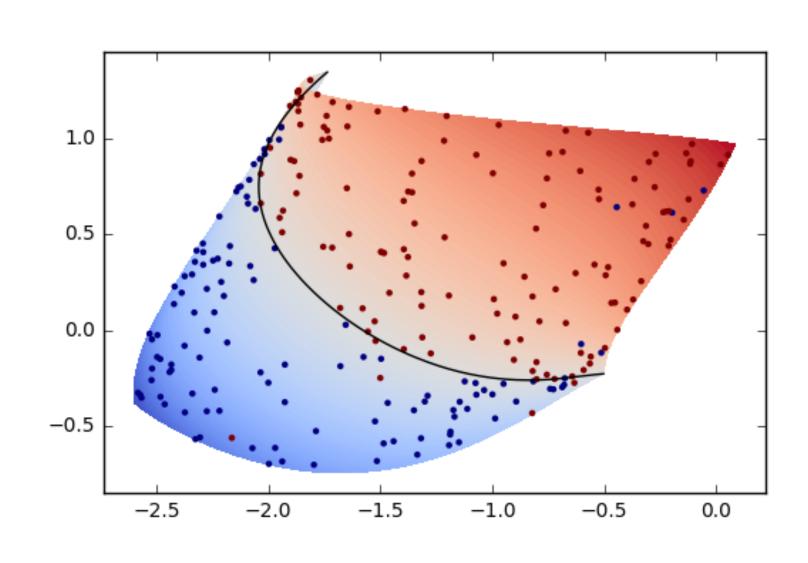


CS 273A: Machine Learning Fall 2021 Lecture 9: Logistic Regression

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

All slides in this course adapted from Alex Ihler & Sameer Singh



Logistics

assignments

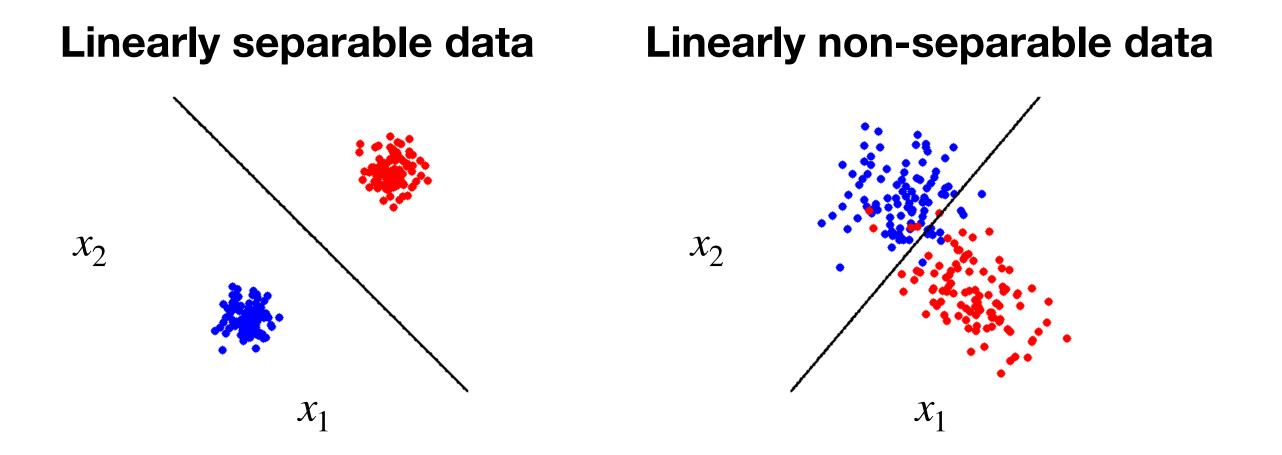
Assignment 3 due next Tuesday, Oct 26

midterm

- Midterm exam on Nov 4, 11am-12:20 in SH 128
- If you're eligible to be remote let us know by Oct 28
- If you're eligible for more time let us know by Oct 28
- Review during lecture next Thursday

Separability

- Separable dataset = there's a model (in our class) with perfect prediction
- Separable problem = there's a model with 0 test loss $\mathbb{E}_{x,y\sim p}[\ell(y,\hat{y}(x))]=0$
 - Also called realizable
- Linearly separable = separable by a linear classifiers (hyperplanes)

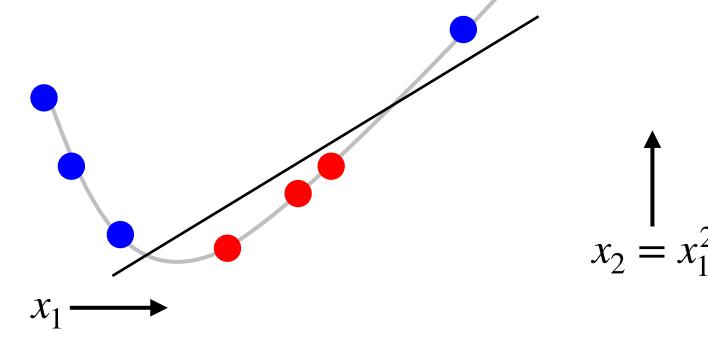


Adding features

- How to make the perceptron more expressive?
 - ► Add features recall linear → polynomial regression
- Linearly non-separable:

 $x_1 \longrightarrow$

• Linearly separable in quadratic features:



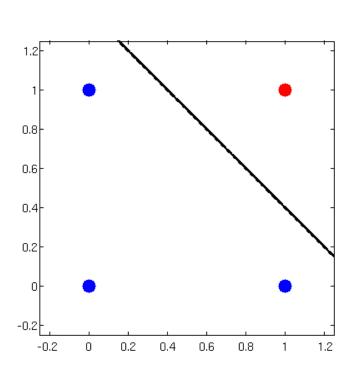
- Visualized in original feature space:
 - ► Decision boundary: $ax^2 + bx + c = 0$

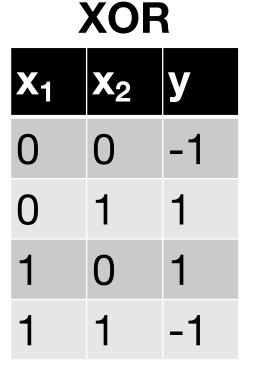
$$\hat{y} = T(ax^2 + bx + c)$$

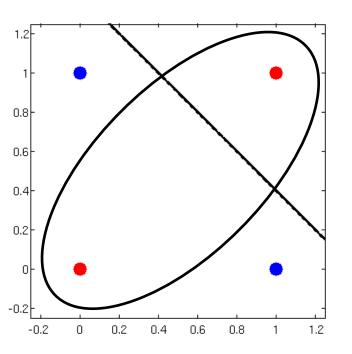
Adding features

- Which functions do we need to represent the decision boundary?
 - When linear functions aren't sufficiently expressive
 - Perhaps quadratic functions are

$$ax_1^2 + bx_1 + cx_2^2 + dx_2 + ex_1x_2 + f = 0$$







Separability in high dimension

- As we add more features \rightarrow dimensionality of instance x increases:
 - Separability becomes easier: more parameters, more models that could separate
 - Add enough (good) features, and even a linear classifier can separate
 - Given a decision boundary f(x) = 0: add f(x) as a feature \rightarrow linearly separable!
- However:
 - Do these features explain test data or just training data?
 - Increasing model complexity can lead to overfitting

