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In the following questions, a formal proof is not needed (unless specified otherwise). Instead, briefly
explain informally the reasoning behind your answers.

Part 1 Properties of linear–Gaussian systems (30 points)

Question 1 (7 points) It follows from the Cayley–Hamilton theorem that, for an 𝑛 × 𝑛 matrix
𝐴 and 𝑘 ≥ 𝑛, 𝐴𝑘 can be expressed as a linear combination of {𝐼, 𝐴, . . . , 𝐴𝑛−1}. Show that this
implies that, for any vector 𝑥 ∈ R𝑛 and 𝑘 ≥ 𝑛, if 𝐴𝑛𝑥 can be expressed as a linear combination of
the columns of the controllability matrix C =

[
𝐵 𝐴𝐵 · · · 𝐴𝑛−1𝐵

]
, then so can 𝐴𝑘𝑥.

Question 2 (7 points) In a discrete-time linear time-invariant (LTI) system (𝐴, 𝐵), we called
a state 𝑥′ reachable from a state 𝑥 if there exists some finite time 𝑡 ≥ 0 and a control sequence
𝑢0, . . . 𝑢𝑡−1, such that 𝑥𝑡 = 𝑥′ if 𝑥0 = 𝑥. If 𝑥′ is reachable from 𝑥, we also say that 𝑥 is controllable to
𝑥′. Use the result in the previous question to show that all states 𝑥 ∈ R are controllable to the origin
𝑥′ = 0 (we call this full controllability) if and only if the columns of 𝐴𝑛 are spanned by C.

Question 3 (8 points) Consider a deterministic uncontrolled LTI system with dynamics 𝑥𝑡+1 =

𝐴𝑥𝑡 that is partially observable with no observation noise, i.e. 𝑦𝑡 = 𝐶𝑥𝑡 . The observability matrix of
the system (𝐴,𝐶) is

O =


𝐶

𝐶𝐴...
𝐶𝐴𝑛−1

 .
We say that a state 𝑥 ≠ 0 is unobservable if, assuming 𝑥0 = 𝑥, we have 𝑦𝑡 = 0 for all 𝑡 ≥ 0. Show that
no states are unobservable (we call this full observability) if and only if O has full (column) rank 𝑛.

Question 4 (8 points) Show that a system (𝐴,𝐶) as in the previous question is fully observable
if and only if we can uniquely find 𝑥0 after seeing enough observations 𝑦0, . . . , 𝑦𝑡−1.
Hint: note that any full column rank matrix 𝑀 has a left inverse 𝑀†𝑀 = 𝐼. For the converse, if
𝑥0 = 𝑥 and 𝑥0 = 𝑥′ induce the same observation sequence, which state is unobservable?
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Part 2 Actor–Critic Policy Gradient (40 points)

In this part you’ll implement an Actor–Critic Policy Gradient algorithm. In all coding questions,
append a printout of your code as a page in your PDF.

Question 1 (10 points) Download the code at https://royf.org/crs/W22/CS277/A3/a2c.
py. In the function actor_critic_loss, write TensorFlow code that calculates a loss with 3
terms:

• An actor loss: a policy-gradient loss with pre-computed advantage estimates (advantages);

• A critic loss: a temporal-difference loss, the square error between the pre-computed value
targets (value_targets) and the critic values, weighted by critic_loss_coeff; and

• A negative-entropy loss on the actor policy, weighted by entropy_loss_coeff (i.e. a
slight push to maximize entropy). First try without it, and then add it and compare. Hint:
action_dist.entropy() can come in handy.

Question 2 (10 points) In the function postprocess_advantages, recall that sample_batch
is part of a single trajectory, but in this assignment we will not assume that it’s the entire episode.
The batch contains tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠′𝑡) for some consecutive steps 𝑡 ∈ {𝑡1, . . . , 𝑡2} in a trajectory.
Write code that calculates the scalar last_value_pred, defined as 𝑉𝜙 (𝑠′𝑡2), i.e. the critic’s
prediction of the expected return following the next_obs 𝑠′𝑡2 at the end of the batch in the sample.
Useful: (a) policy._value, a function that gets an array of observations and returns a same-size
array of value predictions; and (b) dones, a boolean array indicating episode termination in each
time step (hint: why is this useful here?).

Question 3 (10 points) Write NumPy code that calculates for each step the discounted one-step
value targets for the critic’s TD-learning and the discounted one-step advantages for the actor’s
policy gradient.

Question 4 (10 points) Run your code on the CartPole-v1 environment for 1000000 time
steps and report the results.

Part 3 Generalized Advantage Estimation (30 points)

Recall the definition of the GAE1 as

𝐴𝜆 (𝑠𝑡 , 𝑎𝑡) =
∑︁
Δ𝑡

(𝜆𝛾)Δ𝑡𝐴(𝑠𝑡+Δ𝑡 , 𝑎𝑡+Δ𝑡).

1https://arxiv.org/abs/1506.02438
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Question 1 (5 points) Write down a mathematical expression for the advantage estimate
𝐴𝜆 (𝑠𝑡 , 𝑎𝑡) using the rewards 𝑟𝑡 , 𝑟𝑡+1, . . . and the value estimates 𝑉𝜙 (𝑠𝑡), 𝑉𝜙 (𝑠𝑡+1), . . ..

Question 2 (10 points) Create a copy of a2c.py called gae.py, and change it to use 𝐴𝜆 as the
advantage estimates. Append a printout of your code as a page in your PDF.
Useful: the helper function ray.rllib.evaluation.postprocessing.discount_cumsum can
come in handy.

Question 3 (7 points) Run your code on CartPole-v1 with a variety of 𝜆 values.
Tip: by setting the name of the trainer to include the value of 𝜆, you can easily see it later in
TensorBoard.
Visualize the results in TensorBoard, and attach the resulting plots.

Question 4 (8 points) Briefly discuss the results, including:

• What was the best value of 𝜆 in your experiments?

• What happens as 𝜆 → 0?

• What happens as 𝜆 → 1 in theory? What happens in practice?
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