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Logistics

* Project guidelines on Canvas

- * Assignment 2 due next Tuesday, Oct 19

 Team rosters due next Tuesday, Oct 19 on Canvas
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https://canvas.eee.uci.edu/courses/40176/pages/project-guidelines

Today's lecture

Perceptrons

Separability

Learning perceptrons
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L, regularization

 Modify the loss function by adding a regularization term

. L, regularization (ridge regression) for MSE: &£, = %(Hy — 07X||” + a||0]?)

e Optimally: 87 = yXT(XXT + al)™!
» al moves XX away from singularity — inverse exists, better “conditioned”

» Shrinks @ towards 0 (as expected)

- At the expense of training MSE

. Regularization term a||0||? independent of data = prior?
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Gaussian distribution vs. quadratic log-prob

p@) = ¥ (@ T) = @0 # T Fexp (—3@ - = - p)

log p(z) = —%(Z — )21z — u) + const

log p(z) = —%ZTAZ +bTz+c = —%(z — A b)YTA(z — A7'b) + const

p(z) = N(A™'b, A7)

log plz, w) = —~2TAW)z + W)z + c(w) = p(z|w) = N (A~ W)b(w), A~ (w))




Regularization and Bayesian prediction

 Assume the data was generated using this process:
» Parameter vector 0 was sampled from a Gaussian: 8 ~ 4 (0,a~'1)
> Features X were sampled “somehow” (it won't matter)

> Labels y are linear in X, but with Gaussian noise: y = 01X + € e ~ N(0,D)
» What is the joint distribution p(8, X, y)?
- p(0,X,y) = p@pX)p(y|0,X) = ¥ (0;0,a” DpX)N (y — 07X;0,])

- log p(8. X. ) = log pX)=5I0]|” =3 ly = 6X]I” + const
MAP

= —
> p(0X,y) = VO, XX+ al) ' Xy, XXT + al)™)
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Regularization

 Comparing unregularized and regularized regression:
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L, regularization

1

p
_ Other popular regularizers are L, norm: ||| , = Z 161"
i
+ Isosurfaces: (||6]|, = const)
Lasso ridge

Ly=lim Lp: number of nonzero parameters, natural notion of model complexity
p—0

. L, = lim L;: maximum parameter value
p—0C0
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Regularization: L, vs. L,

@ estimate balances training loss and regularization

» Lasso (L) tends to generate sparser solutions than ridge (L,) regularizer

without regularization

some parameters may be 0

T~

Lasso (L) ridge (L) K — regularized solution
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Validation

» To select model class / model hyper-parameters ¢ (e.g. polynomial degree)

> Train models on training dataset: 0 = & (<

training)

- Evaluate models on validation dataset: Z =k, | g [£y(x, V)]

 What if we don't get a validation set?

> Split training set into training + validation
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Hold-out method

 Hold out some data for validation; e.g., random 30% of the data

> Don't just sample training + validation with repetitions — they must be disjoint

e How to split?

» Too few training data points — poor training, bad € X0 |y
88 79
. : : : . . 32 -2
> Too few validation data points — poor validation, bad loss estimate =
68 /3
e Can we use more splits? p 7 16
'niNg 20 43
53 77

1 validation data 17 16
87 94

MSE = 331.8
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k-fold cross-validation method

» Randomly split the data into k disjoint sets

e For each of the k sets:

» Hold it, train on the other k — 1 sets

» Validate on the held-out set

» Use average validation loss to select model hyper-parameters ¢

» Train with selected ¢ on full data

g I:l Test . Train
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k-fold cross-validation method

e Benefits:
» Use all data for validation
o 1 Split 1:
» Use all data to train final model { MSE = 331.8
| Split 2: 88 /3
1 MSE = 361.2 32 -2
‘ 27 30
68 73
7  -16
U 20 43
1 Split 3:
1 MSE = 669.8 >3 77
: 17 16
_ o _
e, . . . . . . I3-FoldX-Val MSE 87 | 94
= 464.1
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k-fold cross-validation method

e Benefits:

» Use all data for validation

| split 1:

> Use all data to train final model | MSE =280.5

e Drawbacks:

EINETE

> Trains k (+1) models | Split 2: 88 79
| MSE =3081.3 32 -2

> Each model still gets noisy 27 30
68 73

validation from — data points I

k : 20 43

| Split 3: 3 -

> No validation for the final model | MSE =1640.1 —
3-Fold X-Val MSE (87411194

e When k = m: Leave-One-Out (LOO) - = 1667.3
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Cross-validation: considerations

* Trade off model training time with loss estimation accuracy

» Single held-out set: train on m’ < m data points, estimate loss on the rest

> m must be large enough for both training and validation

> We have an estimate of the final model performance

« k-fold XVal: split data into k disjoint sets, train on all but one used for validation
» Computationally more expensive: training k models

» Each validated model may be worse: trained on m—% data points

> But: estimate loss on more data, output model trained on all data

OO XVal: train on all but one data point, validate it, average this over all data points
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Learning curves

* Plot performance (higher = better) as a function of training size
> Assess impact of fewer data on performance
> E.g., MSEO — MSE for regression, or 1 — error rate for classification
* Performance (properly measured) should increase with training size

> Should improve quickly when data is scarce, saturate when there's “enough”

> May need to average over multiple experiments / trials / runs

1/ MSE

Training data size
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Today's lecture

Regularization and cross-validation

Separability

Learning perceptrons
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Linear regression vs. classification

* Regression:
> Continuous target y
» Regressory = 0x

e (Classification:

> Discrete label y

> Classifier y = ?
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Perceptron

classifier f,(x) T(r)
HO
1
0, > class decision y = f,(x)
X1
(92
X2
r = theta. T @ X # compute linear response
y hat = (r > 9) # predict class 1 vs. ©
y hat = 2*(r > 0) - 1 # predict class 1 vs. -1
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Perceptron
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Perceptron

e Perceptron = linear classifier
» Parameters 0 = weights (also denoted w)
» Response = weighted sum of the features r = @'x
> Prediction = thresholded response y(x) = T(r) = T(0'x)

+1 if@'x >0

| (for T(r) = si1gn(r))
—1 otherwise

Decision function: y(x) = {

* Perceptron: a simple (vastly inaccurate) model of human neurons
> Weights = “synapses”

> Prediction = “neural firing”

T(r)
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Adapted from Padhraic Smyth
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Today's lecture

Regularization and cross-validation

Perceptrons

Learning perceptrons
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Separability

e Separable dataset = there's a model (in our class) with perfect prediction

» Separable problem = there's a model with O test loss [ |, [£(y, y(x))] = 0

» Also called realizable

* Linearly separable = separable by a linear classifiers (hyperplanes)

Linearly separable data Linearly non-separable data
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Why do classes overlap?

 Non-separable data means no model can perfectly predicted it
> Feature ranges for different classes overlap
> @Given an instance in the overlap range — we have uncertainty
 How to improve separation / reduce loss?
> More complex model class may include a separating model
> May need more features for that
* Realistically, we must live with some uncertainty / loss

> But sometimes we can get less of it...
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Example: linearly non-separable data

e Data is non-separable with linear classifier

> ...but separable with non-linear classifier

-
-
-
-
-
-
-
-
e
-
-

* |s this good”? Probably high test loss (overfitting)

> Problem may be separable by complex model, but no hope of finding a good one
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Perceptron: representational power

* A perceptron can represent linearly separable data

* Which functions can a perceptron represent?

> Those that are linearly separable over all x

o A family of functions that are easy to analyze: boolean functions

> A perceptron can represent AND but not XOR

X1 Xy
0O 0 -1

0
3
3

AND

1
0
1

-1
-1
1

XOR

X Xz
0 O

0 1
1 0
1 1

11111111

y
-1
1
1
-1
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Adding features

« How to make the perceptron more expressive?

> Add features — recall linear = polynomial regression

* Linearly non-separable: o0 o 00 0 o o

X—>

* Linearly separable in quadratic features:

* Visualized in original feature space:

> Decision boundary: ax*+bx+c=0
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Adding features

* Which functions do we need to represent the decision boundary?
> When linear functions aren't sufficiently expressive

» Perhaps quadratic functions are

axi + bx, + cx; + dx, + ex;x, +f =0

AND XOR
X1 X2 y xi X2 Y
0 0 -1 0 0 -1
o 1 -1 O 1 1
1 0 -1 1 . | 1 0 1
T 1 1 e e e o T 1 -
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Representing discrete features

* To define “linear” functions of discrete features: represent as real numbers

 Example: classify poisonous mushroom

» Surface € {fibrous, grooves, scaly, smooth }
» Represent as {1,2,3,4}? Is smooth — fibrous = 3(scaly — grooves)?