Recap

- Perceptron = linear classifier
 - Linear response → step decision function → discrete class prediction
 - Linear decision boundary
- Separability = existence of a perfect model (in the class)
 - Separable data: 0 loss on this data
 - Separable problem: 0 loss on the data <u>distribution</u>
 - Perceptron: linear separability
- Adding features:
 - Complex features: complex decision boundary, easier separability
 - Can lead to overfitting

Today's lecture

Learning perceptrons

Logistic regression

Multi-class classifiers

VC dimension

Learning a perceptron

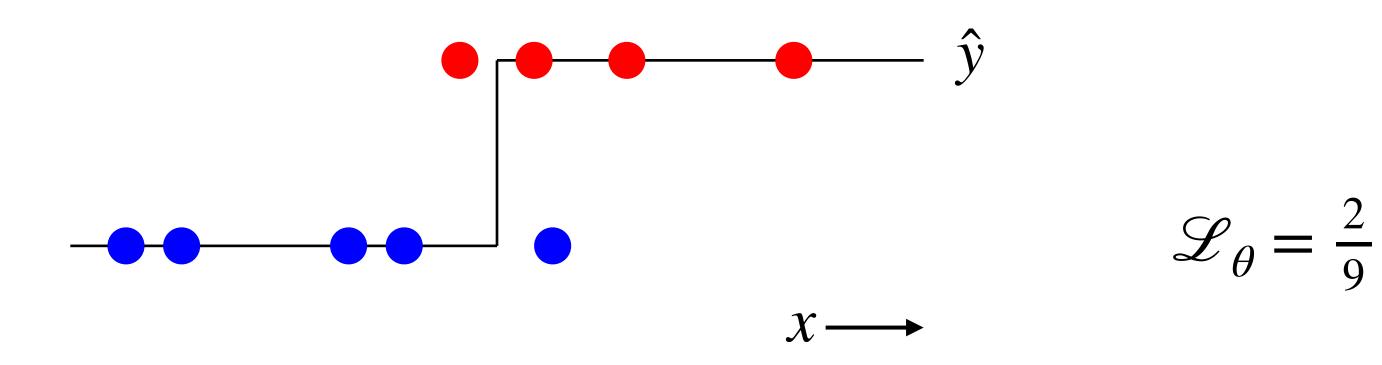
- What do we need to learn the parameters θ of a perceptron?

 - Loss function \mathcal{L}_{θ} = error rate on labeled data
 - Optimization algorithm = method for minimizing training loss

Error rate

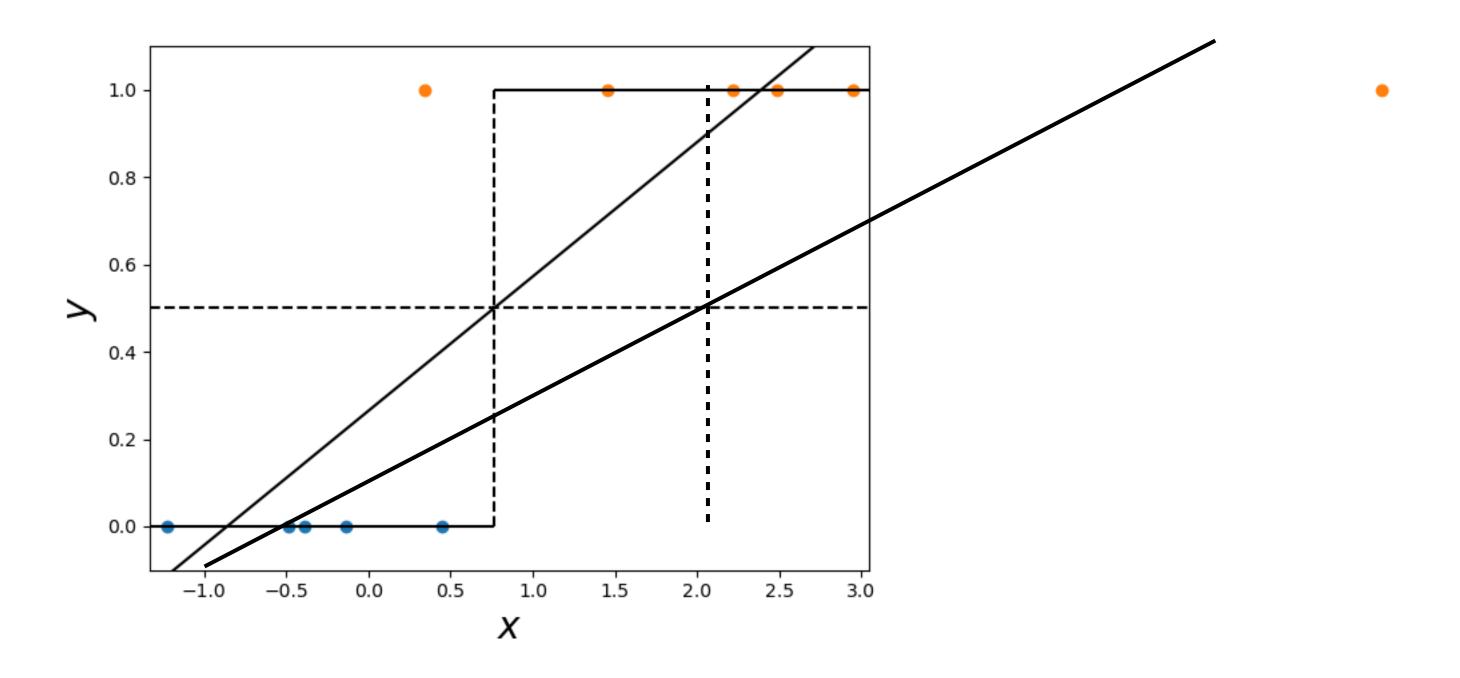
• Error rate:
$$\mathcal{L}_{\theta} = \frac{1}{m} \sum_{i} \delta(y^{(i)} \neq f_{\theta}(x^{(i)}))$$

With the indicator
$$\delta(y \neq \hat{y}) = \begin{cases} 1 & y \neq \hat{y} \\ 0 & else \end{cases}$$



Use linear regression?

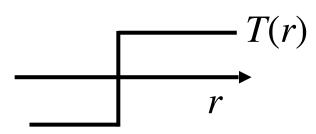
• Idea: find θ using linear regression



- Affected by large regression losses
 - We only care about the <u>classification</u> loss

Perceptron: gradient-based learning

- Problem: loss function not differentiable $\mathcal{L}_{\theta}(x, y) = \delta(y \neq \text{sign}(\theta^{T}x))$
 - Write differently: $\mathcal{L}_{\theta}(x, y) = \frac{1}{4}(y \text{sign}(\theta^{\dagger}x))^2$
 - $\nabla_{\theta} \operatorname{sign}(\theta^{\intercal} x) = 0$ almost everywhere



- ► But we also don't want MSE = $\mathcal{L}_{\theta}(x, y) = \frac{1}{2}(y \theta^{\intercal}x)^2$
- Compromise: $\mathcal{L}_{\theta}(x, y) = (y \text{sign}(\theta^{\mathsf{T}}x))(y \theta^{\mathsf{T}}x)$

$$- \nabla_{\theta} \mathcal{L}_{\theta} = -(y - \operatorname{sign}(\theta^{\mathsf{T}} x))x = -(y - \hat{y})x$$

while \neg done:

for each data point j:

$$\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$$

$$\theta \leftarrow \theta + \alpha(y^{(j)} - \hat{y}^{(j)})x^{(j)}$$

predict output for point j

gradient step on weird loss

- Similar to linear regression with MSE loss
 - Except that \hat{y} is the class prediction, not the linear response
 - No update for correct predictions $y^{(j)} = \hat{y}^{(j)}$
 - For incorrect predictions: $y^{(j)} \hat{y}^{(j)} = \pm 2$
 - \Longrightarrow update towards x (for false negative) or -x (for false positive)

while \neg done:

for each data point j:

