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Logistics

e Midterm exam on Nov 4, 11am-12:20 in SH 128

* |f you're eligible to be remote — let us know by Oct 28

_ * Assignment 3 due next Tuesday, Oct 26

* |f you're eligible for more time — let us know by Oct 28

* Review during lecture next Thursday
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Separability

e Separable dataset = there's a model (in our class) with perfect prediction

» Separable problem = there's a model with O test loss [ |, [£(y, y(x))] = 0

» Also called realizable

* Linearly separable = separable by a linear classifiers (hyperplanes)

Linearly separable data Linearly non-separable data
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Adding features

« How to make the perceptron more expressive?

> Add features — recall linear = polynomial regression

* Linearly non-separable: o0 o 00 0 o o

X—>

* Linearly separable in quadratic features:

* Visualized in original feature space:

> Decision boundary: ax*+bx+c=0
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Adding features

* Which functions do we need to represent the decision boundary?
> When linear functions aren't sufficiently expressive

» Perhaps quadratic functions are

axi + bx, + cx; + dx, + ex;x, +f =0

AND XOR
X1 X2 y xi X2 Y
0 0 -1 0 0 -1
o 1 -1 O 1 1
1 0 -1 1 . | 1 0 1
T 1 1 e e e o T 1 -
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Separability in high dimension

 As we add more features — dimensionality of instance x increases:
» Separability becomes easier: more parameters, more models that could separate
> Add enough (good) features, and even a linear classifier can separate
- Given a decision boundary f(x) = 0: add f(x) as a feature — linearly separable!
* However:

> Do these features explain test data or just training data”?

> Increasing model complexity can lead to overfitting
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Recap

 Perceptron = linear classifier
> Linear response — step decision function — discrete class prediction
> Linear decision boundary

o Separability = existence of a perfect model (in the class)
> Separable data: 0 loss on this data

> Separable problem: 0 loss on the data distribution

> Perceptron: linear separability
* Adding features:
> Complex features: complex decision boundary, easier separability

> Can lead to overfitting
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Today's lecture

Logistic regression

Multi-class classifiers
VC dimension
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Learning a perceptron

« What do we need to learn the parameters 6 of a perceptron?
> Training data & = labeled instances

» Loss function £, = error rate on labeled data

> Optimization algorithm = method for minimizing training loss
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Error rate

Error rate: £y = % Z S(y\ # fo(x'))

>

With the indicator o(y # y) = {
0 else

<>
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Use linear regression?

o |dea: find @ using linear regression

« Affected by large regression losses

> We only care about the classification loss
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Perceptron: gradient-based learning

» Problem: loss function not differentiable £ y(x, y) = o(y # sign(f'x))

»  Write differently: &£ 9()6, y) = %(y — sign(ﬁTX))z

- Vysign(f'x) = 0 almost everywhere
» But we also don't want MSE = £ y(x, y) = %(y — OTx)?

» Compromise: Z£y(x,y) = (y — sign(f'x))(y — 0'x)

- VoZyg=—(y—sign@'x))x =—(y -y

T(r)
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign( - aj(j)) predict output for point j

0 < 0+ Oz(y(j) — g)(j)):c(j) gradient step on weird loss

e Similar to linear regression with MSE loss
~ Except that y is the class prediction, not the linear response
» No update for correct predictions y) = )
> For incorrect predictions: y") — ) = + 2

- — update towards x (for false negative) or —x (for false positive)
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign( - aj(j)) predict output for point j

0 < 0+ Oz(y(j) — A(j)).iv(j) gradient step on weird loss

incorrect prediction: update weights
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Perceptron training algorithm

while — done:

for each data point j:
gV = sign(f - V)
O« O+ oz(y(j) _ A(j))m(j)

predict output for point ;

gradient step on weird loss

correct prediction: no update
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Perceptron training algorithm

while — done:
for each data point j:

§) = sign( - aj(j)) predict output for point j

0 < 0+ Oz(y(j) — A(j)).iv(j) gradient step on weird loss

convergence: no more updates
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Today's lecture

Learning perceptrons

Multi-class classifiers

VC dimension
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Perceptron

e Perceptron = linear classifier
» Parameters @ = weights (also denoted w)
» Response = weighted sum of the features r = 0'x
> Prediction = thresholded response y(x) = T(r) = T(0'x)

+1 if@Tx>0

| (for T(r) = s1gn(r))
—1 otherwise

>

Decision function: y(x) = {

Updaterule: @ «— @ —a( y —y )x

error

T(r)
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Widening the classification margin

* \Which decision boundary is “better”?
> Both have 0 training loss

> But one seems more robust, expected to generalize better
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* Benefit of smooth loss function: care about margin

> Encourage distancing the boundary from data points
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Surrogate loss functions

e Alternative: use differentiable loss function

> E.qg., approximate step function with smooth sigmoid function (= "looks like s”)

T(r)
. Popular choice: logistic / sigmoid function ¢(x) = 1+e;p(_x) e |0,1] -
o(7)
> For this part, let's assume y € {0,1} 0.5 j
« MSE loss: Z4(x,y) = (y — o(r(x)))? r -—e Vil
o —0—0/0/u O

» Far from the boundary: ¢ ~ 0 or 1, loss approximates 0-1 loss

1 1

» Near the boundary: o ~ > lOoSS near T but clear improvement direction
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Learning smooth linear classifiers

Use gradient-based optimizer on the loss £ y(x, y) = (y — 0(6”)6))2

— VL y(x,y) =2(y — 06(0'x))6'(0x) x

error sensitivity

1

Logistic function: o(r) = TTonn

It's derivative: o'(r) = o(r)(1 — o(r))

» Saturates for bothr — 00, r - —

o(r)
i

good

Confidently correct prediction: o(r) x y € {0,1} = V,ZL,~ 0 -

Confidently incorrect prediction: o(r) * 1 —y — V,Z£,~0 -

bad
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Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”

©
=1.9

Roy Fox | CS 273A | Fall 2021 | Lecture 9: Logistic Regression



Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”
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Learning smooth linear classifiers

e With a smooth loss function with can use Stochastic Gradient Descent

Zox,y) = (y — o(r(x)))”

Minimum training MSE
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Maximum likelihood

» What if we had a probabilistic predictor py(y | x)?

» The better the parameter €, the more likely the training data:

Py, y™ x| Xy = H po(yP | x9)

 Bayesian interpretation? | o
except, often there's no uniform distribution over parameter space

-
. MAP:argmax p(0|9) = argmax p(O)p(D )py(D, | D ,) = argmax py(2,|<2,)
0 0 0

average over training dataset

Maximum log-likelihood: maX— Z log py (y(f) | x())
J
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Logistic Regression

« Can we turn a linear response into a probability? Sigmoid! ¢ : R — [0,]1]
e Think of 6(0'x) = py(y = 1 |x)
 Negative Log-Likelihood (NLL) loss:

Zyx,y) = —logpy(y|x) = — ylogo(@'x) — (1 — y)log(l — 6(0'x))
fory =1 fory =0

_log07  —log0.98

W 0
//‘/f —1og 0.99
’d
00— 00 ' ©
—10g 0.99 —10g 0.7 —log0.1
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Logistic Regression: gradient

» Logistic NLL loss: £ y(x,y) = — ylogo(0'x) — (1 — y)log(1l — 6(0'x))

V. L) o'(07x) (1— ) o'(07x)
— X, — — — V) ]| X
R ST T = o(0)
cradient = (y (1 = 6(0"x)) — (1 — y)o(OTx))x
° errorfory=]1 ——on — \ error for y = 0
— (y — p(g(y — 1 ‘X))X but update toward —x
» Compare: j»ﬁm
T(r)
> Perceptron: (y — j})x < constant error (£2), insensitive to margin — —

