CS 277: Control and Reinforcement Learning Winter 2022 Lecture 1: Introduction

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Today's lecture

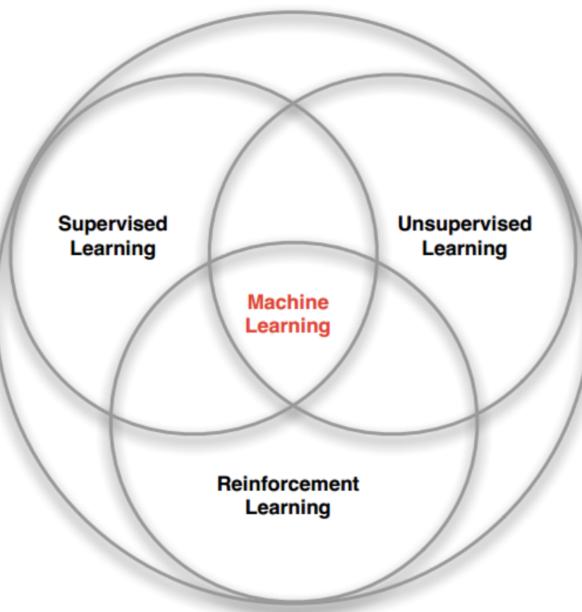
What is reinforcement learning?

Course logistics

Basic RL concepts

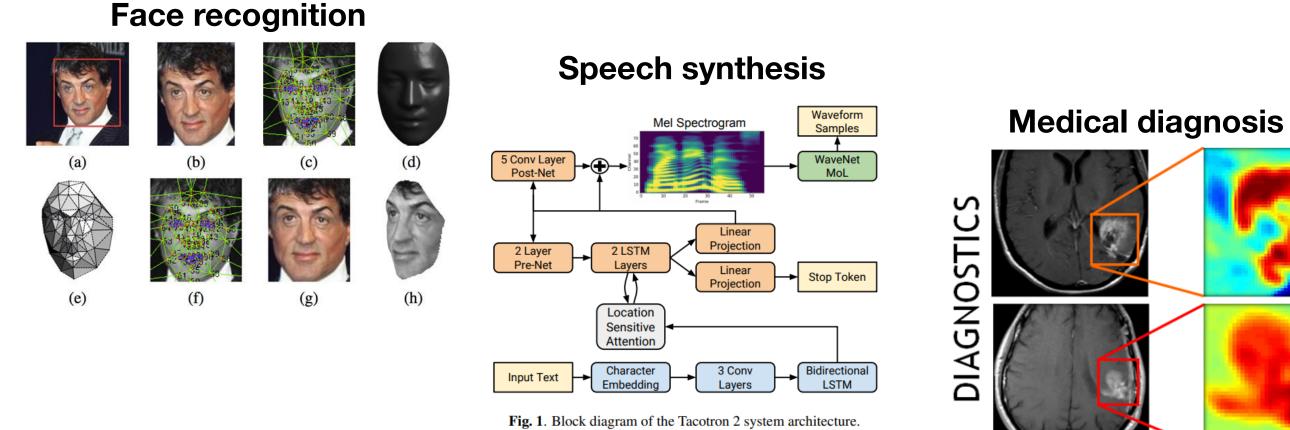
$RL \subseteq control learning \subseteq ML$

- Reinforcement Learning = learning from reinforcement (rewards)
 - But it came to encompass many settings of learning to control
 - Distinguished by sequential decision making and learning
- Many consider RL a separate ML paradigm, but it can involve:
 - Supervised learning
 - Unsupervised learning
 - Active learning
 - Online learning



What is machine learning

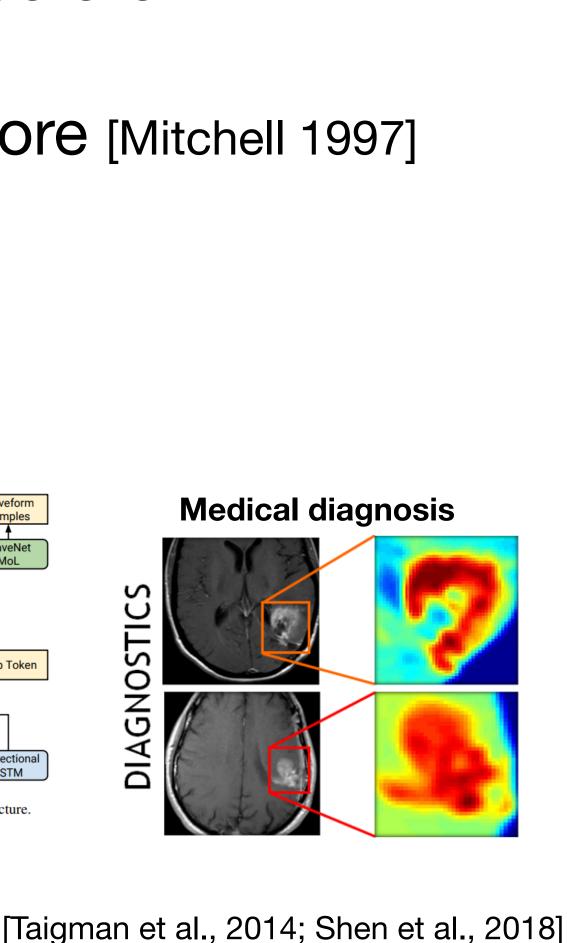
- Learning = taking in information to "know" more than you did before
- ML can help when other AI methods fail:
 - Experts are scarce