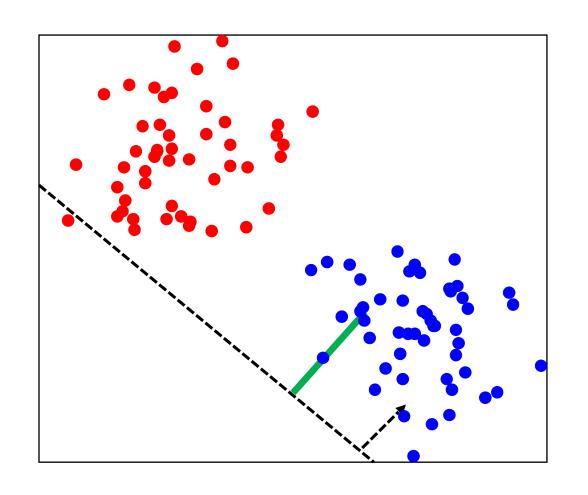
$$\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$$

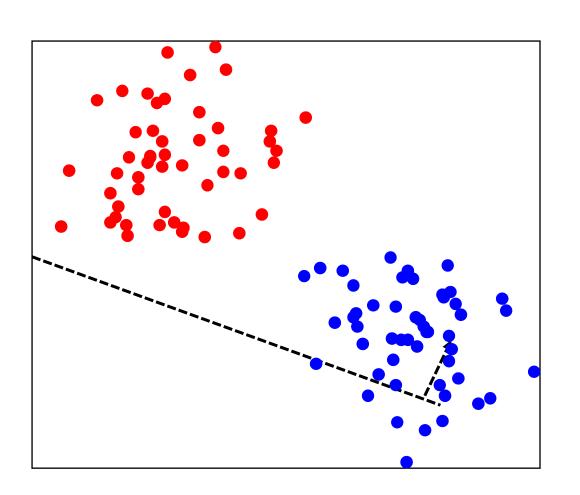
$$\theta \leftarrow \theta + \alpha(y^{(j)} - \hat{y}^{(j)})x^{(j)}$$

predict output for point j

gradient step on weird loss

incorrect prediction: update weights





while \neg done:

for each data point j:

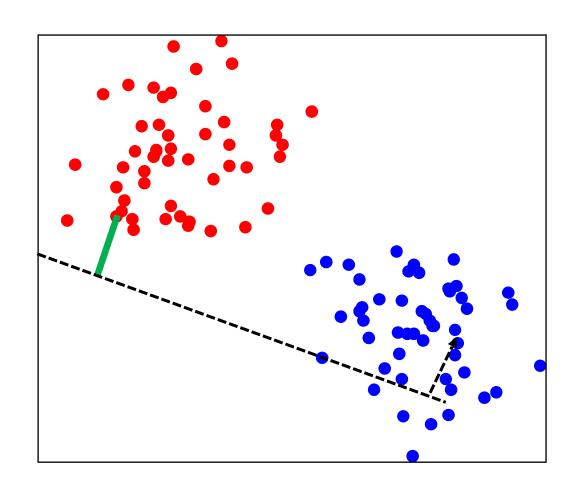
$$\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$$

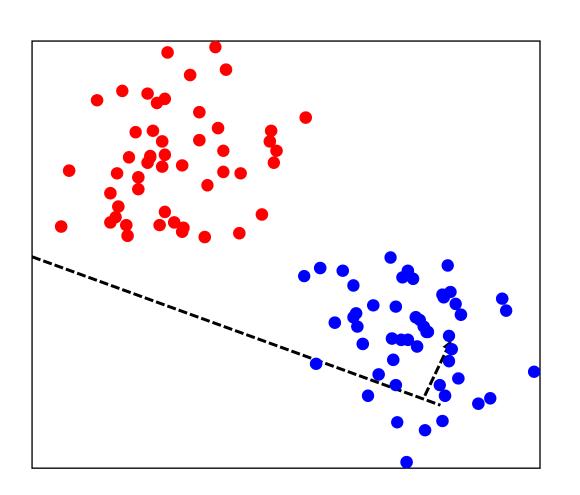
$$\theta \leftarrow \theta + \alpha(y^{(j)} - \hat{y}^{(j)})x^{(j)}$$

predict output for point j

gradient step on weird loss

correct prediction: no update





while \neg done:

for each data point j:

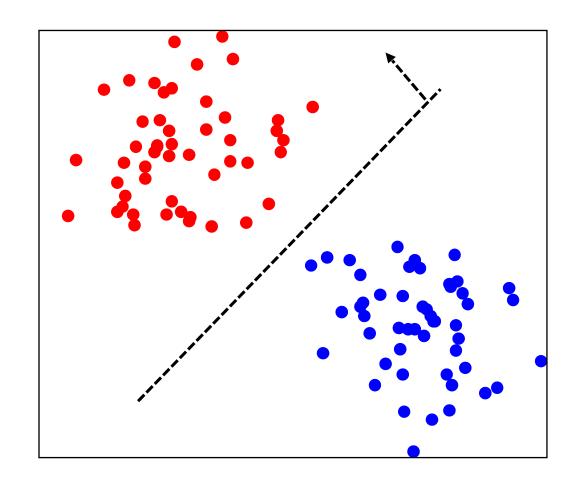
$$\hat{y}^{(j)} = \operatorname{sign}(\theta \cdot x^{(j)})$$

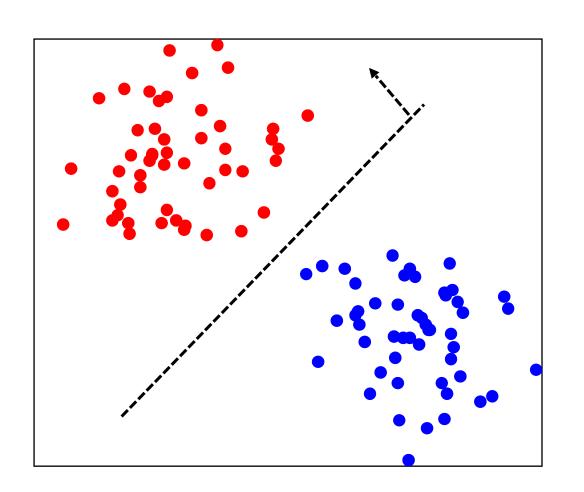
$$\theta \leftarrow \theta + \alpha(y^{(j)} - \hat{y}^{(j)})x^{(j)}$$

predict output for point j

gradient step on weird loss

convergence: no more updates





Today's lecture

Learning perceptrons

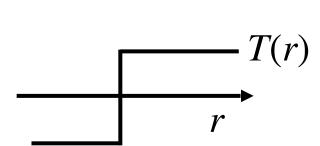
Logistic regression

Multi-class classifiers

VC dimension

Perceptron

- Perceptron = linear classifier
 - ► Parameters θ = weights (also denoted w)
 - Response = weighted sum of the features $r = \theta^{T}x$
 - Prediction = thresholded response $\hat{y}(x) = T(r) = T(\theta^{T}x)$

