
CS 277 (W22): Control and Reinforcement Learning
Assignment 5
Due date: Tuesday, March 15, 2022 (Pacific Time)
Roy Fox
https://royf.org/crs/W22/CS277

Instructions: In theory questions, a formal proof is not needed (unless specified otherwise).
instead, briefly explain informally the reasoning behind your answers.
In practice questions, include a printout of your code as a page in your PDF, and a screenshot of
TensorBoard learning curves (episode_reward_mean, unless specified otherwise) as another page.

Part 1 Actor–Critic PG and Bounded RL (40 points)

Recall that Actor–Critic Policy-Gradient algorithms represent an actor 𝜋𝜃 and a critic 𝑉𝜙. Many
such algorithms use a temporal-difference loss to update the critic and a policy-gradient loss to
update the actor. The simplest such algorithm we saw gathers on-policy experience (𝑠, 𝑎, 𝑟, 𝑠′),
and then uses the target 𝑦𝜙 (𝑟, 𝑠′) = 𝑟 + 𝛾𝑉𝜙 (𝑠′) (with 𝑉𝜙 a target network) to compute the critic
loss L𝜙 = 1

2 (𝑦𝜙 (𝑟, 𝑠
′) −𝑉𝜙 (𝑠))2. It also uses the critic’s advantage estimate 𝐴 = 𝑦𝜙 (𝑟, 𝑠′) −𝑉𝜙 (𝑠)

(usually with𝑉𝜙 (𝑠′) from the non-target critic network) to compute the actor loss L𝜃 = 𝐴 log 𝜋𝜃 (𝑎 |𝑠).
The algorithm then descends the total loss LAC = L𝜙 + 𝜂L𝜃 , with 𝜂 a coefficient relating the two
losses.

Question 1 (5 points) Explain why it makes sense for 𝑦𝜙 to serve as an estimator for 𝑄(𝑠, 𝑎) (in
the actor loss) while its target-network counterpart 𝑦𝜙 serves as an estimator for 𝑉 (𝑠) (in the critic
loss). What is the relevant difference between how 𝑦𝜙 and 𝑦𝜙 are used?

Now recall that, in the Bounded RL framework, the optimal policy is

𝜋(𝑎 |𝑠) = 𝜋0(𝑎 |𝑠) exp 𝛽𝑄(𝑠, 𝑎)
𝑍 (𝑠) , (1)

with the normalizer (“partition function”) 𝑍 (𝑠) = E(𝑎 |𝑠)∼𝜋0 [exp 𝛽𝑄(𝑠, 𝑎)]. If this policy is plugged
into the bounded Bellman recursion, we get

𝑉 (𝑠) = 1
𝛽

log 𝑍 (𝑠) = 1
𝛽

logE(𝑎 |𝑠)∼𝜋0 [exp 𝛽𝑄(𝑠, 𝑎)] . (2)

Rearranging (1) and (2), we get

𝑄(𝑠, 𝑎) = 𝑉 (𝑠) + 1
𝛽

log
𝜋(𝑎 |𝑠)
𝜋0(𝑎 |𝑠)

. (3)

https://royf.org/crs/W22/CS277

Question 2 (10 points) Consider implementing the SQL algorithm with a value network
𝑄𝜃,𝜙 : 𝑆 → R𝐴 with the structure in (3). Namely, the network has two heads, 𝜋𝜃 : 𝑆 → Δ(𝐴) and
𝑉𝜙 : 𝑆 → R, which are combined as in (3) to compute 𝑄𝜃,𝜙. There is also a target network that keeps
a delayed copy 𝑉𝜙 of 𝑉𝜙. What is the gradient of the SQL loss LSQL = 1

2 (𝑦𝜙 (𝑟, 𝑠
′) − 𝑄𝜃,𝜙 (𝑠, 𝑎))2

with respect to 𝜃? with respect to 𝜙?

Question 3 (10 points) Write an expression for a pseudo-reward1 𝑟 , such that the AC critic loss
L𝜙 with 𝑦𝜙 (𝑟, 𝑠′) is the same as the SQL loss LSQL with 𝑦𝜙 (𝑟, 𝑠′).

Question 4 (10 points) Show that the gradient ∇𝜃 L𝜃 of the AC actor loss L𝜃 , with 𝑦𝜙 (𝑟, 𝑠′) is
the same as the gradient ∇𝜃 LSQL of the SQL loss with 𝑦𝜙 (𝑟, 𝑠′), except that the latter is using the
target network.

Question 5 (5 points) Under the equivalence in the previous two questions, what is the equivalent
of 𝛽 in this version of AC PG?

Part 2 Option–Critic (60 points)

Question 1 (10 points) Download the following implementation of the Option–Critic algorithm:
https://github.com/alversafa/option-critic-arch. Readoption_critic.ipynb, and
make the following changes:

1. In parts 3 and 4, add color bars (see matplotlib.pyplot.colorbar) to the heat maps.

2. In part 4, plot the following three histograms:

(a) For each option ℎ (on the x-axis), the number of times option ℎ was called in an episode.
(b) For each option ℎ (on the x-axis), the average number of actions option ℎ took each time

it was called before it terminated.
(c) For each option ℎ (on the x-axis), the total number of actions it took in an episode

(summed over all times it was called).

