‣ Trains  (+1) models


‣ Each model still gets noisy


validation from  data points


‣ No validation for the final model


• When : Leave-One-Out (LOO)

k

m
k

k = m

Split 1:

MSE = 331.8

Split 2:

MSE = 361.2

Split 3:

MSE = 669.8

x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 943-Fold X-Val MSE 


       = 464.1
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-fold cross-validation methodk
• Benefits:


‣ Use all data for validation


‣ Use all data to train final model


• Drawbacks:


‣ Trains  (+1) models


‣ Each model still gets noisy


validation from  data points


‣ No validation for the final model


• When : Leave-One-Out (LOO)

k

m
k

k = m

Split 1:

MSE = 280.5

Split 2:

MSE = 3081.3

Split 3:

MSE = 1640.1

3-Fold X-Val MSE 

       = 1667.3

x(i) y(i)

88 79
32 -2
27 30
68 73
  7 -16
20 43
53 77
17 16
87 94
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Cross-validation: considerations
• Trade off model training time with loss estimation accuracy


• Single held-out set: train on  data points, estimate loss on the rest


‣  must be large enough for both training and validation


‣ We have an estimate of the final model performance


• -fold XVal: split data into  disjoint sets, train on all but one used for validation


‣ Computationally more expensive: training  models


‣ Each validated model may be worse: trained on  data points


‣ But: estimate loss on more data, output model trained on all data


• LOO XVal: train on all but one data point, validate it, average this over all data points

m′￼ < m

m

k k

k

m− m
k
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Learning curves
• Plot performance (higher = better) as a function of training size


‣ Assess impact of fewer data on performance


‣ E.g., MSE0 – MSE for regression, or 1 – error rate for classification


• Performance (properly measured) should increase with training size


‣ Should improve quickly when data is scarce, saturate when there's “enough”


‣ May need to average over multiple experiments / trials / runs


1 
/ M

SE

Training data size 
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Learning perceptrons
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Linear regression vs. classification

• Regression:


‣ Continuous target 


‣ Regressor 


• Classification:


‣ Discrete label 


‣ Classifier 

y

̂y = θ⊺x

y

̂y = ?

0 10 20
0

20

40

Ta
rg

et
  y

Feature x
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Perceptron

linear response


r = θ0 + θ1x1 + θ2x2

T(r)

classifier fθ(x)

weighted sum of features threshold 
function

1

x1

x2

θ0

θ1

θ2

class decision ̂y = fθ(x)

r = theta.T @ X        # compute linear response


y_hat = (r > 0)        # predict class 1 vs. 0


y_hat = 2*(r > 0) – 1  # predict class 1 vs. -1

T(r)

r



Roy Fox | CS 273A | Fall 2021 | Lecture 7: Linear Classifiers

Perceptron

r(x)

T(x)
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Perceptron
• Perceptron = linear classifier


‣ Parameters  = weights (also denoted )


‣ Response = weighted sum of the features 


‣ Prediction = thresholded response 


‣ Decision function: 


• Perceptron: a simple (vastly inaccurate) model of human neurons


‣ Weights = “synapses”


‣ Prediction = “neural firing”

θ w

r = θ⊺x

̂y(x) = T(r) = T(θ⊺x)

̂y(x) = {+1 if θ⊺x > 0
−1 otherwise

(for T(r) = sign(r))
T(r)

r
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Example

x1

x2
θ = [1, 1

2 ,− 1
2 ]

θ⊺x > 0 ⟹ ̂y(x) = + 1

θ⊺x < 0 ⟹ ̂y(x) = − 1
θ⊺x = 0 ⟺ 1+ 1

2 x1−
1
2 x2 = 0

Adapted from Padhraic Smyth
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Separability
• Separable dataset = there's a model (in our class) with perfect prediction


• Separable problem = there's a model with 0 test loss 


‣ Also called realizable


• Linearly separable = separable by a linear classifiers (hyperplanes)


𝔼x,y∼p[ℓ(y, ̂y(x))] = 0

x1

x2

Linearly separable data

x1

x2

Linearly non-separable data
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Why do classes overlap?
• Non-separable data means no model can perfectly predicted it


‣ Feature ranges for different classes overlap


‣ Given an instance in the overlap range — we have uncertainty


• How to improve separation / reduce loss?


‣ More complex model class may include a separating model


‣ May need more features for that


• Realistically, we must live with some uncertainty / loss


‣ But sometimes we can get less of it...
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Example: linearly non-separable data
• Data is non-separable with linear classifier


‣ ...but separable with non-linear classifier


• Is this good? Probably high test loss (overfitting)


‣ Problem may be separable by complex model, but no hope of finding a good one

-2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4



Roy Fox | CS 273A | Fall 2021 | Lecture 7: Linear Classifiers

Example: linearly non-separable data
• Data is non-separable with linear classifier


‣ ...but separable with non-linear classifier


• Is this good? Probably high test loss (overfitting)


‣ Problem may be separable by complex model, but no hope of finding a good one

-2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4
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Perceptron: representational power
• A perceptron can represent linearly separable data


• Which functions can a perceptron represent?


‣ Those that are linearly separable over all 


• A family of functions that are easy to analyze: boolean functions


‣ A perceptron can represent AND but not XOR


x

x1 x2 y
0 0 -1
0 1 -1
1 0 -1
1 1 1

AND
x1 x2 y
0 0 -1
0 1 1
1 0 1
1 1 -1

XOR
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Adding features
• How to make the perceptron more expressive?