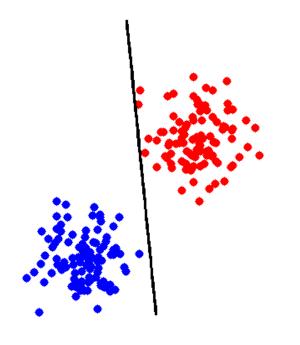


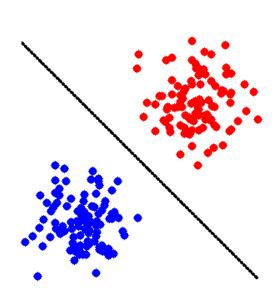
Decision function:
$$\hat{y}(x) = \begin{cases} +1 & \text{if } \theta^{\intercal}x > 0 \\ -1 & \text{otherwise} \end{cases}$$
 (for $T(r) = \text{sign}(r)$)

• Update rule:
$$\theta \leftarrow \theta - \alpha(\underbrace{y - \hat{y}}_{\text{error}})x$$

Widening the classification margin

- Which decision boundary is "better"?
 - Both have 0 training loss
 - But one seems more robust, expected to generalize better

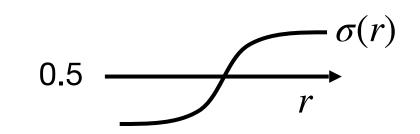




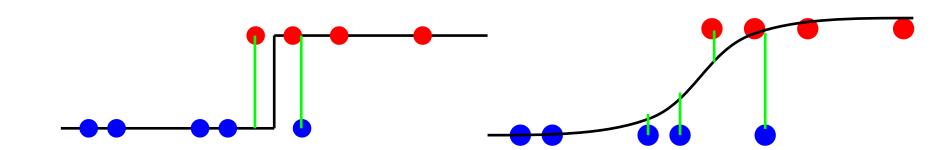
- Benefit of smooth loss function: care about margin
 - Encourage distancing the boundary from data points

Surrogate loss functions

- Alternative: use differentiable loss function
 - ► E.g., approximate step function with smooth sigmoid function (= "looks like s")
 - Popular choice: logistic / sigmoid function $\sigma(x) = \frac{1}{1 + \exp(-x)} \in [0,1]$
 - For this part, let's assume $y \in \{0,1\}$



• MSE loss: $\mathcal{L}_{\theta}(x, y) = (y - \sigma(r(x)))^2$



- Far from the boundary: $\sigma \approx 0$ or 1, loss approximates 0–1 loss
- Near the boundary: $\sigma \approx \frac{1}{2}$, loss near $\frac{1}{4}$, but clear improvement direction

• Use gradient-based optimizer on the loss $\mathcal{L}_{\theta}(x,y) = (y - \sigma(\theta^{\intercal}x))^2$

$$-\nabla_{\theta} \mathcal{L}_{\theta}(x,y) = 2(y - \sigma(\theta^{\mathsf{T}}x))\sigma'(\theta^{\mathsf{T}}x)x$$
error
sensitivity

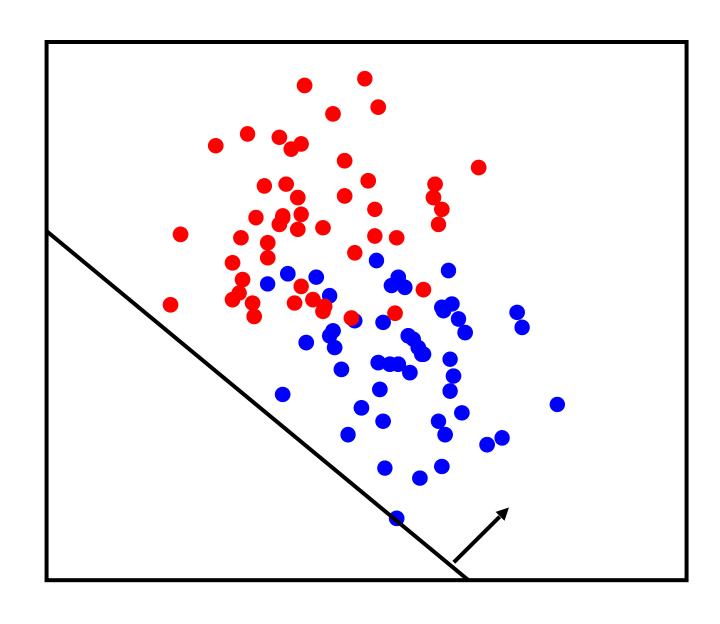
• Logistic function: $\sigma(r) = \frac{1}{1 + \exp(-r)}$

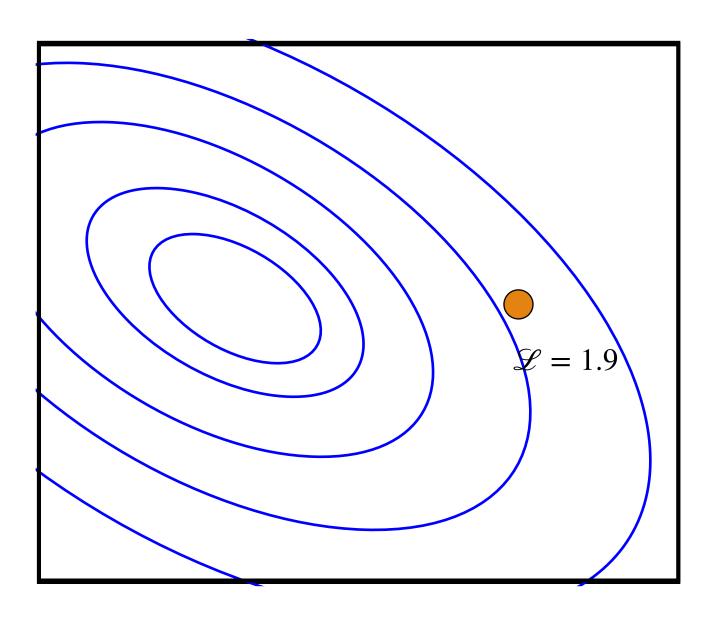
 $\sigma(r)$

- It's derivative: $\sigma'(r) = \sigma(r)(1 \sigma(r))$
 - Saturates for both $r \to \infty$, $r \to -\infty$
- Confidently correct prediction: $\sigma(r) \approx y \in \{0,1\} \implies \nabla_{\theta} \mathcal{L}_{\theta} \approx 0 \mod$
- Confidently incorrect prediction: $\sigma(r) \approx 1 y \implies \nabla_{\theta} \mathcal{L}_{\theta} \approx 0$ —— bad

With a smooth loss function with can use Stochastic Gradient Descent

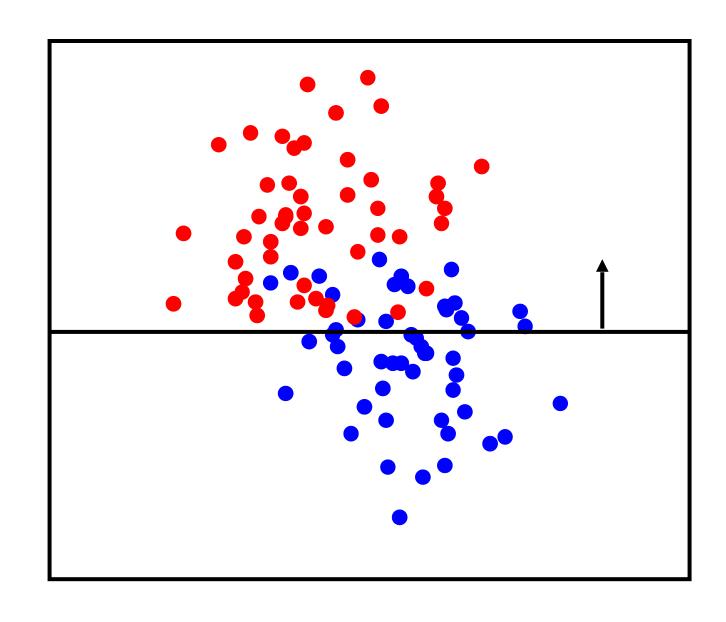
$$\mathcal{L}_{\theta}(x, y) = (y - \sigma(r(x)))^2$$