> Better: one-hot representation: {[1000], [0100], [0010], [0001]}

- Requires 4 binary features instead of 1 integer

- Preserves the original lack of “topology”
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Separability in high dimension

 As we add more features — dimensionality of instance x increases:
» Separability becomes easier: more parameters, more models that could separate
> Add enough (good) features, and even a linear classifier can separate
- Given a decision boundary f(x) = 0: add f(x) as a feature — linearly separable!
* However:

> Do these features explain test data or just training data”?

> Increasing model complexity can lead to overfitting

Roy Fox | CS 273A | Fall 2021 | Lecture 7: Linear Classifiers



Recap

 Perceptron = linear classifier
> Linear response — step decision function — discrete class prediction
> Linear decision boundary

o Separability = existence of a perfect model (in the class)
> Separable data: 0 loss on this data

> Separable problem: 0 loss on the data distribution

> Perceptron: linear separability
* Adding features:
> Complex features: complex decision boundary, easier separability

> Can lead to overfitting
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Today's lecture

Regularization and cross-validation

Perceptrons

Separability
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Learning a perceptron

« What do we need to learn the parameters 6 of a perceptron?
> Training data & = labeled instances

» Loss function £, = error rate on labeled data

> Optimization algorithm = method for minimizing training loss
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Error rate

Error rate: £y = % Z S(y\ # fo(x'))

>

With the indicator o(y # y) = {
0 else

<>
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Use linear regression?

o |dea: find @ using linear regression

« Affected by large regression losses

> We only care about the classification loss
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Perceptron: gradient-based learning

» Problem: loss function not differentiable £ y(x, y) = o(y # sign(f'x))

»  Write differently: &£ 9()6, y) = %(y — sign(ﬁTX))z

- Vysign(f'x) = 0 almost everywhere
» But we also don't want MSE = £ y(x, y) = %(y — OTx)?

» Compromise: Z£y(x,y) = (y — sign(f'x))(y — 0'x)

- VoZyg=—(y—sign@'x))x =—(y -y

T(r)
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign( - aj(j)) predict output for point j

0 < 0+ Oz(y(j) — g)(j)):c(j) gradient step on weird loss

e Similar to linear regression with MSE loss
~ Except that y is the class prediction, not the linear response
» No update for correct predictions y) = )
> For incorrect predictions: y") — ) = + 2

- — update towards x (for false negative) or —x (for false positive)
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign( - aj(j)) predict output for point j

0 < 0+ Oz(y(j) — A(j)).iv(j) gradient step on weird loss

incorrect prediction: update weights
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Perceptron training algorithm

while — done:

for each data point j:
gV = sign(f - V)
O« O+ oz(y(j) _ A(j))m(j)

predict output for point ;

gradient step on weird loss

correct prediction: no update
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign( - aj(j)) predict output for point j

0 < 0+ Oz(y(j) — A(j)).iv(j) gradient step on weird loss

convergence: no more updates
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Surrogate loss functions

e Alternative: use differentiable loss function

> E.g., approximate the step function with a smooth function

> Popular choice: logistic / sigmoid function (sigmoid = "looks like s”)

1 o(r)
o) = Treetn ——
e MSE loss: Zy(x,y) = (y — a(r(x)))2 ﬂ| T ;

» Far from the boundary: ¢ ~ 0 or 1, loss approximates 0-1 loss

1 1

» Near the boundary: o ~ > lOoSS near T but clear improvement direction
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Widening the classification margin

* \Which decision boundary is “better”?
> Both have 0 training loss

> But one seems more robust, expected to generalize better
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* Benefit of smooth loss function: care about margin

> Encourage distancing the boundary from data points

Roy Fox | CS 273A | Fall 2021 | Lecture 7: Linear Classifiers



Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”

©
=1.9
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Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”
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Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”

Minimum training MSE
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* Project guidelines on Canvas
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