
CS 277 (W22): Control and Reinforcement Learning
Assignment 2
Due date: Tuesday, February 8, 2022 (Pacific Time)
Roy Fox
https://royf.org/crs/W22/CS277

In the following questions, a formal proof is not needed (unless specified otherwise). Instead, briefly
explain informally the reasoning behind your answers.

Part 1 Relation between BC and PG (20 points)

Question 1.1 (8 points) Suppose that we want to imitate an unknown expert 𝜋∗, but we only have
access to a dataset D of demonstrations provided by a known non-expert policy 𝜋0. Suppose that the
exploration policy 𝜋0 supports the actions of 𝜋∗; i.e., 𝜋0(𝑎 |𝑠) > 0 for any (𝑠, 𝑎) with 𝜋∗(𝑎 |𝑠) > 0.
Suppose that a teacher provides importance weights 𝜌(𝜉) = 𝜋∗ (𝜉)

𝜋0 (𝜉) for each 𝜉 ∈ D.
We would like to use Behavior Cloning (BC) with a Negative Log-Likelihood (NLL) loss to train a
policy 𝜋𝜃 (𝑎 |𝑠) on data 𝜉 ∼ D to imitate the expert 𝜋∗. What is the loss LBC

𝜃
(𝜉) on which we should

descend?

Question 1.2 (4 points) Compare the answer to the previous question to the REINFORCE
algorithm. How are they similar? How are they different?

Question 1.3 (8 points) Suppose that, instead of the importance weights 𝜌(𝜉), the teacher labels
each trajectory 𝜉 with its return 𝑅(𝜉). Let 𝐽𝜃 = E𝜉∼𝑝𝜃

[𝑅(𝜉)] be the RL objective for policy 𝜋𝜃 .
Write a loss LPG

𝜃
(𝜉) whose gradient with respect to 𝜃, on data 𝜉 ∼ D, is an unbiased estimate of

∇𝜃 𝐽𝜃 . Note that only 𝜋𝜃 , 𝜋0, 𝜉, and 𝑅(𝜉) are available.

Part 2 Advantage estimators (30 points + 10 bonus)

You are playing an infinite sequence of Rock–Paper–Scissors rounds. After each round, you get a
reward of 1, 0, or -1, respectively if you win, tie, or lose. You opponent always tries to beat your
previous action (e.g. to play Paper if you previously played Rock) with probability 40%, and selects
the other two actions with probability 30% each; initially, they play as if you’ve just played Paper.
Knowing this, you play Rock, then Scissors, then Paper, and repeat. You estimate that, with discount
factor 0.95, this policy gives you an expected future discounted return of 𝑉 (𝑠) = 5, for each state 𝑠

(there is no variance in this estimate).

https://royf.org/crs/W22/CS277

Question 2.1 (5 points) What is the expectation and variance of the reward 𝑟 (𝑠, 𝑎) in each state
𝑠 and action 𝑎?

Question 2.2 (5 points) In Policy-Gradient with an advantage estimator of the form 𝐴(𝑠𝑡 , 𝑎𝑡) =
𝑄(𝑠𝑡 , 𝑎𝑡) −𝑉 (𝑠𝑡), why do we care about bias in 𝑄 but not in 𝑉?

Question 2.3 (7 points) Consider the Monte-Carlo advantage estimator

𝐴MC(𝑠𝑡 , 𝑎𝑡) =
∞∑︁

Δ𝑡=0
𝛾Δ𝑡𝑟𝑡+Δ𝑡 −𝑉 (𝑠𝑡),

for each state 𝑠𝑡 and action 𝑎𝑡 , and for on-policy experience. Due to the previous question, we
will analyze 𝑄MC(𝑠𝑡 , 𝑎𝑡) = 𝐴MC(𝑠𝑡 , 𝑎𝑡) +𝑉 (𝑠𝑡). What is the bias and variance of this 𝑄MC(𝑠𝑡 , 𝑎𝑡)
estimator, for any state 𝑠𝑡 and the optimal action 𝑎𝑡?

Question 2.4 (7 points) Consider the 𝑛-step advantage estimator

𝐴𝑛 (𝑠𝑡 , 𝑎𝑡) =
𝑛−1∑︁
Δ𝑡=0

𝛾Δ𝑡𝑟𝑡+Δ𝑡 + 𝛾𝑛𝑉 (𝑠𝑡+𝑛) −𝑉 (𝑠𝑡),

for each state 𝑠, action 𝑎, and 𝑛 ≥ 1, and for on-policy experience. What is the bias and variance of
the corresponding 𝑄𝑛 (𝑠𝑡 , 𝑎𝑡) estimator, for any state 𝑠𝑡 and the optimal action 𝑎𝑡?

Question 2.5 (6 points) The mean square error (MSE) of an estimator is given by the sum of its
variance and square bias. Which 𝑛 minimizes the MSE of the 𝑛-step estimator 𝑄𝑛 (𝑠𝑡 , 𝑎𝑡)?

