
CS 273A Homework 4

Machine Learning, CS 273A, Winter 2021

Due Date: 11:59pm Thursday February 23, 2021 (Pacific Time)

The submission for this homework, as for others so far, should be one stand-alone PDF file contain-
ing all of the relevant code, figures, and any text explaining your results. The code is not as important
as your explanations of the trends and conclusions, so use the Markdown cells in Jupyter quite liberally.
In this homework, we will be playing with a number of already implemented classifiers, on the course
project dataset. The data and submission Kaggle URL is available here: https://www.kaggle.com/
t/617986bde101437cb92d2d4721f6e5cb.

Points: This homework adds up to a total of 100 points, as follows:

Problem 1: Setting up the data and Linear Classifier 30 points
Problem 2: Nearest Neighbor 20 points
Problem 3: Decision Trees 20 points
Problem 4: Neural Networks and Conclusion 25 points
Statement of Collaboration 5 points

Be sure to re-download and replace the mltools package; it contains a number of new classifiers for
you.

1 Setting up the data and Linear Classifier (10 + 20 points)

The following is the snippet of code to load the datasets, and split it into train and validation data:

1 # Data Loading

2 X = np.genfromtxt(’data/X_train.txt’, delimiter=None)

3 Y = np.genfromtxt(’data/Y_train.txt’, delimiter=None)

4 X,Y = ml.shuffleData(X,Y)

1. Print the minimum, maximum, mean, and the variance of all of the features. 5 points

2. Split the dataset, and rescale each into training and validation, as:

1

https://www.kaggle.com/t/617986bde101437cb92d2d4721f6e5cb
https://www.kaggle.com/t/617986bde101437cb92d2d4721f6e5cb

Homework 4: CS 273A, Machine Learning: Fall 2020 2

1 Xtr, Xva, Ytr, Yva = ml.splitData(X, Y)

2 Xt, Yt = Xtr[:5000], Ytr[:5000] # subsample for efficiency (you can go higher

)

3 XtS, params = ml.rescale(Xt) # Normalize the features

4 XvS, _ = ml.rescale(Xva, params) # Normalize the features

5

Print the min, maximum, mean, and the variance of the rescaled features. 5 points

Next, you will use an existing implementation of logistic regression, from the last homework, to
analyze its performance on the Kaggle dataset.

1 learner = mltools.linearC.linearClassify()

2 learner.train(XtS, Yt, reg=0.0, initStep=0.5, stopTol=1e-6, stopIter=100)

3 learner.auc(XtS, Yt) # train AUC

3. One of the important aspects of using linear classifiers is the regularization. Vary the amount of regu-
larization, reg, in a wide enough range, and plot the training and validation AUC as the regularization
weight is varied. Show the plot. 10 points

4. We have also studied the use of polynomial features to make linear classifiers more complex. Add
degree 2 polynomial features, print out the number of features, and explain why it is what it is. 5
points

5. Reuse your code that varied regularization to compute the training and validation performance (AUC)
for this transformed data. Show the plot. 5 points

2 Nearest Neighbors (20 points)

In this problem, you will analyze an existing implementation of K-Nearest-neighbor classification for the
Kaggle dataset. The K-nearest neighbor classifier implementation supports two hyperparameters: the size of
the neighborhood, K, and how much to weigh the distance to the point, a (0 means no unweighted average,
and the higher the α, the higher the closer ones are weighted1). Note, you might have to subsample a lot for
KNN to be efficient.

1 learner = mltools.knn.knnClassify()

2 learner.train(XtS, Yt, K=1, alpha=0.0)

3 learner.auc(XtS, Yt) # train AUC

1. Plot of the training and validation performance for an appropriately wide range of K, with α = 0. 5
points

2. Do the same with unscaled/original data, and show the plots. 5 points

1Specifically, weight of point xi in the average is proportional to exp(−α||x− xi||22)

Homework 4: CS 273A, Machine Learning: Fall 2020 3

3. Since we need to select both the value ofK and α, we need to vary both, and see how the performance
changes. For a range of both K and α, compute the training and validation AUC (for unscaled or
scaled data, whichever you think would be a better choice), and plot them in a two dimensional plot
like so:

1 K = range(1,10,1) # Or something else

2 A = range(0,5,1) # Or something else

3 tr_auc = np.zeros((len(K),len(A)))

4 va_auc = np.zeros((len(K),len(A)))

5 for i,k in enumerate(K):

6 for j,a in enumerate(A):

7 tr_auc[i][j] = ... # train learner using k and a

8 va_auc[i][j] = ...