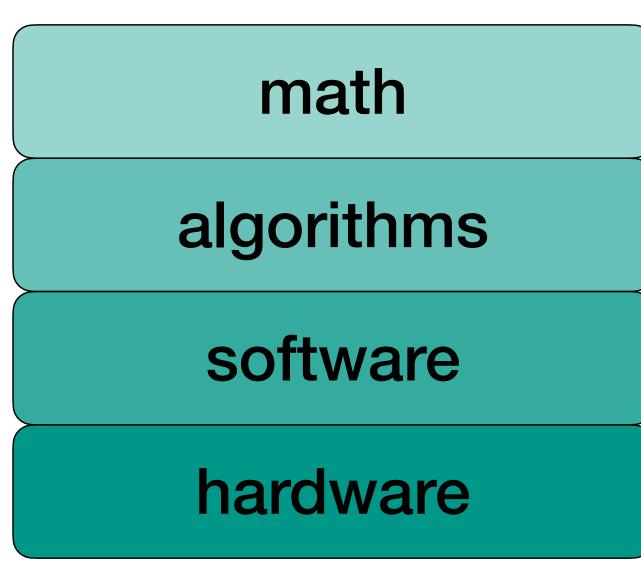
- Rules / logic are hard to specify
- Search space is too large
- Models are unknown / hard to specify

Can we build "intelligent" machines? Intelligence = good decision making

• Machine learning = use data to make better decisions than before [Mitchell 1997]



The ML stack



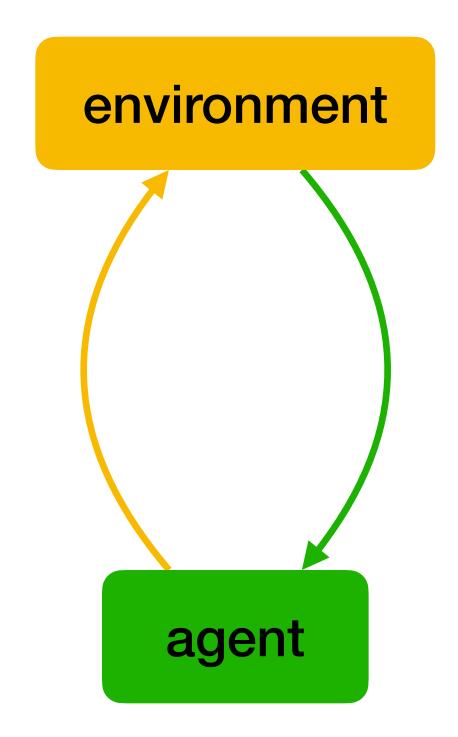
- Math: probability theory, (linear) algebra, computational learning theory
- Algorithms: ML algorithms, optimization, data structures
- Software: ML frameworks, databases, testing, deployment

Hardware: cloud computing, distributed systems, cyber-physical systems

What is control learning?

- \bullet
 - An agent interacting with an environment
- Control = sequential decision making
 - Sense environment state s
 - ► Take action *a*
 - Repeat
- - Or by accumulating high rewards r(s, a) reinforcement learning (RL)

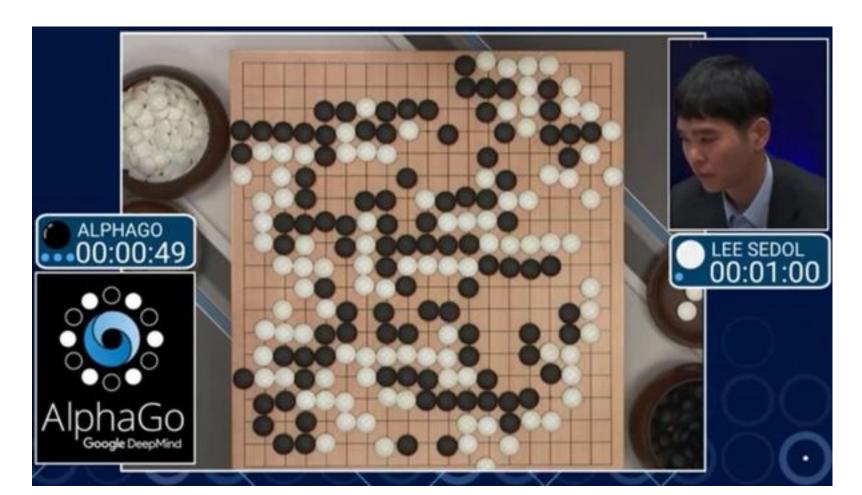
Intelligence appears in interaction with a complex system, not in isolation



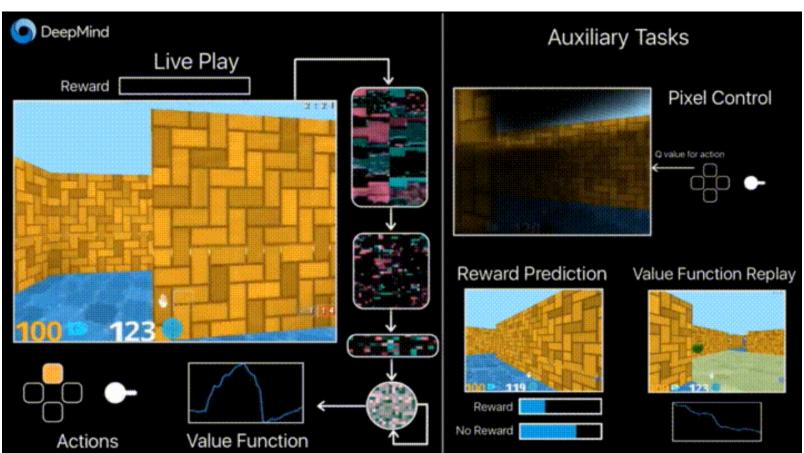
Success can be measured by matching good actions — imitation learning (IL)

