

CS 277: Control and Reinforcement Learning Winter 2022 Lecture 13: Inverse RL

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

- Assignment 3 is due today
- Assignment 4 to be published soon

quizzes

Quiz 5 is due Friday

Today's lecture

Belief-state MDPs

RNNs

IRL, Feature Matching

MaxEnt IRL

Tiger domain

2 states: which door leads to a tiger (-100 reward) and which to \$\$\$ (+10)

• You can stop and listen:
$$p(o_t = s_t | s_t) = 0.8$$

$$p(s_0 = s_{\mathsf{left}}) = 0.5$$

$$p(s_1 = s_{left}) = 0.2$$

$$p(s_2 = s_{left}) = 0.5$$

$$p(s_3 = s_{left}) = 0.2$$

$$p(s_4 = s_{\text{left}}) = \frac{0.04}{0.04 + 0.64} \approx 0.06 \quad \mathbb{E}[r(s_4, a_{\text{left}})] = -3.5$$

$$p(s_5 = s_{\text{left}}) \approx 0.015$$

$$\mathbb{E}[r(s_0, a_{\mathsf{left}})] = -45$$

$$\mathbb{E}[r(s_1, a_{\mathsf{left}})] = -12$$

$$\mathbb{E}[r(s_2, a_{\mathsf{left}})] = -45$$

$$\mathbb{E}[r(s_3, a_{\mathsf{left}})] = -12$$

$$E[r(s_4, a_{left})] = -3.5$$

$$\mathbb{E}[r(s_4, a_{\text{left}})] = -8.3$$

$$o_1 = o_{right}$$

$$o_2 = o_{\mathsf{left}}$$

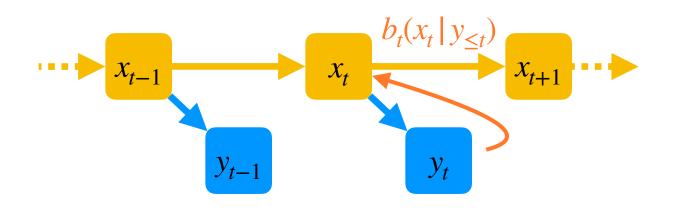
$$o_3 = o_{right}$$

$$o_4 = o_{right}$$

$$o_5 = o_{right}$$

Belief

- Belief = distribution over the state b(s)
 - If the agent reaches belief b after history h, that does not imply $s \sim b$
- Bayesian belief $b_h(s) = p(s \mid h)$: a sufficient statistic of h for s
 - For a Bayesian belief: $s \sim b_h$ after history h
- In the linear-Gaussian case: the Kalman filter



- Bayesian belief is Gaussian $p(x_t | h_t = y_{\leq t}) = \mathcal{N}(x_t; \hat{x}_t, \Sigma_t)$
- Covariance can be precomputed $\mathbb{V}(x_t | h_t) = \Sigma_t$ (independent of h_t)
- Mean can be updated linearly: $\hat{x}_t' = A\hat{x}_{t-1} + Bu_{t-1}$ $e_t = y_t C\hat{x}_t'$ $\hat{x}_t = \hat{x}_t' + K_t e_t$

Computing the Bayesian belief

• Predict s_{t+1} from $h_t = (o_0, a_0, o_1, a_1, ..., o_t)$ and a_t :

$$b_t'(s_{t+1} | h_t, a_t) = \sum_{s_t} p(s_t | h_t) p(s_{t+1} | s_t, a_t) = \sum_{s_t} b_t(s_t) p(s_{t+1} | s_t, a_t)$$
total probability over s_t