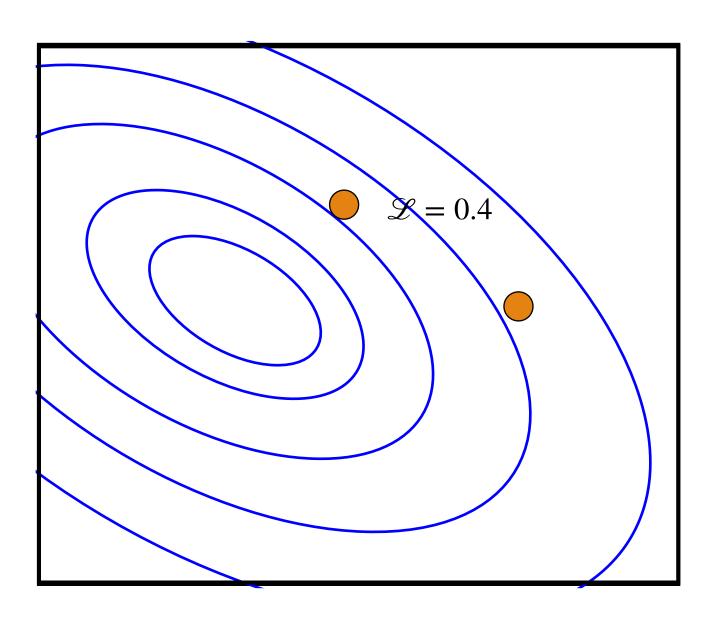




With a smooth loss function with can use Stochastic Gradient Descent

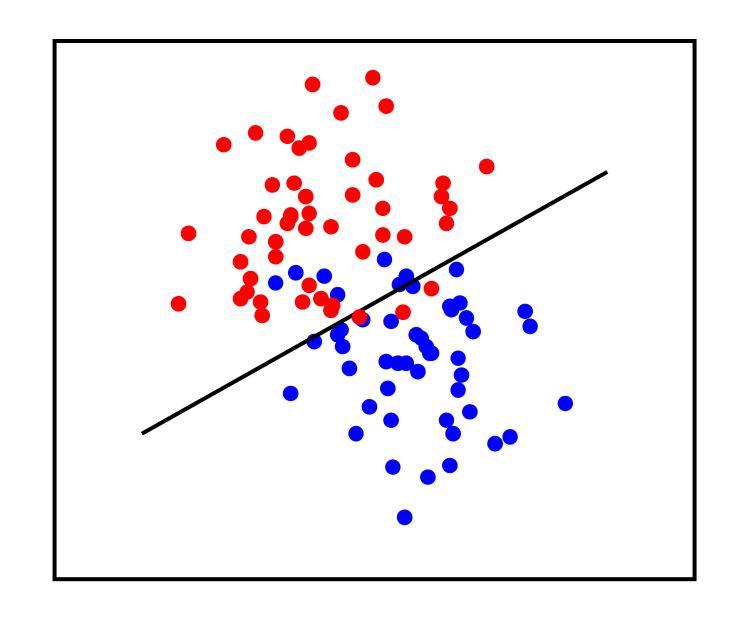
$$\mathcal{L}_{\theta}(x, y) = (y - \sigma(r(x)))^2$$

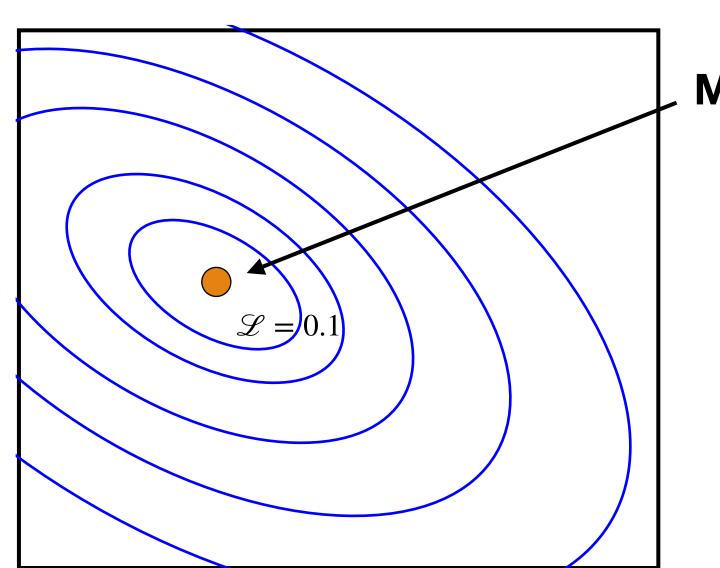




With a smooth loss function with can use Stochastic Gradient Descent

$$\mathcal{L}_{\theta}(x, y) = (y - \sigma(r(x)))^2$$





Minimum training MSE

Maximum likelihood

- What if we had a probabilistic predictor $p_{\theta}(y \mid x)$?
- The better the parameter θ , the more likely the training data:

$$p_{\theta}(y^{(1)}, ..., y^{(m)} | x^{(1)}, ..., x^{(m)}) = \prod_{j} p_{\theta}(y^{(j)} | x^{(j)})$$

• Bayesian interpretation?

except, often there's no uniform distribution over parameter space

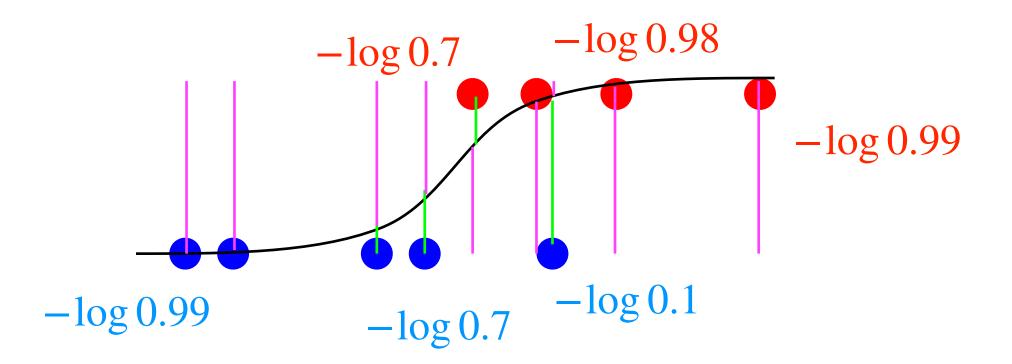
$$\mathsf{MAP:} \ \arg\max_{\theta} p(\theta \,|\, \mathscr{D}) = \arg\max_{\theta} p(\theta) p(\mathscr{D}_{x}) p_{\theta}(\mathscr{D}_{y} \,|\, \mathscr{D}_{x}) = \arg\max_{\theta} p_{\theta}(\mathscr{D}_{y} \,|\, \mathscr{D}_{x})$$

average over training dataset

Maximum log-likelihood:
$$\max_{\theta} \frac{1}{m} \sum_{j} \log p_{\theta}(y^{(j)} | x^{(j)})$$