9 # Now plot it

10 f, ax = plt.subplots(1, 1, figsize=(8, 5))

11 cax = ax.matshow(mat, interpolation=’nearest’)

12 f.colorbar(cax)

13 ax.set_xticklabels([’’]+A)

14 ax.set_yticklabels([’’]+K)

15 plt.show()

16

Show both the plots, and recommend a choice of K and α based on these results. 10 points

3 Decision Trees (20 points)

For this problem, you will be using a similar analysis of hyper-parameters for the decision tree implemen-
tation. There are three hyper-parameters in this implementation that become relevant to its performance;
maxDepth, minParent, and minLeaf, where the latter two specify the minimum number of data points
necessary to split a node and form a node, respectively.

1 learner = ml.dtree.treeClassify(Xt, Yt, maxDepth=15)

1. Keeping minParent=2 and minLeaf=1, vary maxDepth to a range of your choosing, and plot
the training and validation AUC. 5 points

2. Plot the number of nodes in the tree as maxDepth is varied (using learner.sz). Plot another
line in this plot by increasing either minParent or minLeaf (choose either, and by how much). 5
points

3. Set maxDepth to a fixed value, and plot the training and validation performance of the other two
hyper-parameters in an appropriate range, using the same 2D plot we used for nearest-neighbors.
Show the plots, and recommend a choice for minParent and minLeaf based on these results. 10
points

Homework 4: CS 273A, Machine Learning: Fall 2020 4

4 Neural Networks and Conclusion (20 + 5 points)

Last we will explore the use of neural networks for the same Kaggle dataset. The neural networks contain
many possible hyper-parameters, such as the number of layers, the number of hidden units in each layer, the
activation function in the hidden units, etc., bot to mention the different hyper-parameters of the optimization
algorithm.

1 nn = ml.nnet.nnetClassify()

2 nn.init_weights([[XtS.shape[1], 5, 2], ’random’, XtS, Yt) # as many layers nodes you

want

3 nn.train(XtS, Yt, stopTol=1e-8, stepsize=.25, stopIter=300)

1. Vary the number of hidden layers and the nodes in each layer (we will assume each layer has the
same number of nodes), and compute the training and validation performance. Show 2D plots, like
for decision trees and K-NN classifiers, and recommend a network size based on the above. 10 points

2. Implement a new activation function of your choosing, and introduce it as below:

1 def sig(z): return np.atleast_2d(z)

2 def dsig(z): return np.atleast_2d(1)

3 nn.setActivation(’custom’, sig, dsig)

4

Compare the performance of this activation function with logistic and htangent, in terms of
the training and validation performance. 10 points

3. Pick the classifier that you think will perform best, mention all of its hyper-parameter values, and
explain the reason for your choice. Train it on as much data as you can, preferably all of X, submit
the predictions on Xtest to Kaggle, and include your Kaggle username and leaderboard AUC in the
report.

Here’s the code to create the Kaggle submission:

1 Xte = np.genfromtxt(’data/X_test.txt’, delimiter=None)

2 learner = .. # train one using X,Y

3 Yte = np.vstack((np.arange(Xte.shape[0]), learner.predictSoft(Xte)[:,1])).T

4 np.savetxt(’Y_submit.txt’, Yte, ’%d, %.2f’, header=’ID,Prob1’, comments=’’,

delimiter=’,’)

Statement of Collaboration (5 points)

It is mandatory to include a Statement of Collaboration in each submission, with respect to the guidelines
below. Include the names of everyone involved in the discussions (especially in-person ones), and what was
discussed.

Homework 4: CS 273A, Machine Learning: Fall 2020 5

All students are required to follow the academic honesty guidelines posted on the course website. For
programming assignments, in particular, I encourage the students to organize (perhaps using Piazza) to
discuss the task descriptions, requirements, bugs in my code, and the relevant technical content before they
start working on it. However, you should not discuss the specific solutions, and, as a guiding principle,
you are not allowed to take anything written or drawn away from these discussions (i.e. no photographs of
the blackboard, written notes, referring to Piazza, etc.). Especially after you have started working on the
assignment, try to restrict the discussion to Piazza as much as possible, so that there is no doubt as to the
extent of your collaboration.

Acknowledgements

This homework is adapted (with minor changes) from one made available by Alex Ihler’s machine learning
course. Thanks, Alex!

	Setting up the data and Linear Classifier (10 + 20 points)
	Nearest Neighbors (20 points)
	Decision Trees (20 points)
	Neural Networks and Conclusion (20 + 5 points)