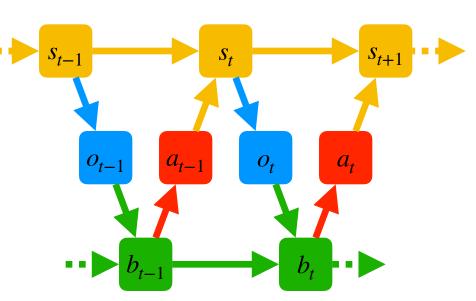
previous belief b_t

dynamics needs to be known

• Update belief of s_t after seeing $h_t = (h_{t-1}, a_{t-1}, o_t)$:

$$b_t(s_t|h_t) = \frac{p(s_t|h_{t-1},a_{t-1})p(o_t|s_t)}{p(o_t|h_{t-1},a_{t-1})} = \frac{b'_{t-1}(s_t)p(o_t|s_t)}{\sum_{\bar{s}_t}b'_{t-1}(\bar{s}_t)p(o_t|\bar{s}_t)} = \frac{b'_{t-1}(s_t)p(o_t|s_t)}{\sum_{\bar{s}_t}b'_{t-1}(\bar{s}_t)p(o_t|\bar{s}_t)}$$
Bayes' rule on o_t $o_t - s_t - (h_{t-1},a_{t-1})$ normalizer

- A deterministic, model-based update:
 - ► $b_{t-1}(s_{t-1})$ → use a_{t-1} to predict $b'_{t-1}(s_t)$ → use o_t to update $b_t(s_t)$



Belief-state MDP

- In the linear-quadratic-Gaussian case: certainty equivalence
 - Plan using \hat{x}_t as if it was x_t
- More generally (though vastly less useful): belief-state MDP

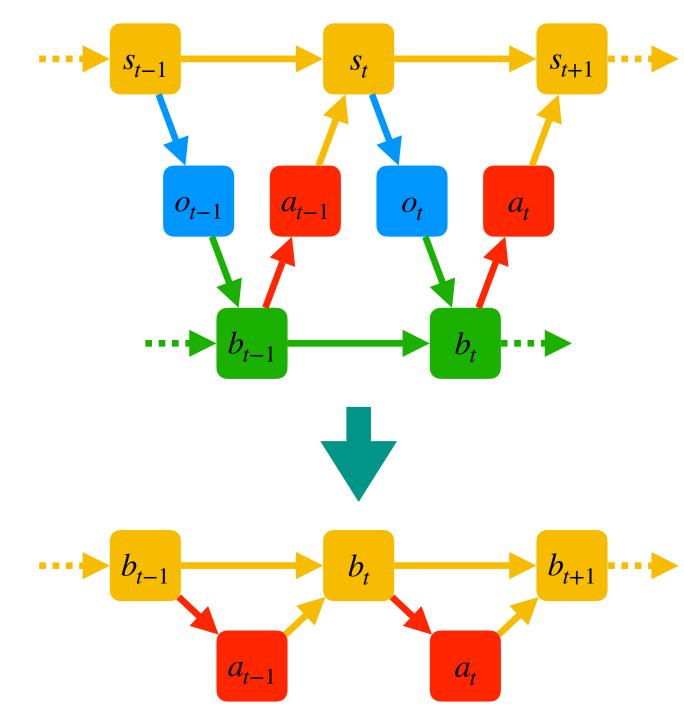
States:
$$\Delta(\mathcal{S})$$
 Actions: \mathcal{A} Rewards: $r(b_t, a_t) = \sum_{s_t} b_t(s_t) r(s_t, a_t)$

• Transitions: each possible observation o_{t+1} contributes its probability

$$p(o_{t+1} | b_t, a_t) = \sum_{s_t, s_{t+1}} b_t(s_t) p(s_{t+1} | s_t, a_t) p(o_{t+1} | s_{t+1})$$

to the total probability that the belief that follows (b_t, a_t, o_{t+1}) is the Bayesian belief

$$b_{t+1}(s_{t+1}) = p(s_{t+1} | b_t, a_t, o_{t+1}) = \frac{\sum_{s_t} b_t(s_t) p(s_{t+1} | s_t, a_t) p(o_{t+1} | s_{t+1})}{p(o_{t+1} | b_t, a_t)}$$

