
CS 277 (W22): Control and Reinforcement Learning
Assignment 1
Due date: Tuesday, January 18, 2022 (Pacific Time)
Roy Fox
https://royf.org/crs/W22/CS277

In the following questions, a formal proof is not needed (unless specified otherwise). Instead, briefly
explain informally the reasoning behind your answer.

Part 1 Relations between horizon settings (25 points)

Definition (Stationary distribution). A stationary distribution 𝑝 is any state distribution such that, if
the distribution of the state 𝑠𝑡 at any time 𝑡 is 𝑝, then the distribution of 𝑠𝑡+1 at time 𝑡 + 1 is also 𝑝.

Question 1 (7 points) Assume that, in a particular MDP and with a particular agent policy 𝜋, the
initial distribution 𝑝(𝑠0) is a stationary distribution for that process. Write down an expression for
the expected 𝑇-step finite-horizon return that only involves 𝑇 , 𝑝, 𝜋, and the reward function 𝑟 (𝑠, 𝑎).

Question 2 (6 points) Write down an expression for the discounted horizon with discount 𝛾 that
only involves 𝛾, 𝑝, 𝜋, and 𝑟.

Question 3 (5 points) For a given discount 𝛾, what is the “effective finite horizon” of the
discounted horizon with discount 𝛾, i.e. the finite horizon 𝑇 that would gives the same expression in
both previous questions?

Question 4 (7 points) The purpose of defining the return 𝑅 is to summarize a sequence of
rewards into one real number that we can maximize. Suppose that instead we select just a single
one of the rewards, 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡), by drawing the variable 𝑡 geometrically at random with parameter
1 − 𝛾. Show that E[𝑟𝑡] = 𝑐E[𝑅𝛾], where 𝑅𝛾 is the discounted return with discount 𝛾, and 𝑐 doesn’t
depend on 𝑝, 𝜋, or 𝑟. In this question do not assume a stationary distribution.

Part 2 Value function (25 points)

Question 5 (8 points) Show by induction that, for any 𝑡 ≥ 𝑡0 ≥ 0, the conditional distribution
𝑝(𝑠𝑡 |𝑠𝑡0) of 𝑠𝑡 given 𝑠𝑡0 depends only on 𝑡 − 𝑡0 (and not on 𝑡0).

https://royf.org/crs/W22/CS277


Question 6 (8 points) In the discounted horizon, the future return from time 𝑡0 ≥ 0 is defined as

𝑅≥𝑡0 =
∑︁
𝑡≥𝑡0

𝛾𝑡−𝑡0𝑟 (𝑠𝑡 , 𝑎𝑡).

For any time step 𝑡0 ≥ 0, we define the value function to be the expected future return from time 𝑡0,
given the state 𝑠𝑡0 at that time:

𝑉𝜋
𝑡0 (𝑠) = E𝜉∼𝑝𝜋

[𝑅≥𝑡0 |𝑠𝑡0 = 𝑠] . (1)

Using the claim in Question 5, show that this value function is time-invariant, i.e. it doesn’t depend
on 𝑡0 after all.

Question 7 (9 points) In the 𝑇-step finite horizon, the future return from time 𝑡0 ≥ 0 is defined
as

𝑅≥𝑡0 =
𝑇−1∑︁
𝑡=𝑡0

𝑟 (𝑠𝑡 , 𝑎𝑡).

With 𝑉𝜋
𝑡0

defined as in (1), show a very simple MDP and policy, such that in the 2-step finite horizon
𝑉𝜋

0 ≠ 𝑉𝜋
1 . In other words, give a counterexample that shows that what Question 6 claims for the

discounted horizon doesn’t hold in the finite horizon.

Part 3 Behavior Cloning (50 points)

In this part, you will install a Deep RL framework, RLlib, and use it to evaluate the Behavior Cloning
algorithm. The OS we use in this assignment is Linux / MacOS. If you’re using Windows or another
OS, please use a local or remote virtual machine.

