UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2022

Lecture 13: Inverse RL

i
Roy Fox =N
' %\/\/ILL PREss &
Department of Computer Science ean]
Bren School of Information and Computer Sciences FOFOORD
University of California, Irvine — .
SN =

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Logistics

* Assignment 4 to be published soon

e Quiz 5 is due Friday

- Assignment 3 is due today

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Today's lecture

IRL, Feature Matching

MaxEnt IRL

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Tiger domain

« 2 states: which door leads to a tiger (-100 reward) and which to $$$ (+10)

» You can stop and listen: p(o, = s,|s,) = 0.8 m

p(sy = Sieft) = 0.5 = [r(sg, Ajeft)] = —45 01 = Oright

p(s; = Sjeft) = 0.2 [(s, aleft)] = — 12 0y = Oleft

p(sy = Seft) = 0.3 ~[r(sy, areft)] = —45 03 = Oright

p(s3 = Sieft) = 0.2 ~[r(s3, aefp)] = — 12 04 = Oright
0.04

p(sy = Sjeft) = o 0.06 [E[r(sy, aeft)] = —3.5 05 = Oright

p(ss = S|eft) =~ 0.015 ~[r(sy, aleft)] = — 8.3

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Belief

» Belief = distribution over the state b(s)

> |f the agent reaches belief b after history &, that does not imply s ~ b
» Bayesian belief b,(s) = p(s | h): a sufficient statistic of / for s

~ For a Bayesian belief: s ~ b, after history h

Xr—1 Xy X1

* In the linear—Gaussian case: the Kalman filter " W
» Bayesian belief is Gaussian p(x; | h, = y.,) = /(x5 X, Z))
~ Covariance can be precomputed W(x, |) = X, (independent of A,)

>~ Mean can be updated linearly: X, = AX,_; + Bu,_ e, =y, — CXx X, =X+ Ke,

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Computing the Bayesian belief
» Predict s, from h, = (0, ay, 01, 4y, ..., 0,) and a;:

b/(s,.11h,a) = ZP(St | n)p(Siy1 18 a,) = 2 b(s)p(s;1 15, a)

/SN .\

total probability over s, previous belief b, dynamics needs to be known

 Update belief of s, after seeing h, = (h,_;,a,_,, 0,):
/ previous prediction

St41

P (St | ht—l? at—l)p (Ot | Sz) ;_1(St)p (Oz | Sz)/ observation model
b(s;| h) = — P .
\ pCo;| hy_y, a,_1) \ thbt—l(st)P(Ot‘St)
Bayes' rule on o, 0,—s,—(h_y,a_;) \ | o t
e A deterministic, model-based update: normalizer E. 3 »
) ‘.>

> b,_(s,_1) = use a,_; to predict b, ,(s,) = use o, to update b (s,)

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Belief-state MDP

* |n the linear—quadratic—-Gaussian case: certainty equivalence 51 s, Sit1
> Plan using X, as if it was x,

 More generally (though vastly less useful): belief-state MDP

>

States: A(&) Actions: & Rewards: r(b,, a,) = Z b(s)r(s, a,)
St

b,_, b, by

 [ransitions: each possible observation o, ; contributes its probability

p(o,q11b,a) = Z b(S)P(Si1 |8 AP0, 1 |8141)

St9514+1

to the total probability that the belief that follows (b,, a,, 0,, ;) is the Bayesian belief

ZSI b(sPP(S11 155 AP0y [S141)

bt+1(St+1) — p(St+1 ‘ bt’ s 0t+1) —
P01 | by, ay)

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Learning to use memory Is hard

» Belief space b(s,) is continuous and high-dimensional (dimension | & |)
» Curse of dimensionality
> Beliefs are naturally multi-modal — how do we even represent them?