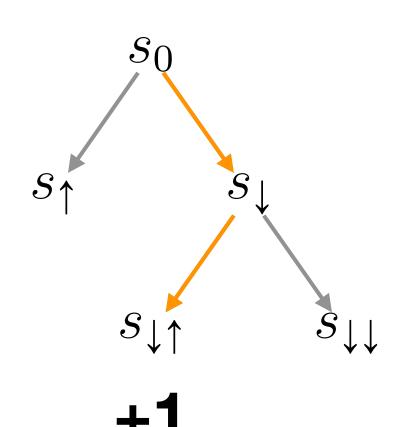


Learning to use memory is hard

- Belief space $b(s_t)$ is continuous and high-dimensional (dimension $|\mathcal{S}|$)
 - Curse of dimensionality
 - ► Beliefs are naturally multi-modal how do we even represent them?
- The number of reachable beliefs may grow exponentially in t (one per h_t)
 - Curse of history
- Belief-value function can be very complex, hard to approximate
- There may not be optimal stationary deterministic policy ⇒ instability

Stationary deterministic policy counterexample

- Assume no observability
- Stationary deterministic policies gets no reward
- Non-stationary policy: \(\daggerightarrow\), \(\daggerightarrow\); expected return: +1
 - But non-stationary = observability of a clock t



• Stationary stochastic policy: \$\diamond\$ / 1 with equal prob.; expected return: +0.25

Open problem: Bellman optimality is inherently stationary and deterministic
 no dependence on t
 maximum achieved for some action

$$V(s) = \max_{a} r(s, a) + \gamma \mathbb{E}_{(s'|s,a)\sim p}[V(s')]$$

Today's lecture

Belief-state MDPs

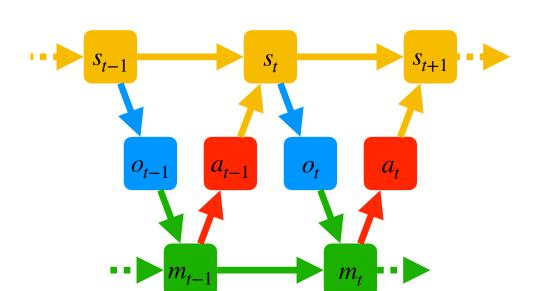
RNNs

IRL, Feature Matching

MaxEnt IRL

Filtering with function approximation

- Instead of Bayesian belief: memory update $m_t = f_{\theta}(m_{t-1}, o_t)$ $(a_{t-1} \text{ optional})$
 - Action policy: $\pi_{\theta}(a_t \mid m_t)$
 - Sequential structure = Recurrent Neural Network (RNN)



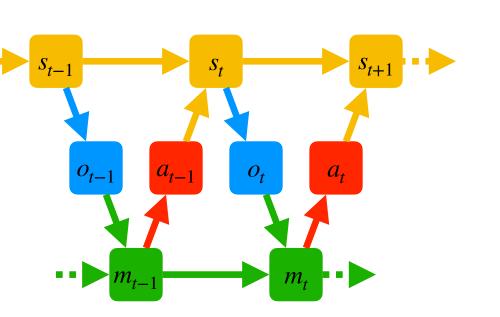
- Training: back-propagate gradients through the whole sequence
 - Back-propagation through time (BPTT)
- Unfortunately, gradients tend to vanish → 0 / explode → ∞
 - Long term coordination of memory updates + actions is challenging
 - RNN can't use information not remembered, but backup no gradient unless used

RNNs in on-policy methods

- Training RNNs with on-policy methods is straightforward (and backward)
 - Roll out policy: parameters of a_t distribution are determined by $\pi_{\theta}(m_t)$ with

$$m_t = f_{\theta}(\cdots f_{\theta}(f_{\theta}(o_0), o_1), \cdots o_t)$$

- Compute $\nabla_{\theta} \log \pi_{\theta}(a_t \mid m_t)$ with BPTT all the way to initial observation o_0
- Problems: computation graph > RAM; vanishing / exploding grads
 - Solutions: stop gradients every k steps; use attention
- Problem: cannot learn longer memory but that's hard anyway