Examples of learned controllers

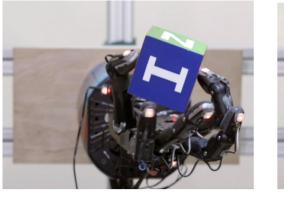
Gameplay

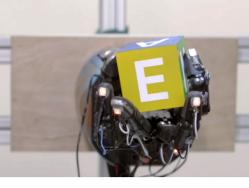


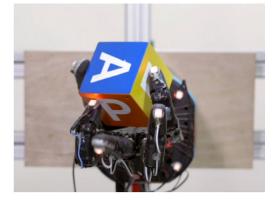
Spacial navigation



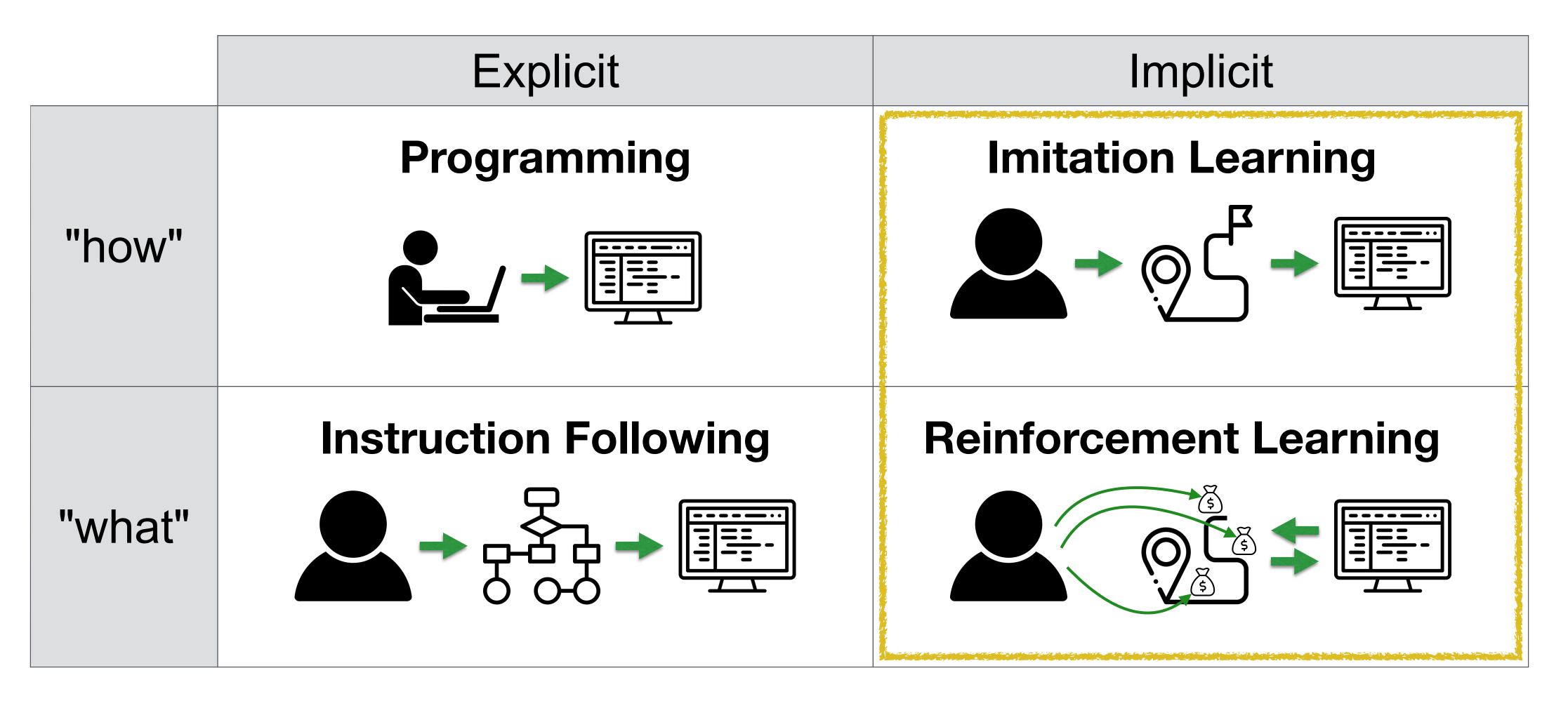
Dextrous manipulation







Control preference elicitation



Control learning is ML... but special

- In RL, unlike supervised, no ground truth, only feedback (online learning)
- Exploration = the learner collects data by interaction
 - The agent decides on which states to train (active learning) and test!
 - Cannot avoid some train-test mismatch
- Sequential decision making need to be coordinated
 - Optimization space is strewn with local optima
- A good policy may require memory
 - Agent state is latent \rightarrow combine control and inference

Today's lecture

What is reinforcement learning?

Course logistics

Basic RL concepts

Course logistics: general

- Course website: <u>https://royf.org/crs/W22/CS277</u>
 - Schedule; recordings; assignments; resources
- Forum: <u>https://edstem.org/us/courses/16527</u>
 - Announcement; discussions
- Office hours: <u>https://calendly.com/royfox/office-hours</u>
- TA: Tiancheng Xu
 - Office hours: <u>https://calendly.com/tianchex/15min</u>