Logistic Regression

- Can we turn a linear response into a probability? Sigmoid! $\sigma: \mathbb{R} \to [0,1]$
- Think of $\sigma(\theta^{\mathsf{T}}x) = p_{\theta}(y = 1 \mid x)$
- Negative Log-Likelihood (NLL) loss:



Logistic Regression: gradient

• Logistic NLL loss: $\mathcal{L}_{\theta}(x, y) = -y \log \sigma(\theta^{\mathsf{T}} x) - (1 - y) \log(1 - \sigma(\theta^{\mathsf{T}} x))$

$$-\nabla_{\theta} \mathcal{L}_{\theta}(x, y) = \left(y \frac{\sigma'(\theta^{\dagger} x)}{\sigma(\theta^{\dagger} x)} - (1 - y) \frac{\sigma'(\theta^{\dagger} x)}{1 - \sigma(\theta^{\dagger} x)}\right) x$$

Gradient:

$$= (y (1 - \sigma(\theta^{\mathsf{T}} x)) - (1 - y)\sigma(\theta^{\mathsf{T}} x))x$$
 error for $y = 1$ error for $y = 0$

$$= (y - p_{\theta}(y = 1 | x))x$$

but update toward -x

• Compare:

 $\sigma(r)$

Recap

- Linear classifiers:
 - Perceptron
 - Logistic classifier
- Measuring decision quality:
 - Error rate / 0–1 loss
 - MSE loss
 - Negative log-likelihood (Logistic Regression)
- Learning the weights
 - Perceptron algorithm not quite gradient-based (or gradient of weird loss)
 - Gradient-based optimization of surrogate loss (MSE / NLL)

Today's lecture

Learning perceptrons

Logistic regression

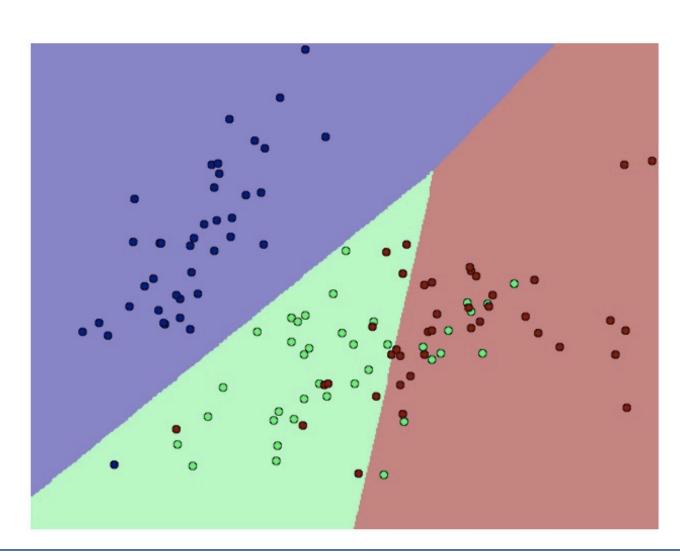
Multi-class classifiers

VC dimension

Multi-class linear models

- How to predict multiple classes?
- Idea: have a linear response per class $r_c = \theta_c^\intercal x$
 - Choose class with largest response: $f_{\theta}(x) = \arg\max_{c} \theta_{c}^{\mathsf{T}} x$
- Linear boundary between classes c_1, c_2 :

$$\bullet \ \theta_{c_1}^\intercal x \leq \theta_{c_2}^\intercal x \iff (\theta_{c_1} - \theta_{c_2})^\intercal x \leq 0$$



Multi-class linear models

More generally: add features — can even depend on y!

$$f_{\theta}(x) = \arg\max_{y} \theta^{\mathsf{T}} \Phi(x, y)$$

- Example: $y = \pm 1$
 - $\Phi(x,y) = xy$

$$\implies f_{\theta}(x) = \arg\max_{y} y \theta^{\intercal} x = \begin{cases} +1 & +\theta^{\intercal} x > -\theta^{\intercal} x \\ -1 & +\theta^{\intercal} x < -\theta^{\intercal} x \end{cases}$$
$$= \operatorname{sign}(\theta^{\intercal} x) \longleftarrow \text{perceptron!}$$

Multi-class linear models

More generally: add features — can even depend on y!

$$f_{\theta}(x) = \arg\max_{y} \theta^{\mathsf{T}} \Phi(x, y)$$

- Example: $y \in \{1, 2, ..., C\}$
 - $\Phi(x, y) = [0 \ 0 \ \cdots \ x \ \cdots \ 0] = \text{one-hot}(y) \otimes x$
 - $\bullet \ \theta = [\theta_1 \ \cdots \ \theta_C]$

$$\Longrightarrow f_{\theta}(x) = \arg\max_{c} \theta_{c}^{\mathsf{T}} x \longleftarrow \operatorname{largest linear response}$$

Multi-class perceptron algorithm

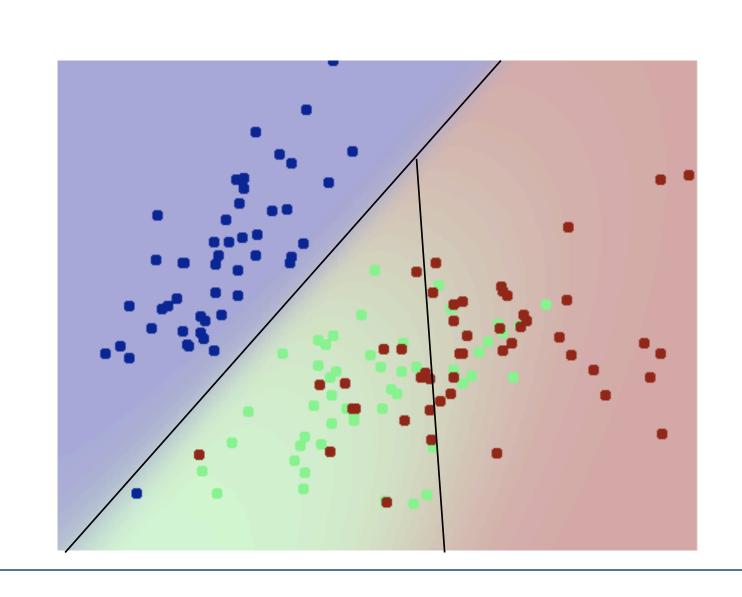
- While not done:
 - For each data point $(x, y) \in \mathcal{D}$:
 - Predict: $\hat{y} = \arg \max_{c} \theta_{c}^{\mathsf{T}} x$
 - Increase response for true class: $\theta_{\rm y} \leftarrow \theta_{\rm y} + \alpha x$
 - Decrease response for predicted class: $\theta_{\hat{y}} \leftarrow \theta_{\hat{y}} \alpha x$
- More generally:
 - Predict: $\hat{y} = \arg \max_{y} \theta^{T} \Phi(x, y)$
 - Update: $\theta \leftarrow \theta + \alpha(\Phi(x, y) \Phi(x, \hat{y}))$

Multilogit Regression

Define multi-class probabilities: $p_{\theta}(y \mid x) = \frac{\exp(\theta_y^\intercal x)}{\sum_c \exp(\theta_c^\intercal x)} = \underbrace{\operatorname{soft} \max_c \theta_c^\intercal x}_{t}$

$$p_{\theta}(y=1\,|\,x) = \frac{\exp(\theta_1^\intercal x)}{\exp(\theta_1^\intercal x) + \exp(\theta_2^\intercal x)}$$
 For binary y :
$$= \frac{1}{1 + \exp((\theta_2 - \theta_1)^\intercal x)} = \sigma((\theta_1 - \theta_2)^\intercal x)$$