Installation

Make sure you have a recent version of Python installed, such as the latest Python 3.8; but not
Python 3.9, as RLlib version we’ll be using (1.1.0) doesn’t seem to support it. It is recommended
that you create a new conda environment for this assignment.
RLlib can use either of two Deep Learning libraries, TensorFlow (TF) and PyTorch. Most of the
algorithms already implemented in RLlib support both these libraries. In this assignment we will
use TF for CPU:

1 pip install tensorflow

It is also possible to install TF for GPU, and this would allow much faster execution, but is not
needed in this assignment.
We will also need a simulator of the environment, and the one we will use is Box2D:

https://www.ray.io/rllib
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html


1 pip install box2d-py

This may require you to first install swig.
RLlib is implemented on top of the Ray distributed execution library:

1 pip install "ray[rllib]==1.1.0"

1. Use RLlib to train an agent to play Lunar Lander. The algorithm we will use is called PPO
(we’ll learn about it in a later lecture). The environment is implemented by OpenAI Gym, and
is called LunarLanderContinuous-v2 (in this version, the action space is continuous). Run the
algorithm for 1000 “iterations” (what iteration means in RLlib is algorithm-dependent) and
create a checkpoint (a save of the agent’s trained parameters) every 10 iterations.

1 rllib train
2 --run PPO
3 --env LunarLanderContinuous-v2
4 --checkpoint-freq 10
5 --stop '{"training_iteration": 1000}'

2. Roll out the agent that you trained to see how well it performed. The agent checkpoints are by
default in a path named

~/ray_results/default/PPO_LunarLanderContinuous-v2_<experiment_id>,

where experiment_id is an automatically assigned identifier of the experiment you ran in
the previous step, ending with the date and time. Roll out for 5000 steps, which should be
about 20 episodes.

1 rllib rollout ~/ray_results/default/→
2 PPO_LunarLanderContinuous-v2_<experiment_id>/→
3 checkpoint_1000/checkpoint-1000
4 --run PPO
5 --env LunarLanderContinuous-v2
6 --steps 5000

You can also roll out an earlier checkpoint to see the difference in performance. RLlib will
output the return of each episode, which should be well above 200 for successful episodes. If
you are not seeing consistently good episodes (most should get above 200 return), rerun the
training in the previous question.

3. Use the trained agent to generate demonstrations for an imitation learning agent. Roll out
for 250000 steps. The demonstrations will be saved in a file named rollouts.pkl. The
--no-render flag prevents rendering the episode to screen, thus saving much time.

http://gym.openai.com/envs/LunarLander-v2/


1 rllib rollout ~/ray_results/default/→
2 PPO_LunarLanderContinuous-v2_<experiment_id>/→
3 checkpoint_1000/checkpoint-1000
4 --run PPO
5 --env LunarLanderContinuous-v2
6 --steps 250000
7 --out rollouts.pkl
8 --no-render

4. Convert the demonstrations into the format used by RLlib for training from offline data. Down-
load the utility https://royf.org/crs/W22/CS277/A1/prepare_dataset.py and run
it. The results will be saved in a directory named LunarLanderContinuous-v2.

5. Train a Behavior Cloning agent. The agent will be trained on input from the data generated in
the previous step, and evaluated in new simulations of the environment.

1 rllib train
2 --run BC
3 --env LunarLanderContinuous-v2
4 --checkpoint-freq 1000
5 --stop '{"training_iteration": 10000}'
6 --config='{"input": "LunarLanderContinuous-v2", →
7 "input_evaluation": ["simulation"]}'

6. Repeat step 2 for the trained BC agent, and report the mean and standard deviation of the
returns of 5 episodes.

https://royf.org/crs/W22/CS277/A1/prepare_dataset.py

	Relations between horizon settings (25 points)
	Value function (25 points)
	Behavior Cloning (50 points)