Welcome to schedule 15-min slots; individually or with classmates; 4 hour notice

Course logistics: lectures and discussions

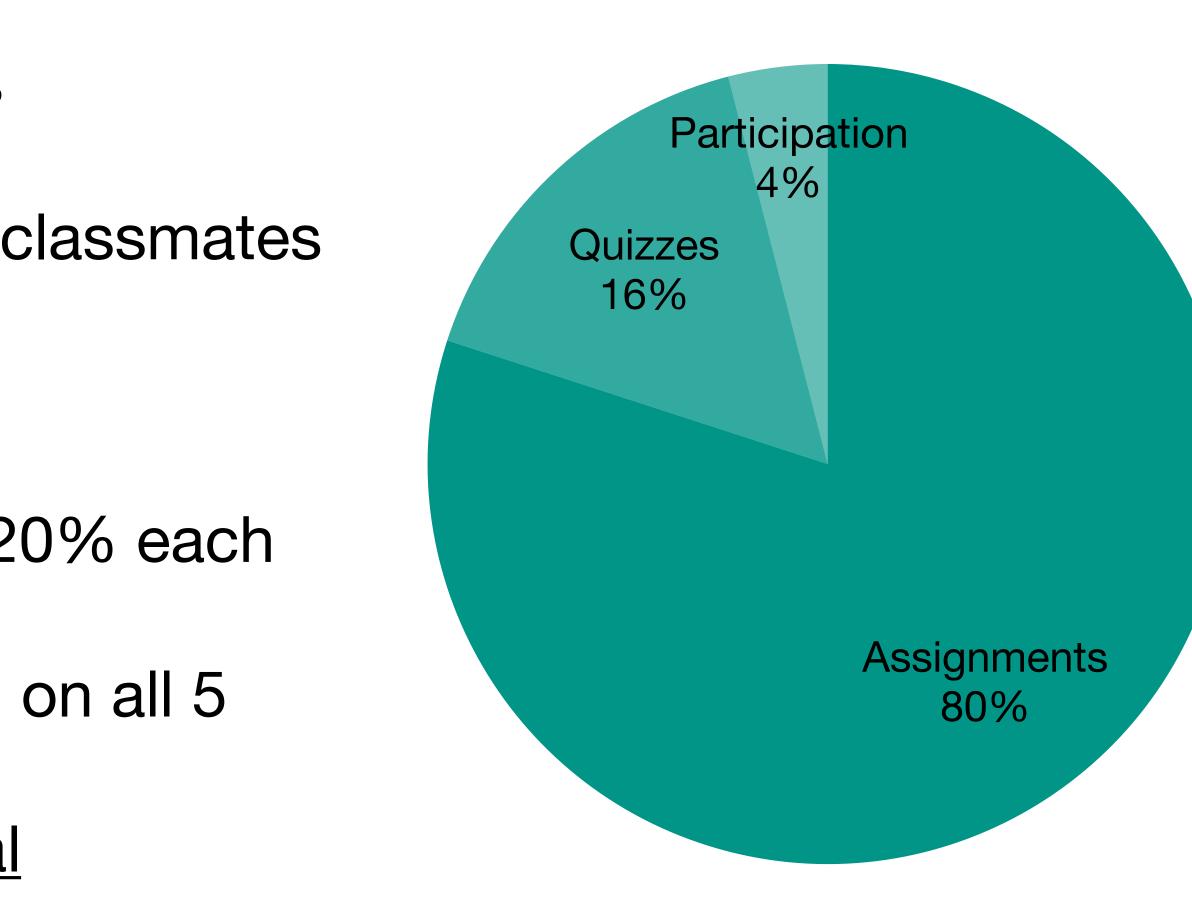
- Lecture videos
 - Uploaded to the course website
 - Please watch before the class discussion for each topic
- Class discussions (optional)
 - When: Tuesdays and Thursdays, 11am–12:20
 - Where: <u>https://uci.zoom.us/j/96005379683</u>
 - Recorded and uploaded to the course website

Course logistics: quizzes and assignments

- Quizzes
 - Weekly, about that week's topics; Friday deadlines
 - Discussed the following Tuesday in class
- Assignments
 - Roughly every other week
 - Understand RL theory; apply RL techniques in Python
 - Discussed the following Thursday in class
- Submission: <u>https://www.gradescope.com/courses/342903</u>