- Benefits:
 - Probabilistic predictions: knows its confidence
 - Linear decision boundary: $\underset{y}{\arg\max} \exp(\theta_y^\intercal x) = \underset{y}{\arg\max} \theta_y^\intercal x$
 - NLL is convex



Multilogit Regression: gradient

NLL loss:
$$\mathcal{L}_{\theta}(x, y) = -\log p_{\theta}(y \mid x) = -\theta_y^{\mathsf{T}} x + \log \sum_{c} \exp(\theta_c^{\mathsf{T}} x)$$

Gradient:

$$\begin{split} -\nabla_{\theta_c} \mathcal{L}_{\theta}(x,y) &= \delta(y=c)x - \frac{\nabla_{\theta_c} \sum_{c'} \exp(\theta_{c'}^\intercal x)}{\sum_{c'} \exp(\theta_{c'}^\intercal x)} \\ &= \left(\delta(y=c) - \frac{\exp(\theta_{c}^\intercal x)}{\sum_{c'} \exp(\theta_{c'}^\intercal x)}\right) x \\ &= (\delta(y=c) - p_{\theta}(c \mid x))x \end{split}$$
 make true class more likely make all other classes less likely

• Compare to multi-class perceptron: $(\delta(y=c)-\delta(\hat{y}=c))x$

Today's lecture

Learning perceptrons

Logistic regression

Multi-class classifiers

VC dimension

Complexity measures

- What are we looking for in a measure of model class complexity?
 - Tell us something about generalization error $\mathcal{L}_{\text{test}}$ $\mathcal{L}_{\text{training}}$
 - ► Tell us how it depends on amount of data *m*
 - Be easy to find for a given model class haha jk not gonna happen (more later)

also called: risk - empirical risk

- Ideally: a way to select model complexity (other than validation)
 - Akaike Information Criterion (AIC) roughly: loss + #parameters
 - ► Bayesian Information Criterion (BIC) roughly: loss + #parameters · log m
 - But what's the #parameters, effectively? Should $f_{\theta_1,\theta_2}=g_{\theta=h(\theta_1,\theta_2)}$ change the complexity?

Model expressiveness

- Model complexity also measures expressiveness / representational power
- Tradeoff:
 - ► More expressive ⇒ can reduce error, but may also overfit to training data
 - ► Less expressive ⇒ may not be able to represent true pattern / trend

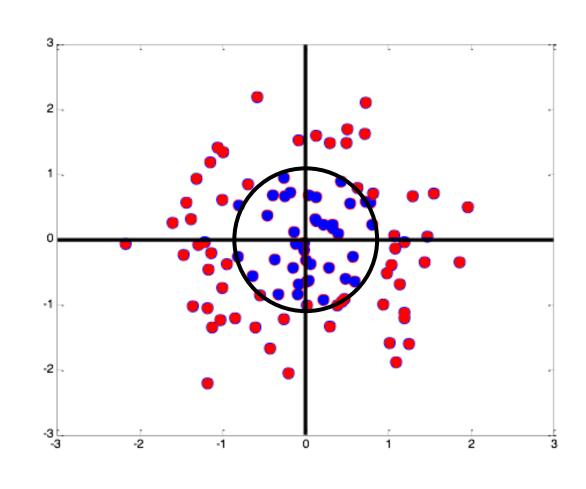
• Example: $sign(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$



Model expressiveness

- Model complexity also measures expressiveness / representational power
- Tradeoff:
 - ► More expressive ⇒ can reduce error, but may also overfit to training data
 - Less expressive \iff may not be able to represent true pattern / trend

• Example: $sign(x_1^2 + x_2^2 - \theta)$



Shattering

- Separability / realizability: there's a model that classifies all points correctly
- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points $x^{(1)}, ..., x^{(h)}$

if for any labeling
$$y^{(1)}, ..., y^{(h)}$$

there exists a model that classifies all of them correctly

- The model class must have at least as many models as labelings C^\hbar

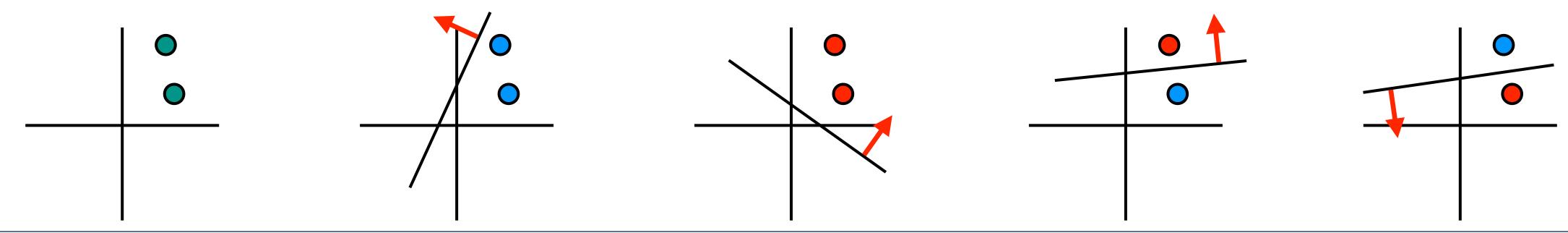
Shattering

- Separability / realizability: there's a model that classifies all points correctly
- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points $x^{(1)}, ..., x^{(h)}$

if for any labeling $y^{(1)}, ..., y^{(h)}$

there exists a model that classifies all of them correctly

• Example: can $f_{\theta}(x) = \text{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$ shatter these points?



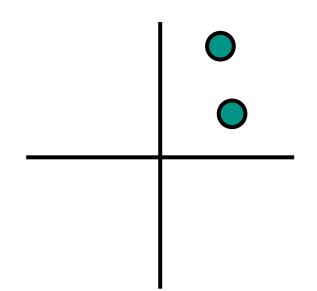
Shattering

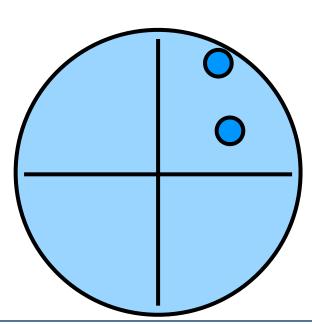
- Separability / realizability: there's a model that classifies all points correctly
- Shattering: the points are separable regardless of their labels
 - Our model class can shatter points $x^{(1)}, ..., x^{(h)}$

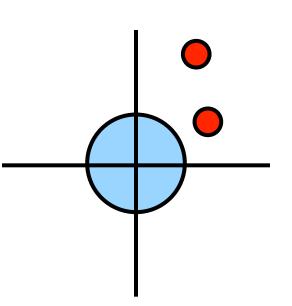
if for any labeling $y^{(1)}, ..., y^{(h)}$

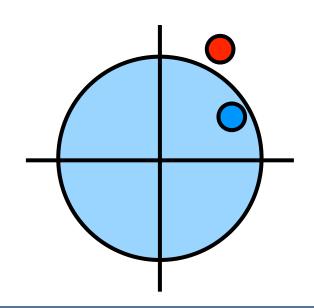
there exists a model that classifies all of them correctly

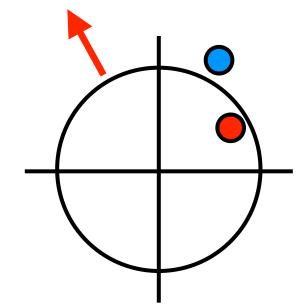
• Example: $can f_{\theta}(x) = sign(x_1^2 + x_2^2 - \theta)$ shatter these points?