‣ Add features — recall linear → polynomial regression


• Linearly non-separable:


• Linearly separable in quadratic features:


• Visualized in original feature space:


‣ Decision boundary: ax2 + bx + c = 0

x1

x1

x2 = x2
1

̂y = T(ax2 + bx + c)
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Adding features

• Which functions do we need to represent the decision boundary?


‣ When linear functions aren't sufficiently expressive


‣ Perhaps quadratic functions are


 
ax2
1 + bx1 + cx2

2 + dx2 + ex1x2 + f = 0

x1 x2 y
0 0 -1
0 1 -1
1 0 -1
1 1 1

AND
x1 x2 y
0 0 -1
0 1 1
1 0 1
1 1 -1

XOR



Roy Fox | CS 273A | Fall 2021 | Lecture 7: Linear Classifiers

Representing discrete features

• To define “linear” functions of discrete features: represent as real numbers


• Example: classify poisonous mushroom


‣ 


‣ Represent as ? Is ?


‣ Better: one-hot representation: 


- Requires 4 binary features instead of 1 integer


- Preserves the original lack of “topology”

Surface ∈ {fibrous, grooves, scaly, smooth}

{1,2,3,4} smooth − fibrous = 3(scaly − grooves)

{[1000], [0100], [0010], [0001]}
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Separability in high dimension

• As we add more features → dimensionality of instance  increases:


‣ Separability becomes easier: more parameters, more models that could separate


‣ Add enough (good) features, and even a linear classifier can separate


- Given a decision boundary : add  as a feature → linearly separable!


• However:


‣ Do these features explain test data or just training data?


‣ Increasing model complexity can lead to overfitting

x

f(x) = 0 f(x)
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Recap
• Perceptron = linear classifier


‣ Linear response → step decision function → discrete class prediction


‣ Linear decision boundary


• Separability = existence of a perfect model (in the class)


‣ Separable data: 0 loss on this data


‣ Separable problem: 0 loss on the data distribution


‣ Perceptron: linear separability


• Adding features:


‣ Complex features: complex decision boundary, easier separability


‣ Can lead to overfitting
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Learning a perceptron

• What do we need to learn the parameters  of a perceptron?


‣ Training data  = labeled instances


‣ Loss function  = error rate on labeled data


‣ Optimization algorithm = method for minimizing training loss

θ

𝒟

ℒθ



Roy Fox | CS 273A | Fall 2021 | Lecture 7: Linear Classifiers

Error rate

• Error rate: 


‣ With the indicator 


ℒθ = 1
m ∑

i

δ(y(i) ≠ fθ(x(i)))

δ(y ≠ ̂y) = {1 y ≠ ̂y
0 else

x

̂y

ℒθ = 2
9
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Use linear regression?
• Idea: find  using linear regression


• Affected by large regression losses


‣ We only care about the classification loss

θ
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Perceptron: gradient-based learning

• Problem: loss function not differentiable 


‣ Write differently: 


-  almost everywhere


‣ But we also don't want MSE = 


‣ Compromise: 


-

ℒθ(x, y) = δ(y ≠ sign(θ⊺x))

ℒθ(x, y) = 1
4 (y − sign(θ⊺x))2

∇θsign(θ⊺x) = 0

ℒθ(x, y) = 1
2 (y − θ⊺x)2

ℒθ(x, y) = (y − sign(θ⊺x))(y − θ⊺x)

∇θℒθ = − (y − sign(θ⊺x))x = − (y − ̂y)x

T(r)

r
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Perceptron training algorithm

• Similar to linear regression with MSE loss


‣ Except that  is the class prediction, not the linear response


‣ No update for correct predictions 


‣ For incorrect predictions: 


-  update towards  (for false negative) or  (for false positive)

̂y

y( j) = ̂y( j)

y( j) − ̂y( j) = ± 2

⟹ x −x

predict output for point  

gradient step on weird loss

j
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Perceptron training algorithm

predict output for point  

gradient step on weird loss

j

incorrect prediction: update weights
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Perceptron training algorithm

predict output for point  

gradient step on weird loss

j

correct prediction: no update
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Perceptron training algorithm

predict output for point  

gradient step on weird loss

j

convergence: no more updates
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Surrogate loss functions

• Alternative: use differentiable loss function


‣ E.g., approximate the step function with a smooth function


‣ Popular choice: logistic / sigmoid function (sigmoid = ”looks like s”)


 


• MSE loss: 


‣ Far from the boundary: , loss approximates 0–1 loss


‣ Near the boundary: , loss near , but clear improvement direction

σ(r) = 1
1 + exp(−r)

ℒθ(x, y) = (y − σ(r(x)))2

σ ≈ 0 or 1

σ ≈ 1
2

1
4

T(r)

r

σ(r)

r
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Widening the classification margin
• Which decision boundary is “better”?


‣ Both have 0 training loss


‣ But one seems more robust, expected to generalize better


• Benefit of smooth loss function: care about margin


‣ Encourage distancing the boundary from data points
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Learning smooth linear classifiers

• With a smooth loss function with can use Stochastic Gradient Descent


 
ℒθ(x, y) = (y − σ(r(x)))2

ℒ = 1.9



Roy Fox | CS 273A | Fall 2021 | Lecture 7: Linear Classifiers

Learning smooth linear classifiers

• With a smooth loss function with can use Stochastic Gradient Descent


 
ℒθ(x, y) = (y − σ(r(x)))2

ℒ = 0.4
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Learning smooth linear classifiers

• With a smooth loss function with can use Stochastic Gradient Descent


 
ℒθ(x, y) = (y − σ(r(x)))2

ℒ = 0.1

Minimum training MSE
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