Question 2.6 (5 bonus points) Consider the GAE(𝜆) advantage estimator

𝐴𝜆 (𝑠𝑡 , 𝑎𝑡) = (1 − 𝜆)
∞∑︁
𝑛=1

𝜆𝑛−1𝐴𝑛 (𝑠𝑡 , 𝑎𝑡) =
∞∑︁

Δ𝑡=0
(𝜆𝛾)Δ𝑡𝐴1(𝑠𝑡+Δ𝑡 , 𝑎𝑡+Δ𝑡),

for each state 𝑠, action 𝑎, and 𝜆 ∈ [0, 1], and for on-policy experience. What is the bias and variance
of the corresponding 𝑄𝜆 (𝑠𝑡 , 𝑎𝑡) estimator, for any state 𝑠𝑡 and the optimal action 𝑎𝑡?

Question 2.7 (5 bonus points) Which 𝜆 minimizes the MSE of the GAE(𝜆) estimator𝑄𝜆 (𝑠𝑡 , 𝑎𝑡)?

Part 3 Model-Free Reinforcement Learning algorithms (50
points)

Question 3.1 Policy Gradient (5 points) Download the code at https://royf.org/crs/
W22/CS277/A2/pg.py.

https://royf.org/crs/W22/CS277/A2/pg.py
https://royf.org/crs/W22/CS277/A2/pg.py

In the function policy_gradient_loss, write TensorFlow code that computes the Policy Gradient
loss. (Hint: arithmetic operators work for TF tensors, and TF has build-in functions for NumPy-like
operators, e.g. reduce_sum.)
In the function calculate_returns, write NumPy code that computes the return of steps in
sample_batch. sample_batch is guaranteed to represent part of a single trajectory, and in this
assignment we’ll assume it’s the entire trajectory. The return will be the sum of rewards along the
trajectory. You can discount the sum however you’d like, or not at all.
Note that we need returns to be a 1-D NumPy array of the same size as the rewards, i.e. the length
of the trajectory. Create an array with the same return repeated in each element.
Run pg.py. Take note of the “Result logdir” that RLlib prints after each evaluation. When running
the algorithm, you can specify a different logdir, or just use the default like we did here.
Behold your creation:

rllib rollout <logdir>/<checkpoint_num>/<checkpoint-num> --run PG
--env CartPole-v1 --steps 2000

Append a printout of your code as a page in your PDF.

Question 3.2 Policy Gradient with Future Return (15 points) We can reduce the variance
of the gradient estimator by not taking into account past rewards. Copy pg.py as pg2.py,
and change calculate_returns to sum (with or without discounting, but be consistent with
what you did before) only future rewards in each step. (Hint: the functions numpy.cumsum
and ray.rllib.evaluation.postprocessing.discount_cumsum can come in handy, but be
careful how you use them.)
Tip: Don’t forget to change the name of the PG_Trainer.
Run pg2.py and view the results.
Append a printout of your code as a page in your PDF.

Question 3.3 DQN (10 points) Download the code at https://royf.org/crs/W22/CS277/
A2/dqn.py. Run it and view the results.

rllib rollout <DQN logdir>/<checkpoint_num>/<checkpoint-num> --run DQN
--env CartPole-v1 --config '{"dueling": false}' --steps 2000

dones is a vector of booleans that, for each time step, indicates whether the next state (reached at
the end of the step) terminated the episode.
Explain the role of dones in line 43.

https://www.tensorflow.org/api_docs/python/tf/math/reduce_sum
https://royf.org/crs/W22/CS277/A2/dqn.py
https://royf.org/crs/W22/CS277/A2/dqn.py

Question 3.4 Double DQN (15 points) Fixdqn.py such that, if policy.config["double_q"]
is True, the loss will be the Double DQN loss:

L𝜃 (𝑠, 𝑎, 𝑟, 𝑠′) = (𝑟 + 𝛾𝑄𝜃 (𝑠′, argmax
𝑎′

𝑄𝜃 (𝑠′, 𝑎′)) −𝑄𝜃 (𝑠, 𝑎))2,

where 𝜃 are the parameters of the target network.
Change policy.config["double_q"] to True, run your code, and view the results.
Append a printout of your code as a page in your PDF.

Question 3.5 Visualize results (5 points) TF comes with a utility for visualizing training results,
called TensorBoard.
Run a TensorBoard web server:
tensorboard --logdir <the result logdir from the previous sections>

Take note of the URL in which TensorBoard is now serving (likely http://localhost:6006/).
Open a browser at that URL. Take some time to make yourself familiar with the TensorBoard
interface.
You should be able to see all the RLlib runs on the bottom left, with a color legend. If you happened
to execute more runs than the four detailed above, uncheck all the other runs.
Find the plot tagged “tune/episode_reward_mean”. You can find it manually, or use the “Filter tags”
box at the top. Enlarge the plot using the left of 3 buttons at the bottom.
On the left you’ll find some useful options. Uncheck “Ignore outliers in chart scaling” and note the
effect on the plot.
Unfortunately, there’s currently no good way to save the plot as an image, so just take a screenshot,
and include it as a page in your PDF.

Question 3.6 Extra fun For extra fun, repeat the above experiments with other (discrete
action space) environments from OpenAI Gym (https://gym.openai.com/envs), such as
Acrobot-v1, LunarLander-v2, Pong-v4, and Breakout-v4. There’s no extra credit, because
getting good results will likely take more --steps and time than I should ask you to run.

http://localhost:6006/
https://gym.openai.com/envs

	Relation between BC and PG (20 points)
	Advantage estimators (30 points + 10 bonus)
	Model-Free Reinforcement Learning algorithms (50 points)