» Logistic MSE: —V,Zy(x,y) = 2(y — 6(0'x))c'(0'x)x - 0 gradient for bad mistakes
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Recap

* Linear classifiers:
> Perceptron
> Logistic classifier
 Measuring decision quality:
> Error rate / 0-1 loss
> MSE loss
> Negative log-likelihood (Logistic Regression)
* [earning the weights
> Perceptron algorithm — not quite gradient-based (or gradient of weird loss)

> Gradient-based optimization of surrogate loss (MSE / NLL)
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Today's lecture

Learning perceptrons

Logistic regression

VC dimension
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Multi-class linear models

 How to predict multiple classes?
« Idea: have a linear response per class 7. = 6'x

., Choose class with largest response: f(x) = arg max 6 x
C

» Linear boundary between classes ¢y, ¢5:

> OixsOx <= (0.,-0.)xs0

2
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Multi-class linear models

 More generally: add features — can even depend on V!

fo(x) = arg max 0'dP(x, y)
y

» Example:y = %= 1

> O(x,y) = xy

- ) +1 +0x> —-0x
—> fy(x) = arg myaxyé”x - {_1 +0'x < —0'x

— q1 gn(@ T X) < perceptron!
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Multi-class linear models

 More generally: add features — can even depend on y!

fo(x) = arg max 0'd(x, y)
y

» Example:y € {1,2,...,C}
» O(x,y)=[00 - x - 0] = one-hot(y) @ x

- 0=10, - 0]

— fe(x) = arg max @J X < largest linear response
C
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Multi-class perceptron algorithm

e While not done:

> For each data point (x,y) € 9:

_ Predict: = argmax 0 x
C

- Increase response for true class: 6’y «— Hy + ax
- Decrease response for predicted class: Qy «— Hy — ax

* More generally:

Predict: y = arg max 81d(x, y)
y

>

» Update: 8 < 0+ a(D(x,y) — D(x,y))

Roy Fox | CS 273A | Fall 2021 | Lecture 9: Logistic Regression



Multilogit Regression

exp(6)x)
_ Define multi-class probabilities: py(y | x) = — = soft max 6!x
2..€xp(0]x) c ,
exp(0,x)
Py =1]x) = ———— » o
| exp(0,x) + exp(6,x) Logistic Regression with 6 = 6, — 6,
For binary y: | /
" — — 6((6’1 — ez)TX)

I + exp((6, — 6))Tx)
e Benefits:

> Probabillistic predictions: knows its confidence

Linear decision boundary: arg max exp(6/x) = arg max 6x
y y

>

» NLL Is convex
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Multilogit Regression: gradient

NLL loss: Zy(x,y) = —1ogpy(y|x) = — HyTx + log 2 exp(6)x)

e (Gradient:

Vg 2. .exp(0)x)
> .exp(0)x)

B . exp(Oix)
— (5(y = () —ZC, — ) X
= (0(y = ¢) — py(c|x))x

make true class more likely — —~— make all other classes less likely
» Compare to multi-class perceptron: (0(y = c¢) — o6(y = ¢))x

— Vecge(xa y) =0(y = C)x —
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Today's lecture

Learning perceptrons

Logistic regression

Multi-class classifiers
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Complexity measures

 What are we looking for in a measure of model class complexity?

» Tell us something about generalization error Lagt — gtraining

TN

> Tell us how it depends on amount of datam @S0 called: risk —empirical risk

> Be easy to find for a given model class — haha jk not gonna happen (more later)

» |deally: a way to select model complexity (other than validation)

> Akaike Information Criterion (AIC) — roughly: loss + #parameters

> Bayesian Information Criterion (BIC) — roughly: loss + #parameters - log m

- But what's the #parameters, effectively? Should fy 4 = 8g—p(, ¢,y Change the complexity?
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Model expressiveness

 Model complexity also measures expressiveness / representational power
* Tradeoft:

> More expressive — can reduce error, but may also overfit to training data

> Less expressive = may not be able to represent true pattern / trend

o Example: Sign(eo + 91)61 + 92)(:2)
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Model expressiveness

 Model complexity also measures expressiveness / representational power

e Tradeoft:

» More expressive = can reduce error, but may also overfit to training data

> Less expressive = may not be able to represent true pattern / trend

« Example: sign()cl2 + x22 — 0)
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Shattering

o Separability / realizability: there's a model that classifies all points correctly

e Shattering: the points are separable regardless of their labels

» Our model class can shatter points x(l), ey xM

if for any labeling y'", ..., y®

there exists a model that classifies all of them correctly

- The model class must have at least as many models as labelings C"
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Shattering

o Separability / realizability: there's a model that classifies all points correctly

o Shattering: the points are separable regardless of their labels

> Our model class can shatter points x(l), . xM

if for any labeling y(l), Cees y(h)

there exists a model that classifies all of them correctly

» Example: can f,(x) = s1gn(6, + 0,x; + 6,x,) shatter these points?

O O O o O

0 0 \.V - T
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Shattering

o Separabllity / realizability: there's a model that classifies all points correctly

o Shattering: the points are separable regardless of their labels

> Our model class can shatter points x(l), - x!

if for any labeling y(1, ...,y

h)

h)

there exists a model that classifies all of them correctly

« Example: can fy(x) = sign()cl2 + x22 — 0) shatter these points?

P
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Vapnik—-Chervonenkis (VC) dimension

« \/C dimension: maximum number H of points that can be shattered by a class
A game:

» Fixamodelclassfy,:x—y 6€0

> Player 1: choose 4 points x, xW
> Player 2: choose labels y(l), e y(h)
> Player 1: choose model &

> Are all yV) = £,(x)? = Player 1 wins  3x1,..,x® : vy® y®: 39: vj: yO) = f(xD)

« h < H = Player 1 can win, otherwise cannot win
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VC dimension: example (1)

« \/C dimension: maximum number H of points that can be shattered by a class
» To find H, think like the winning player: 1 forh < H,2 forh > H
« Example: fy(x) = sign(xl2 + x22 — 0)

> We can place one point and "shatter” it

> We can prevent shattering any two points: make the distant one blue

» H=1
e O

° D\® a
N, N

N
NI
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VC dimension: example (2)

o Example:fé(X) — Sign(e() + (91)61 + 92)(:2)

> We can place 3 points and shatter them j.
> We can prevent shattering any 4 points:
- If they form a convex shape, alternate labels o | @
O
- Otherwise, label differently the point in the triangle O
- H=3

 Linear classifiers (perceptrons) of d features have VC-dim d + 1

> But VC-dim is generally not #parameters
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VC Generalization bound

 VC-dim of a model class can be used to bound generalization loss:

> With probability at least 1 — 77, we will get a "good” dataset, for which

N Hlog(2m/H) + H — log(n/4)
test loss — trainingloss <4/—m—MM8M8M ™ ———
k J m

generalization loss

 \We need larger training size m:
> The better generalization we need
> The more complex (higher VC-dim) our model class

> The more likely we want to get a good training sample
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Model selection with VC-dim

» Using validation / cross-validation:

' model complexit training loss validation loss
» Estimate loss on held out set plexity g

[ ] L ]
[ ] [ ]
» Use validation loss to select model ] ]
[ ] [ ]
[] L 1
v ] L ]
° USing VC dimension: model complexity training loss VC bound testloss bound
o s ) [
> Use generalization bound to select model ] N [
] ] [
> Structural Risk Minimization (SRM) . — .
v [ e

> Bound not tight, must too conservative
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Logistics

e Midterm exam on Nov 4, 11am-12:20 in SH 128

* |f you're eligible to be remote — let us know by Oct 28

_ * Assignment 3 due next Tuesday, Oct 26

* |f you're eligible for more time — let us know by Oct 28

* Review during lecture next Thursday
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