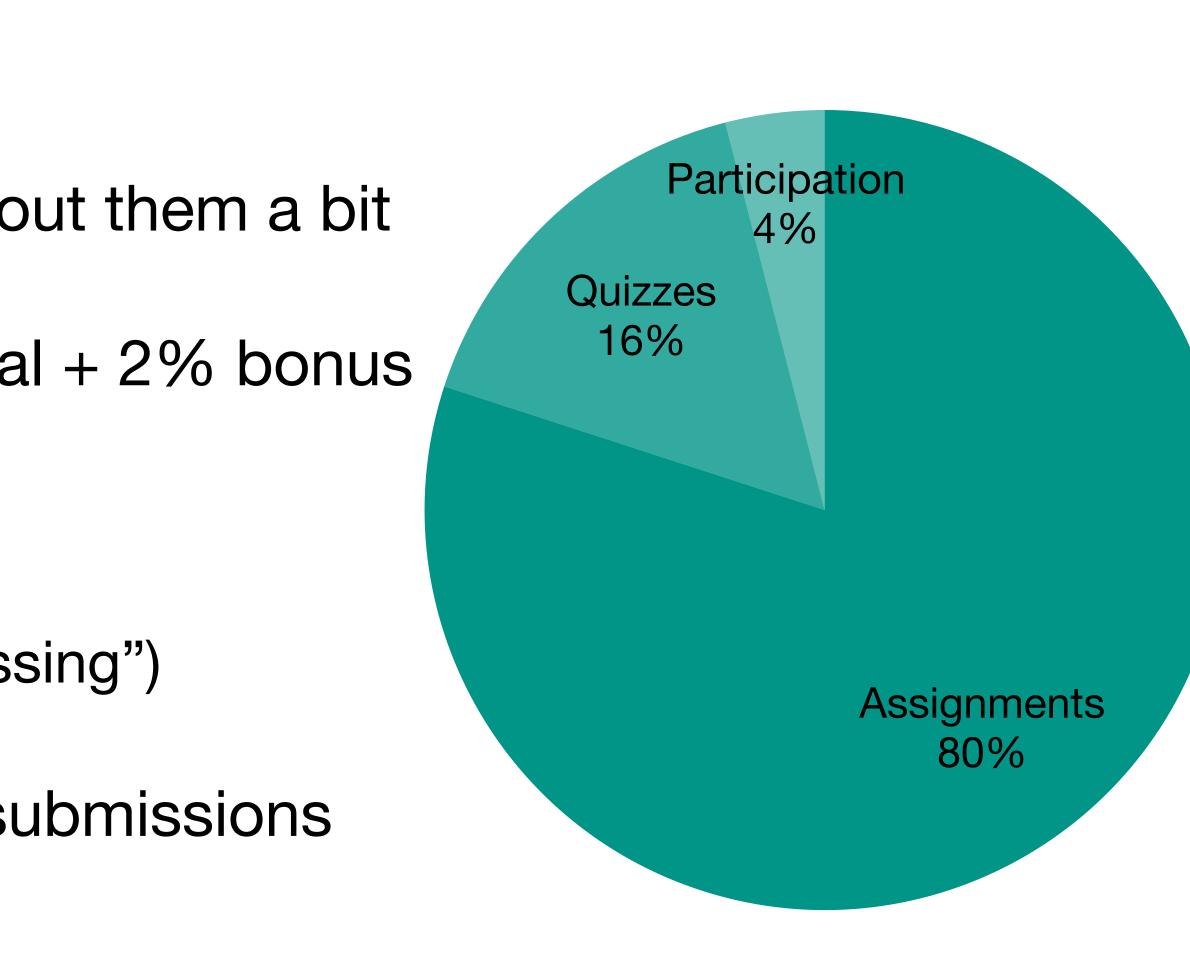
Grading policy: assignments

- Show your math, code, and results
- Encouraged to discuss with me or classmates
 - But solve <u>yourself</u>
- 4 best of 5 assignments count for 20% each
- 5% bonus for scoring at least 50% on all 5
- Late submission: 5 grace days total



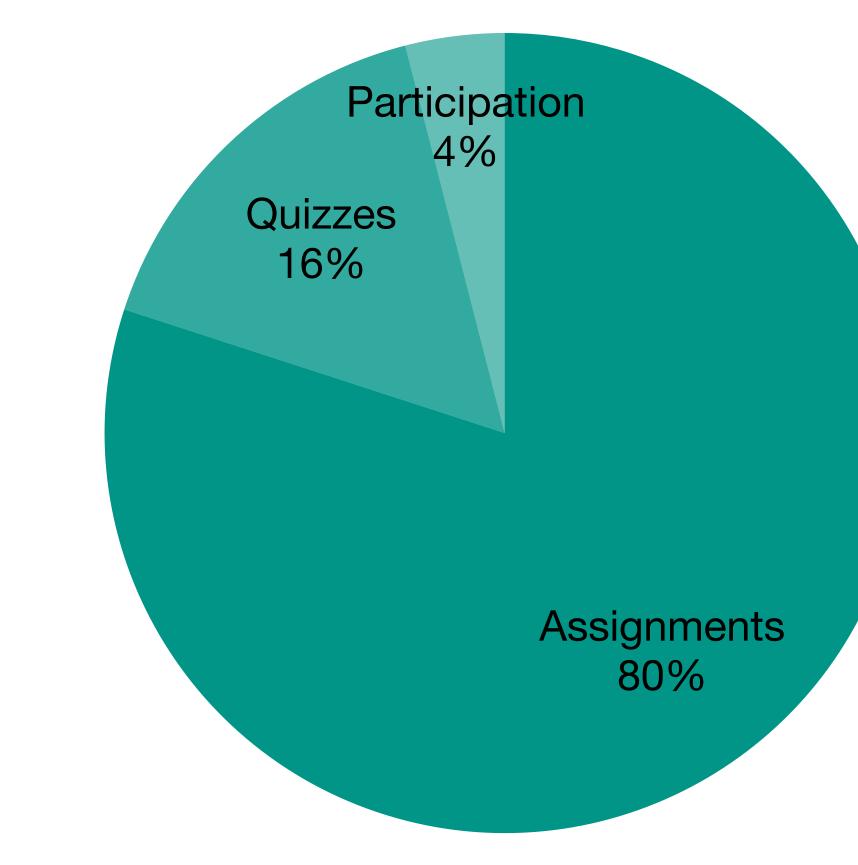
Grading policy: quizzes

- Review the week's topics, think about them a bit
- 9 quizzes, 2% each, up to 16% total + 2% bonus
 - 1% for submitting a complete quiz
 - 1% for being not too much off ("passing")
- Late submission: up to 2 Monday submissions



Grading policy: participation

- Forum participation: 2%
 - Ask questions if you have any
 - Answer questions if you can
 - Share thoughtful comments
 - Post relevant useful links
 - Be <u>on-topic</u> (excluding administrative)
- Course evaluations: 2%



What will it take to do well?

- We'll rely heavily on math: probability theory, linear algebra, calculus
 - I'm here to help, but solid background expected
- You'll need to code well in Python
- Some ideas are challenging ask early what you don't fully understand
- Help your friends and get help from me too! but never cheat

