Gradient Descent

- Initialize θ
- Do

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\theta}$$

• While $\|\alpha \nabla_{\theta} \mathcal{L}_{\theta}\| \leq \epsilon$

- Learning rate: α
 - Can change in each iteration

Gradient for the MSE loss

• MSE:
$$\mathcal{L}_{\theta} = \frac{1}{m} \sum_{j} (\epsilon^{(j)})^2 = \frac{1}{m} \sum_{j} (y^{(j)} - \theta^{\mathsf{T}} x^{(j)})^2$$

$$\partial_{\theta_i} \mathcal{L}_{\theta} = \frac{1}{m} \sum_{j} \partial_{\theta_i} (\epsilon^{(j)})^2 = \frac{1}{m} \sum_{j} 2\epsilon^{(j)} \partial_{\theta_i} \epsilon^{(j)}$$

$$\partial_{\theta_i} \mathcal{L}_{\theta} = -\frac{2}{m} \sum_{j} \epsilon^{(j)} x_i^{(j)} = -\frac{2}{m} (y - \theta^{\mathsf{T}} X) X_i^{\mathsf{T}}$$

•
$$\nabla_{\theta} \mathcal{L}_{\theta} = -\frac{2}{m} (y - \theta^{\dagger} X) X^{\dagger}$$
 sensitivity to θ

Can also be seen directly from

$$\mathcal{L}_{\theta} = \frac{1}{m} (y - \theta^{\dagger} X)(y - \theta^{\dagger} X)^{\dagger} = \frac{1}{m} (\theta^{\dagger} X X^{\dagger} \theta - 2y X^{\dagger} \theta + y y^{\dagger})$$

Gradient Descent — further considerations

- GD is a very general algorithm
 - We'll use it often
 - Much of the engine for recent advances in ML
- Issues:
 - Can get stuck in local minima

- Worse can get stuck in saddle points, $\nabla_{\theta} \mathcal{L}_{\theta} = 0$ with improvement direction
- Can be slow to converge, sensitive to initialization
- How to choose step size / learning rate?
 - Constant? 1/iteration? Line search? Newton's method?

Newton's method

- Given black-box f(z), how to find a root f(z) = 0?
- Initialize some z
- Repeat:
 - Evaluate f(z) and $\partial_z f(z)$ to find tangent to f at z: $f'(z') = (z'-z)\partial_z f(z) + f(z)$
 - Update z to the root of f': $z \leftarrow z \frac{f(z)}{\partial_z f(z)}$
- Considerations:
 - May not converge, sometimes unstable
 - Usually converges quickly for nice, smooth, locally quadratic functions

Newton's method for gradient descent

- We want to find a (local) minimum $f(\theta) = \nabla_{\theta} \mathcal{L}_{\theta} = 0$
- Initialize some θ
- Repeat:
 - Evaluate gradient $g = \nabla_{\theta} \mathcal{L}_{\theta}$ and Hessian $H = \nabla_{\theta}^2 \mathcal{L}_{\theta}$
 - ▶ Update $\theta \leftarrow \theta H^{-1}g$
- Considerations:
 - Update step may be too large for highly non-convex losses
 - Computational complexity to invert $H: O(n^3)$

Gradient Descant: complexity

Assume
$$\mathcal{L}_{\theta}(\mathcal{D}) = \frac{1}{m} \sum_{j} \ell_{\theta}(x^{(j)}, y^{(j)})$$

- MSE: $\ell_{\theta}(x, y) = (y \theta^{\dagger}x)^2$
- Computing $\nabla_{\theta} \mathcal{L}_{\theta} = \frac{1}{m} \sum_{j} \nabla_{\theta} \mathcal{E}_{\theta}^{(j)}$: usually O(mn)
 - What if we use really large datasets? ("big data")
 - What if we learn from data streams? (more data keeps coming in...)

Stochastic / Online Gradient Descent

- Estimate $\nabla_{\theta} \mathcal{L}_{\theta}$ fast on a sample of data points
- For each data point:

$$\nabla_{\theta} \mathcal{L}_{\theta}(x^{(j)}, y^{(j)}) = \nabla_{\theta}(y^{(j)} - \theta^{\dagger} x^{(j)})^2 = -2(y^{(j)} - \theta^{\dagger} x^{(j)})(x^{(j)})^{\dagger}$$

• This is an unbiased estimator of the gradient, i.e. in expectation

$$\mathbb{E}_{j \sim \text{Uniform}(1,...,m)} \left[\nabla_{\theta} \mathcal{L}_{\theta}^{(j)} \right] = \frac{1}{m} \sum_{j} \nabla_{\theta} \mathcal{L}_{\theta}^{(j)} = \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$$

- $\nabla_{\theta}\mathscr{L}_{\theta}(\mathscr{D})$ is already a noisy unbiased estimator of true gradient $\mathbb{E}_{x,y\sim p}[\ \nabla_{\theta}\mathscr{L}_{\theta}(x,y)]$
 - SGD is even more noisy

- Initialize θ
- Repeat:
 - ► Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$
- Until some stop criterion; e.g., no <u>average</u> improvement in $\mathscr{Z}_{\theta}^{(j)}$ for a while

- Initialize θ
- Repeat:
 - ► Sample $j \sim \text{Uniform}(1,...,m)$

$$\bullet \ \theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$$

- Initialize θ
- Repeat:
 - ► Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$

- Initialize θ
- Repeat:
 - Sample $j \sim \text{Uniform}(1,...,m)$
 - $\bullet \ \theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}_{\theta}^{(j)}$

Stochastic Gradient Descent: considerations

• Benefits:

- Each gradient step is faster
- ▶ Don't wait for all data with same θ , improve θ "early and often"
- Arguably the most important optimization algorithm nowadays
- Drawbacks:
 - May not actually descend on training loss
 - Stopping conditions may be harder to evaluate
- Mini-batch updates: draw $b \ll m$ data points

$$\operatorname{var} \nabla_{\theta} \mathcal{L}_{\theta}(\operatorname{batch}) = \operatorname{var} \frac{1}{b} \sum_{j \in \operatorname{batch}} \nabla_{\theta} \mathcal{L}_{\theta}^{(j)} = \frac{1}{b} \operatorname{var} \nabla_{\theta} \mathcal{L}_{\theta}(\operatorname{point})$$

- Variance increases the smaller the batch size
 - Generally bad, but can help overcome local minima / saddle points

Advanced gradient-based methods

Momentum

- Gradient is like velocity in parameter space
 - Previous gradients still carry momentum
- Smoothens SGD path
- Effectively averages gradients over steps, reduces variance

Preconditioning

- Scale and rotate loss landscape to make it nicer
- E.g., multiply by inverse Hessian (as in Newton's method)

