Gradient Descent

e |nitialize @
e Do

e Learning rate:

> Can change in each iteration
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Gradient for the MSE loss

MSE: Zy= — ¥ (eD)? = =) (y — 9TxD)?
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* Can also be seen directly from

o= (v = 0X)(y = 0TX)T = —(O"XXT0 — 2yX10 + yyT)
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Gradient Descent — further considerations

 GD is a very general algorithm
> We'll use it often
> Much of the engine for recent advances in ML
* |ssues:
» Can get stuck in local minima
- Worse — can get stuck in saddle points, V£, = 0 with improvement direction

> (Can be slow to converge, sensitive to initialization

> How to choose step size / learning rate?

- Constant? 1/iteration? Line search? Newton's method?
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Newton's method

» Given black-box f(z), how to find a root f(z) = 07

e [nitialize some 7
* Repeat:

~ Evaluate f(z) and 0, f(z) to find tangent to f at z: f'(z') = (z' — 2)0,f(2) + f(2)

<
Update z to the root of f: 7 « 7 — /@)

] 0.f(z)

e Considerations:
> May not converge, sometimes unstable

> Usually converges quickly for nice, smooth, locally quadratic functions
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Newton's method for gradient descent
» We want to find a (local) minimum f(6) = V,&£, = 0
* |nitialize some @
+ Repeat:
- Evaluate gradient g = V, % and Hessian H = V; %,
» Update @ <« § — H g

e Considerations:

> Update step may be too large for highly non-convex losses

»  Computational complexity to invert H: O(n°)
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Gradient Descant: complexity

 Assume Zy(PD) = % 2 ox, y)

J

» MSE: £y(x,y) = (y — OTx)?

- Computing VyZy = % 2 ng/”e(j): usually O(mn)
J

> What if we use really large datasets? (“big data”)

> What if we learn from data streams”? (more data keeps coming in...)

Roy Fox | CS 273A | Winter 2021 | Lecture 5: Linear Regression (cont.)



Stochastic / Online Gradient Descent

. Estimate V,Z, fast on a sample of data points

 For each data point:
Vege(x(j),y(j)) — Vg(y(j) — @TxV)? = —2(yV) — GTxD)(x)T

 This is an unbiased estimator of the gradient, I.e. in expectation

. i .
_jNUniform(l,...,m)[ Veg((gj)] — Z V@g(g]) — VHSZH(QZ)
J

. V,Z(9) is already a noisy unbiased estimator of true gradient -x,pr[ VoL y(x,y)]

> SGD is even more noisy
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Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY

« Until some stop criterion; e.g., no average improvement in SZ(Qj) for a while
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Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY
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Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY
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Stochastic Gradient Descent

e |nitialize @

* Repeat:
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Stochastic Gradient Descent

e |nitialize @

* Repeat:
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Stochastic Gradient Descent

e |nitialize @

* Repeat:
» Sample j ~ Uniform(1,..., m)

- 00— aVyZLY
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Stochastic Gradient Descent: considerations

e Benefits:

» Each gradient step is faster

» Don't wait for all data with same &, improve 6 “early and often”

> Arguably the most important optimization algorithm nowadays

 Drawbacks:
> May not actually descend on training loss

> Stopping conditions may be harder to evaluate
« Mini-batch updates: draw b < m data points

var V,Z »(batch) = Var% Z VQSZ(QJ) = %Var V< 4(point)

>

jE€batch
» Variance increases the smaller the batch size

- Generally bad, but can help overcome local minima / saddle points
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Advanced gradient-based methods

SGD ¥
Momentum F
NAG -
Adagrad
= Adadelta
— — Rmsprop

e Momentum

> Gradient is like velocity in parameter space

- Previous gradients still carry momentum

> Smoothens SGD path

> Effectively averages gradients over steps, reduces variance

* Preconditioning
» Scale and rotate loss landscape to make it nicer

> E.g., multiply by inverse Hessian (as in Newton's method)
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