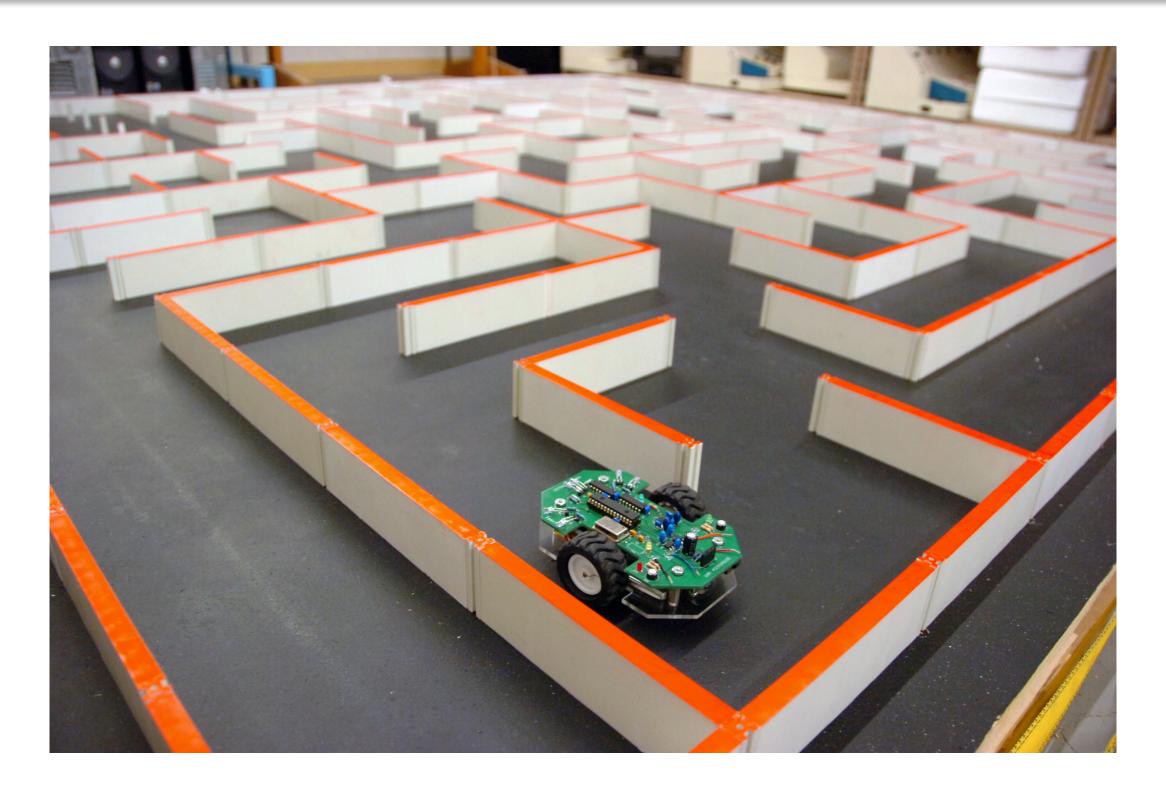
Today's lecture

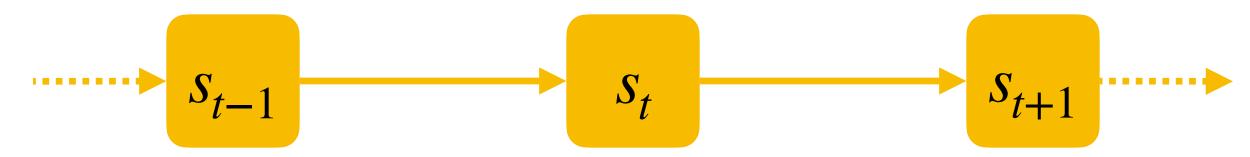
What is reinforcement learning?

Course logistics

Basic RL concepts

System state





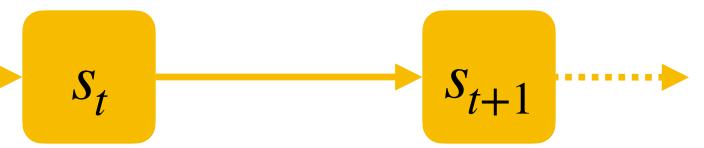
System state

$$p(s_{t+1}, s_{t+2}, \dots | s_0, s_2, \dots, s_t) = p(s_{t+1}, s_{t+2}, \dots | s_t)$$

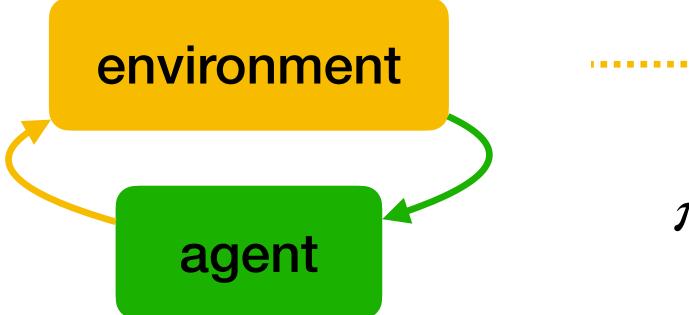
- State = all relevant information from history * for future!

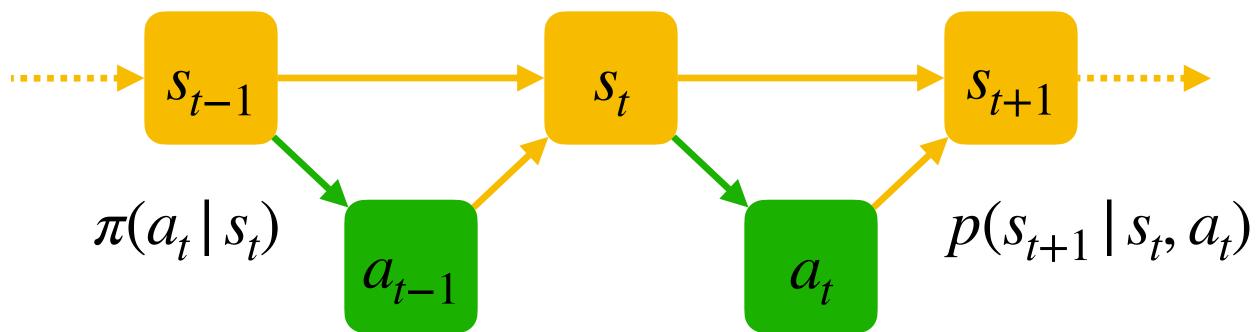
• Markov property: the future is independent of the past, given the present