» The number of reachable beliefs may grow exponentially in (one per h,)
> Curse of history

o Belief-value function can be very complex, hard to approximate

 There may not be optimal stationary deterministic policy = instability

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Stationary deterministic policy counterexample

 Assume no observablility

S
o Stationary deterministic policies gets no reward O
St S|
» Non-stationary policy: |, T; expected return: +1
S11 S11
> But non-stationary = observabillity of a clock +1

e Stationary stochastic policy: 1 / T with equal prob.; expected return: +0.25

 Open problem: Bellman optimality is inherently stationary and deterministic
no dependence on ¢ / maximum achieved for some action

TV(s) = max r(s, a) + YE s15.0)~pl V(8]

A

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Today's lecture

Belief-state MDPs

IRL, Feature Matching

MaxEnt IRL

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Filtering with function approximation

» Instead of Bayesian belief: memory update m, = f,(m,_, 0,) (a,_; optional)

~ Action policy: my(a, | m,)

/Y
Q ar Q .
> Seqguential structure = Recurrent Neural Network (RNN) ..,‘_,‘..>

* [raining: back-propagate gradients through the whole sequence

» Back-propagation through time (BPTT)

e Unfortunately, gradients tend to vanish — 0 / explode — ©0

> Long term coordination of memory updates + actions is challenging

> RNN can't use information not remembered, but backup no gradient unless used

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

RNNs in on-policy methods

* Training RNNs with on-policy methods is straightforward (and backward)
~ Roll out policy: parameters of a, distribution are determined by 7,(1m,) with

m, = fo - Jo(f(0p); 01), -+ 0,)

~ Compute Vlog my(a,|m,) with BPTT all the way to initial observation o,
* Problems: computation graph > RAM; vanishing / exploding grads

> Solutions: stop gradients every k steps; use attention

R

St41
| |

\ 4 \
r

 Problem: cannot learn longer memory — but that's hard anyway

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

RNNs in off-policy methods

 Problem: RNN states in replay buffer disagree with current RNN params

o Solution 1: use n-step rollouts to reduce mismatch effect

—1
Oplo, my,a) > ri+yr g+ +y" " 7" max QO s My s @)
a

 Solution 2: "burn in” m, from even earlier stored steps
~ Same target, but m, is initialized from (0,_;, ..., 0,)
e |n practice: RNNs rarely used

» Stacking k frames every step (0,_;.1, - - ., 0,) may help with short-term memory

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Deep RL as partial observability

e Memory-based policies fail us in Deep RL, where we need them most:

> Deep RL is inherently partially observable

 Consider what deeper layers get as input:

> High-level / action-relevant state features are not Markov!

 Memory management is a huge open problem in Deep RL

> Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Recap and further considerations

* Let policies depend on observable history through memory
 NMemory update: Bayesian, approximate, or learned

» Learning to update memory is one of the biggest open problems in all of ML
* Let policy be stochastic

> Should memory be stochastic? interesting research question...

e Let policies be non-stationary if possible, otherwise learning may be unstable
> Time-dependent policies for finite-horizon tasks

> Periodic policies for periodic tasks

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Today's lecture

Belief-state MDPs

MaxEnt IRL

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Learning rewards from demonstrations

e RL: — policy; IL: demonstrations — policy

e Inverse Reinforcement Learning (IRL): demonstrations —
» Better understand agents (humans, animals, users, markets)
- Preference elicitation, teleology (the “what for” of actions), theory of mind, language
> First step toward Apprenticeship Learning: demos — — policy

- Infer the teacher's goals and learn to achieve them; overcome suboptimal demos

- Partly model-based (learn r but not p); may be easier to learn, generalize, transfer

- Teacher and learner can have different action spaces (e.g., human — robot)

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Inverse Reinforcement Learning (IRL)

» Given a dataset of demonstration trajectories ¥ = {&;]

r(s) expressive enough

 Find teacher's /
> Principle: demonstrated actions should achieve high expected return

e |RL is ill-defined

» How low is the reward for states and actions not in £?

> How is the reward distributed along the trajectory?

- Sparse rewards = identify “subgoal” states; dense = score each step, as hard as IL

> Demonstrator can be fallible = take suboptimal actions; how much?

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Feature matching

» Assume linear reward ry(s) = 0'f; in given state features f, € |

_ t
~ Value =J, = 2}/
z

d

/

= [0T,] = E, [0TF], with p,(s) o) 7'p(s)

t ~ Geom(1 — y)
missing const: (1 —)

o [eacher optimality: expert value Jg* higher than any other policy's value Jg

» Find 6 that maximizes the gap Jg* — J3 ; but for which 77?