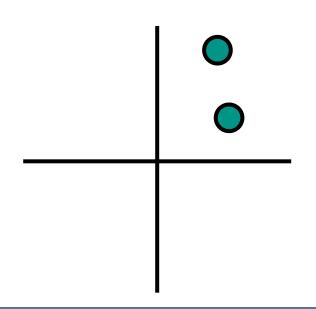
Vapnik-Chervonenkis (VC) dimension

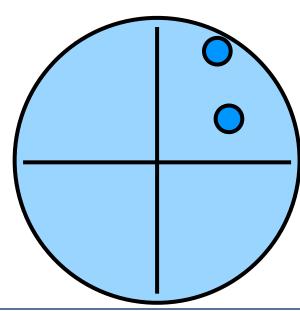
- ullet VC dimension: maximum number H of points that can be shattered by a class
- A game:
 - Fix a model class $f_{\theta}: x \to y \quad \theta \in \Theta$
 - ► Player 1: choose h points $x^{(1)}, ..., x^{(h)}$
 - ► Player 2: choose labels $y^{(1)}, ..., y^{(h)}$
 - Player 1: choose model θ
 - Are all $y^{(j)} = f_{\theta}(x^{(j)})$? \Longrightarrow Player 1 wins $\exists x^{(1)}, ..., x^{(h)} : \forall y^{(1)}, ..., y^{(h)} : \exists \theta : \forall j : y^{(j)} = f_{\theta}(x^{(j)})$
- $h \le H \implies$ Player 1 can win, otherwise cannot win

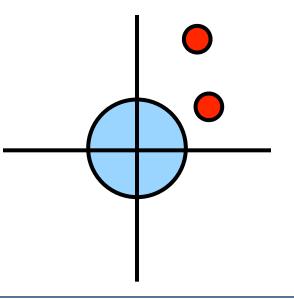
VC dimension: example (1)

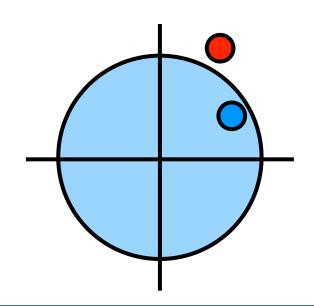
- ullet VC dimension: maximum number H of points that can be shattered by a class
- To find H, think like the winning player: 1 for $h \le H$, 2 for h > H
- Example: $f_{\theta}(x) = \text{sign}(x_1^2 + x_2^2 \theta)$
 - We can place one point and "shatter" it
 - We can prevent shattering any two points: make the distant one blue

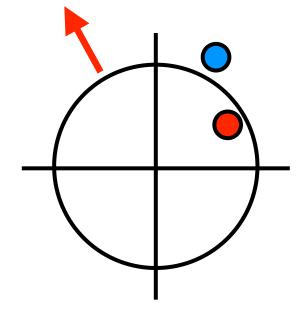
•
$$H = 1$$





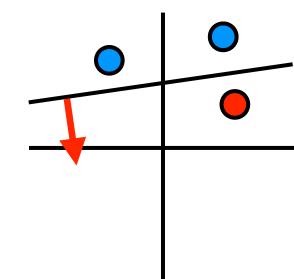




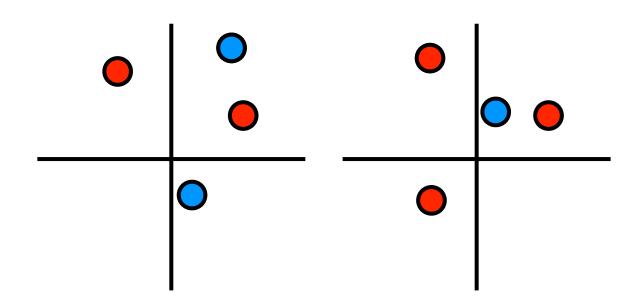


VC dimension: example (2)

- Example: $f_{\theta}(x) = \operatorname{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$
 - We can place 3 points and shatter them



- If they form a convex shape, alternate labels
- Otherwise, label differently the point in the triangle



- H = 3
- Linear classifiers (perceptrons) of d features have VC-dim d+1
 - But VC-dim is generally not #parameters

VC Generalization bound

- VC-dim of a model class can be used to bound generalization loss:
 - With probability at least 1η , we will get a "good" dataset, for which

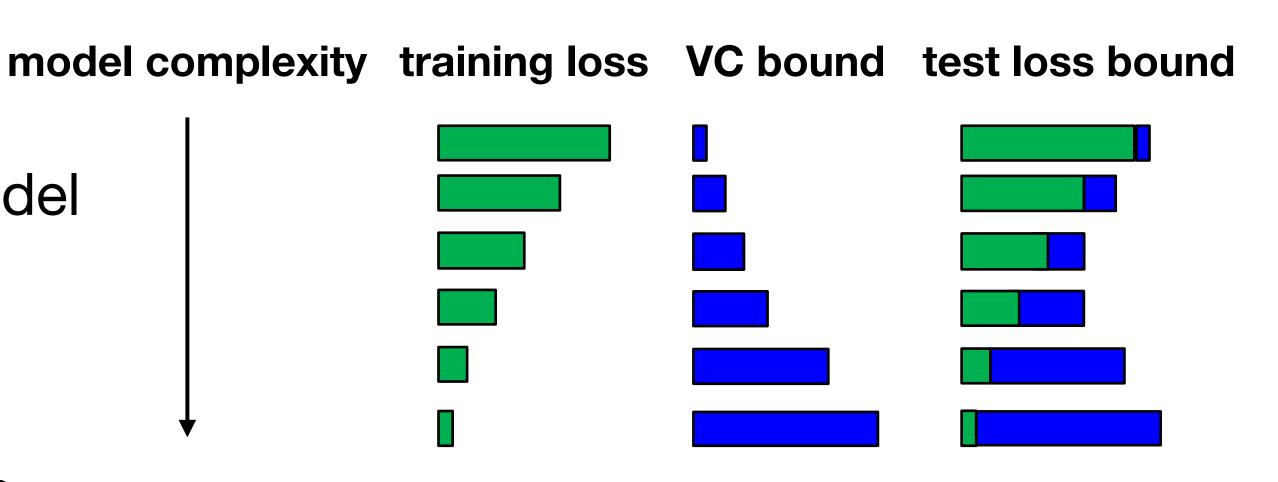
• test loss — training loss
$$\leq \sqrt{\frac{H \log(2m/H) + H - \log(\eta/4)}{m}}$$
 generalization loss

- We need larger training size *m*:
 - The better generalization we need
 - The more complex (higher VC-dim) our model class
 - The more likely we want to get a good training sample

Model selection with VC-dim

- Using validation / cross-validation:
 - Estimate loss on held out set
 - Use validation loss to select model

- Using VC dimension:
 - Use generalization bound to select model
 - Structural Risk Minimization (SRM)
 - Bound not tight, must too conservative



Logistics

assignments

Assignment 3 due next Tuesday, Oct 26

midterm

- Midterm exam on Nov 4, 11am-12:20 in SH 128
- If you're eligible to be remote let us know by Oct 28
- If you're eligible for more time let us know by Oct 28
- Review during lecture next Thursday