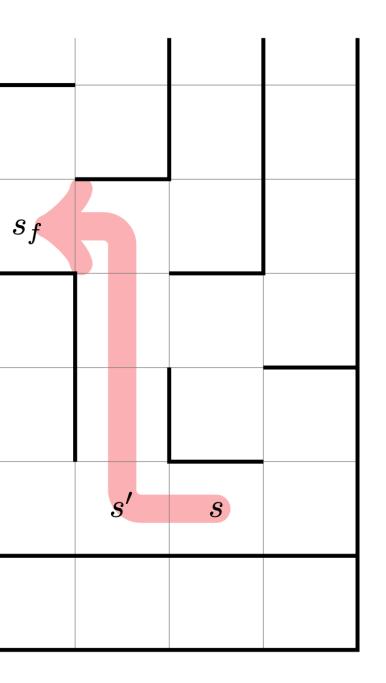
• Given s_t , the history $h = (s_0, \dots, s_t)$ and the future $(s_{t+1}, s_{t+2}, \dots)$ are independent



System = agent + environment

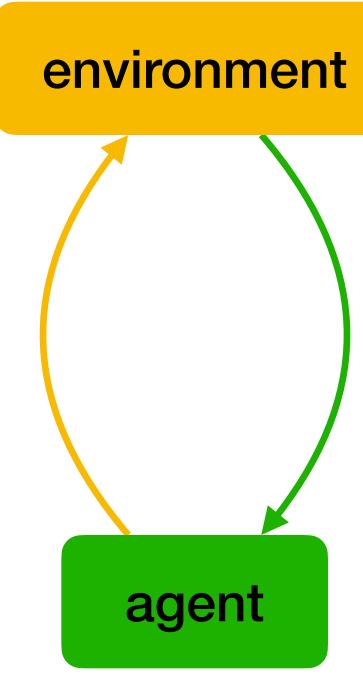






Markov Decision Process (MDP)

- Model of environment
 - S = set of states
 - A = set of actions
 - p(s' | s, a) = state transition probability
 - Probability that $s_{t+1} = s'$, if $s_t = s$ and $a_t = a$

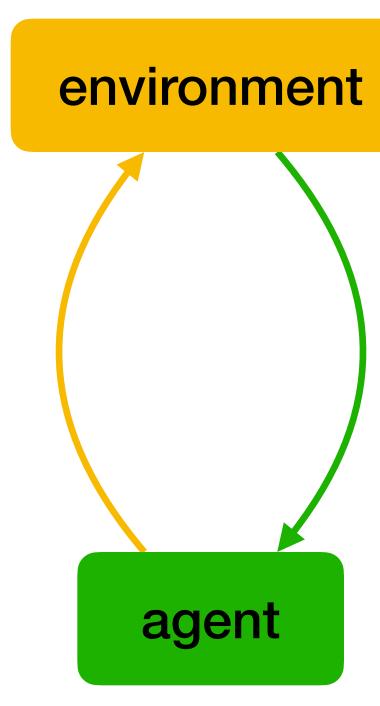


Agent policy

- "Model" of agent decision-making
 - policy $\pi(a \mid s)$ = probability of taking action $a_t = a$ in state $s_t = s_t$
 - In MDP, action a_t only depends on current state s_t :
 - Markov property = S_t is all that matters in history
 - Causality = cannot depend on the future
 - Should the policy depend on time?
 - Sometimes; can add t as feature: S_t

$$\pi_t: s_t \mapsto a_t$$

$$\rightarrow (t, s_t)$$



Trajectories

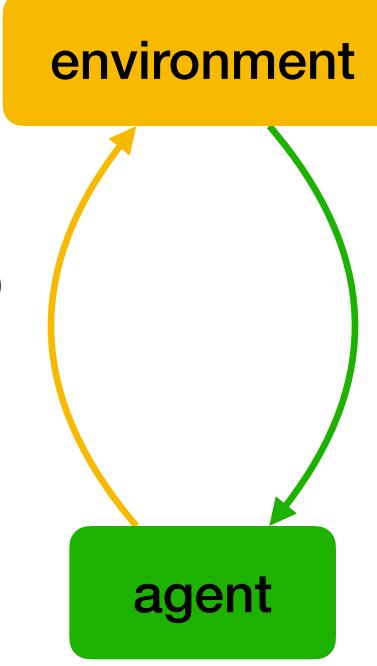
- The agent's behavior iteratively uses (rolls out) the policy
- Trajectory: $\xi = (s_0, a_0, s_2, a_2, \dots, s_T)$
- MD

DP + policy induce distribution over trajectories

$$p_{\pi}(\xi) = p(s_0)\pi(a_0 | s_0)p(s_1 | s_0, a_0)\cdots\pi(a_{T-1} | s_{T-1})p(s_T | s_{T-1}, a_{T-1})$$

$$= p(s_0)\prod_{t=0}^{T-1}\pi(a_t | s_t)p(s_{t+1} | s_t, a_t)$$

- Imitation learning: learn from datase
 - Supervised learning of $\pi(a \mid s)$ from "labeled" states (s_t, a_t)



Learning from rewards

- Providing demonstrations is hard
 - Particularly for learner-generated trajectories
- Can the teacher just score learner actions?
 - Reward: $r(s, a) \in \mathbb{R}$
- High reward is positive reinforcement for this behavior (in this state)
 - Much closer to how natural agents learn

• Designing and programming r often easier than programming / demonstrating π

Actions have long-term consequences

- Tradeoff: short-term rewards vs. long-term returns (accumulated rewards)
 - Fly drone: slow down to avoid crash?
 - Games: slowly build strength? block opponent? all out attack?
 - Stock trading: sell now or wait for growth?
 - Infrastructure control: reduce power output to prevent blackout?
 - Life: invest in college, obey laws, get started early on course project
- Forward thinking and planning are hallmarks of intelligence