» Apprenticeship Learning: find & that maximizes J7 ; but for which 6?

. Solve: max min{Jg* — J7} = maxmin{E,_,.[07f;] -

0 T

0 T

> Approximate s ~ p* with s ~ &

= 1071

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Feature matching

. Solving max min{
v, T

= [0Tf] —

Algorithm Feature Matching

= 1071

Initialize policy set I = {mg}

repeat

6 must be bounded, or solution at oo

Solve Quadratic Program: max n__—

S.t. |

G~ 107 fs] 2 I

Add 7 to I1

17.]|0][2<1

10T f;]+n Vmell
m < optimal policy for rg(s) = 07 f

« On convergence: r optimal for @ (no gap), can't find & with gap

>» = _SN@[HTfY] ~

S~Pxr

[0] for all 6 =

—5~D) [fs] ~

feature matching

—
=g, L]

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Today's lecture

Belief-state MDPs

IRL, Feature Matching

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Modeling bounded teachers

_ An expert teacher maximizes the value J; = Z y'E, e[0T] = Eeo:[07f:]

[

>

With trajectory-summed features fgg = Z y' s,

[

« Assume teacher has unintentional / uninformed prior policy 7,

> Bounded rationality: cost to intentionally diverge D[z || 7] (with 7, uniform: H[z*])

= DIp*lpo(S)]

7*(a.|s,)]

p*(S)
g Total cost: Z _(Staat)Np* ll()g mo(a | s;)]
[

—E. .1
Enp log @)

. Bounded optimality: max -Cpr*[HTfé] — D[p*||po]

7Z->I<

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Bounded optimality: naive solution

. Bounded optimality: nj{ax e[0Tfc] — DIp*||py]
>I<p>l<

> Nalive solution: allow any distribution p* over trajectories

>~ No need to be consistent with dynamics p(s’| s, a) = p* may be unachievable

_ Add the constraint Zp*(cf) =] with Lagrange multiplier A
5

» Differentiate by p*(&) and = 0 to optimize

po()exp(6'f;)

OTF. — loo n*(E) + 1 —1+A=0=p*C) = ———F——
Je — log p*(5) + log py(S) prs) 2 Po©)exp (017

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

|IRL with bounded teacher

. Assume that demonstrations are distributed py(&) = Zi po(f)eXp(HT]%)
0

> With partition function Z, = ngo[eXp(Qng)]

e Find @ that minimizes NLL of demonstrations

Volog py(&) = Vo(0'f; — log Z) = fi= Vo7,

= fe= 7 Beup [expO2)f] = f: — Bz, [£

>~ To compute gradient, we need p,, but how to compute Z,?

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

Computing Z,: backward recursion

o Partition function: Z; = —ngO[exp(é’T]%)]

« Compute Ze recursively backward: like a value function, but + becomes -

Zy(S;, a;) = "po[eXP(H ngzt) | 5., a,] = exp(0 Tfst) — (s, +1‘St,at)~p[z(9(st+1)]
ZH(SZ‘) — _po[eXp(eTfth) ‘ St] — _(at‘St)NﬂO[Ze(St’ at)]

« How to get a policy from Z,?

. . p@(é ‘ Sts Clt) 25, a,)
Marginalize: my(a,| s,) = = ry(a,| s, HZ@)

’ po(&ls))

consistent 7 may not even exist

/

» This 1, is not globally consistent py(&) # pﬂe(f), pPo(&) ignores the dynamics

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

MaxEnt IRL

e For each sample & ~ : Limitations:

» Compute Z, = k., [exp(0'f)] recursively backward « * Requires dynamics p
/ | Assumes p@ — pﬂ@
» Compute [z =| recursively forward
p prn’(g[fé:] y / e Assumes QZ — p>I<

- Take a gradient step to improve 0: Vylogpy(c) = f- — E EN%[Jél

. At the optimum: feature matching E._g[f:] = ‘5,\,]%[]%]

., MaxEnt IRL approximates max H[xz,| s.t. -5,\,@[]‘5] = k.., [fcf]
0 70

Roy Fox | CS 277 | Winter 2022 | Lecture 13: Inverse RL