In each of these histograms, plot the average and SEM error bars over 10 episodes.

Run the code, and attach the resulting plots.

Question 2 (5 points) Does the agent seem to be high-fitting (i.e. a single option solves much
of the entire task)? Does it seem to be low-fitting (i.e. options terminate very quickly, such that the
meta-policy solves much of the entire task)? Explain which results make you think so and why.

1𝑟 is called a pseudo-reward because it’s not a fixed function of 𝑠 and 𝑎, but may change during the run of the
algorithm.

https://github.com/alversafa/option-critic-arch
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sem.html

Question 3 (10 points) One way to reduce high-fitting is to make the options simpler. In the
next question, you’ll implement options that try to move towards a single position 𝜇ℎ = [𝑥ℎ, 𝑦ℎ] in
2D space. Specifically, the action policy for option ℎ, parametrized by 𝜇ℎ, is:

𝜋𝜇ℎ (𝑎 |𝑠) ∝ exp(−𝑑 (𝑠′, 𝜇ℎ)), (4)

where 𝑠′ is the state that would have follow 𝑠 when action 𝑎 is taken if there were no walls, and
𝑑 (𝑠1, 𝑠2) = 1

2 ∥𝑠1 − 𝑠2∥2
2. Recall that the option policy gradient in the Option–Critic algorithm is

∇𝜇ℎ Lℎ (𝑠, 𝑎) = −𝑄ℎ (𝑠, 𝑎) ∇𝜇ℎ log 𝜋𝜇ℎ (𝑎 |𝑠).
Write an expression for the loss gradient when the policy is given by (4).

Question 4 (25 points) In this question, you’ll implement the option class in (4). Read the
implementation of the current option policy class utils.SoftmaxPolicy. It parametrizes the
policy with parameters 𝜃𝑠,𝑎 such that the softmax policy is

𝜋𝜃 (𝑎 |𝑠) ∝ exp 𝜏−1𝜃𝑠,𝑎,

where 𝜏 is a temperature hyperparameter. The class originally has the following methods:

• The method Q_U just returns the parameters, and is poorly named so don’t get confused — it’s
not returning 𝑄 values at all.

• The method pmf takes the parameters and applies softmax to get 𝜋𝜃 (𝑎 |𝑠) for all actions 𝑎

in a given state 𝑠. Computing softmax can be numerically unstable if parameters become
very large or very small, so notice how this function uses logsumexp to compute this in a
numerically stable way.

• The method sample then samples an action for a given state.

• The method update takes an option policy gradient step over the parameters. Its argument
Q_h is the same as what we called 𝑄ℎ in lecture 16, and is provided to this method by the
critic. Note that, in the original parameterization, L𝜃 (𝑠, 𝑎) for a given state 𝑠 and action 𝑎

depends only on 𝜃𝑠,𝑎 for that action and 𝜃𝑠,𝑎̃ for other actions. The gradient therefore only
touches those parameters, and for them:

∇𝜃𝑠,𝑎̃ L𝜃 (𝑠, 𝑎) = 𝑄ℎ (𝑠, 𝑎) ∇𝜃𝑠,𝑎̄ log
∑̄︁
𝑎

exp 𝜏−1𝜃𝑠,𝑎̄ = 𝜏−1𝜋(𝑎̃ |𝑠)𝑄ℎ (𝑠, 𝑎),

and similarly

∇𝜃𝑠,𝑎 L𝜃 (𝑠, 𝑎) = −𝜏−1(1 − 𝜋(𝑎 |𝑠))𝑄ℎ (𝑠, 𝑎).

Note how the current code implements this update.

Based on this, implement the new option class, with the new parametrization 𝜇ℎ. The code for the
Option–Critic algorithm will only use methods sample and update of your class, but you can have
any other methods that you find helpful. Some things to note:

• You can initialize the option policy parameters 𝜇ℎ however you want.

• The state argument is an integer. To get the (𝑥, 𝑦) position in the grid world, you can
use env.tocell (see here: https://github.com/alversafa/option-critic-arch/
blob/master/fourrooms.py#L42). It may help to pass the env to the policy object
constructor.

• The action argument is also an integer. To get the direction in the grid world, you can use
env.directions.

• The state that follows env.tocell(state) when taking action env.directions(action)
is their sum (if it’s not a wall, but for the purpose of the policy ignore walls).

• Remember to descend, rather than ascend, on the loss.

Replace the option_policies with your implementation.

Question 5 (10 points) Run your code. Compare the results with different numbers of options.
Compare the results with the original code.

https://github.com/alversafa/option-critic-arch/blob/master/fourrooms.py#L42
https://github.com/alversafa/option-critic-arch/blob/master/fourrooms.py#L42

	Actor–Critic PG and Bounded RL (40 points)
	Option–Critic (60 points)