- Discount factor $\gamma \in [0,1]$
 - Higher weight to short-term rewards (and costs) than long-term
 - Good mathematical properties:
 - Assures convergence, simplifies algorithms, reduces variance
 - Vaguely economically motivated (inflation)

$$r(s_t, a_t)$$

• Summarize reward sequence $r_t = r(s_t, a_t)$ as single number to be maximized

Horizon classes

Finite:
$$R(\xi) = \sum_{t=0}^{T-1} r(s_t, a_t)$$

Infinite: $R(\xi) = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} r(s_t, a_t)$
Discounted: $R(\xi) = \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$
Episodic: $R(\xi) = \sum_{t=0}^{T-1} r(s_t, a_t)$ s.t

$0 \le \gamma < 1$

t. $s_T = s_f$

Basic RL concepts

- State: $s \in S$; action: $a \in A$; reward: $r(s, a) \in \mathbb{R}$
- Dynamics: $p(s_{t+1} | s_t, a_t)$ for stochastic; $s_{t+1} = f(s_t, a_t)$ for deterministic
- Policy: $\pi(a_t | s_t)$ for stochastic; $a_t = \pi(s_t)$ for deterministic

Trajectory:
$$p_{\pi}(\xi = s_0, a_0, s_1, a_1, ...) =$$

Return:
$$R(\xi) = \sum_{t} \gamma^{t} r(s_{t}, a_{t})$$
 0 =

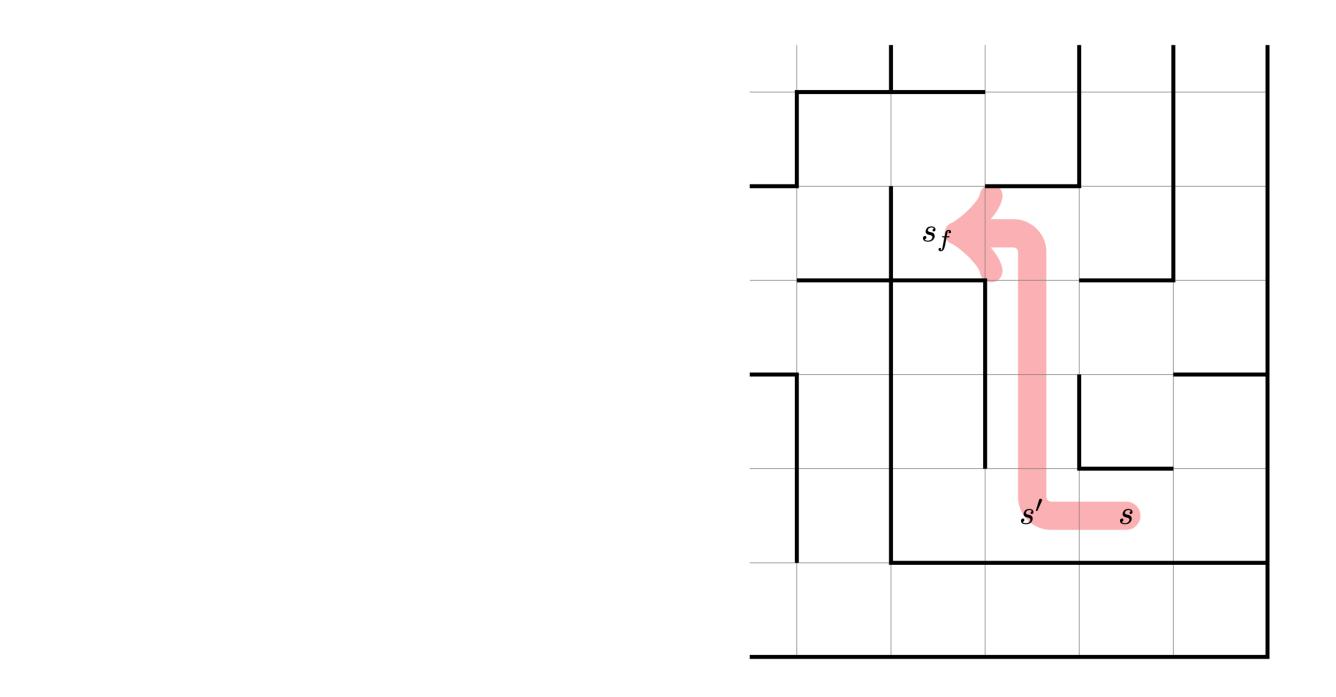
Value:
$$V(s) = \mathbb{E}_{\xi \sim p_{\pi}}[R \mid s_0 = s]$$

 $Q(s, a) = \mathbb{E}_{\xi \sim p_{\pi}}[R \mid s_0 = s, a_0 = s]$

 $= p(s_0) \qquad \pi(a_t | s_t) p(s_{t+1} | s_t, a_t)$

 $\leq \gamma < 1$

Special case: shortest path



• Example above: $s' = f(s, a_{\text{left}})$

• Reward: (-1) in each step (until the goal s_f is reached)

• Deterministic dynamics: in state s, take action a to get to state s' = f(s, a)

Shortest path: optimality principle

- a shortest path from s' to s_f
- Proof: otherwise, let ξ' be a shorter path
- It follows that for all $s \neq s_f$ $V(s) = \min(1 + V(f(s, a)))$
- The optimal policy is

Algorithm 1 Bellman-Ford $V(s_f) \leftarrow 0$ $V(s) \leftarrow \infty \qquad \forall s \in S \setminus \{s_f\}$ for ℓ from 1 to |S| - 1 do $V(s) \leftarrow \min_{a \in A} \{1 + V(f(s, a))\}$

• Proposition: if ξ is a shortest path from s to s_f that goes through s', then a suffix of ξ is

from
$$s'$$
 to s_f , then take $s \xrightarrow{\xi} s' \xrightarrow{\xi'} s_f$

 $\pi(s) = \arg\min_{a}(1 + V(f(s, a)))$

$$))\} \qquad \forall s \in S \setminus \{s_f\}$$

- Quiz 1 due this Friday

Follow announcements and discussions on ed

• See website for schedule, recordings, resources, etc.

Assignment 1 to be published soon