RNNs in off-policy methods

- Problem: RNN states in replay buffer disagree with current RNN params
- Solution 1: use *n*-step rollouts to reduce mismatch effect

$$Q_{\theta}(o_t, m_t, a_t) \to r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n \max_{a'} Q_{\theta}(o_{t+n}, m_{t+n}, a')$$

- Solution 2: "burn in" m_t from even earlier stored steps
 - Same target, but m_t is initialized from $(o_{t-k}, ..., o_{t-1})$
- In practice: RNNs rarely used
 - Stacking k frames every step $(o_{t-k+1}, ..., o_t)$ may help with short-term memory

Deep RL as partial observability

- Memory-based policies fail us in Deep RL, where we need them most:
 - Deep RL is inherently partially observable
- Consider what deeper layers get as input:
 - High-level / action-relevant state features are not Markov!
- Memory management is a huge open problem in Deep RL
 - Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...

Recap and further considerations

- Let policies depend on observable history through memory
- Memory update: Bayesian, approximate, or learned
 - Learning to update memory is one of the biggest open problems in all of ML
- Let policy be stochastic
 - Should memory be stochastic? interesting research question...
- Let policies be non-stationary if possible, otherwise learning may be unstable
 - Time-dependent policies for finite-horizon tasks
 - Periodic policies for periodic tasks

Today's lecture

Belief-state MDPs

RNNs

IRL, Feature Matching

MaxEnt IRL

Learning rewards from demonstrations

- RL: rewards → policy; IL: demonstrations → policy
- Inverse Reinforcement Learning (IRL): demonstrations → reward function
 - Better understand agents (humans, animals, users, markets)
 - Preference elicitation, teleology (the "what for" of actions), theory of mind, language
 - ► First step toward Apprenticeship Learning: demos → rewards → policy
 - Infer the teacher's goals and learn to achieve them; overcome suboptimal demos
 - Partly model-based (learn r but not p); may be easier to learn, generalize, transfer
 - Teacher and learner can have different action spaces (e.g., human → robot)

Inverse Reinforcement Learning (IRL)

- Given a dataset of demonstration trajectories $\mathcal{D} = \{\xi_i\}$
 - r(s) expressive enough
- Find teacher's reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
 - Principle: demonstrated actions should achieve high expected return
- IRL is ill-defined
 - How low is the reward for states and actions not in 29?
 - How is the reward distributed along the trajectory?
 - Sparse rewards = identify "subgoal" states; dense = score each step, as hard as IL
 - Demonstrator can be fallible = take suboptimal actions; how much?

Feature matching

- Assume linear reward $r_{\theta}(s) = \theta^{\intercal}f_{s}$ in given state features $f_{s} \in \mathbb{R}^{d}$ $t \sim \text{Geom}(1 \gamma)$ $\text{missing const: } (1 \gamma)$ $\text{Value} = J_{\theta}^{\pi} = \sum_{t} \gamma^{t} \mathbb{E}_{s_{t} \sim p_{\pi}} [\theta^{\intercal}f_{s_{t}}] = \mathbb{E}_{s \sim p_{\pi}} [\theta^{\intercal}f_{s}], \text{ with } p_{\pi}(s) \propto \sum_{t} \gamma^{t} p_{\pi}(s_{t})$
- Teacher optimality: expert value $J_{\!\scriptscriptstyle H}^{\pi^*}$ higher than any other policy's value $J_{\!\scriptscriptstyle H}^{\pi}$
 - Find θ that maximizes the gap $J_{\theta}^{\pi^*} J_{\theta}^{\pi}$; but for which π ?
 - Apprenticeship Learning: find π that maximizes J^π_{θ} ; but for which θ ?
- Solve: $\max\min\{J_{\theta}^{\pi^*}-J_{\theta}^{\pi}\}=\max\min\{\mathbb{E}_{s\sim p^*}[\theta^{\intercal}f_s]-\mathbb{E}_{s\sim p_{\pi}}[\theta^{\intercal}f_s]\}$
 - ► Approximate $s \sim p^*$ with $s \sim \mathscr{D}$

Feature matching

. Solving $\max_{\theta} \min_{\pi} \{ \mathbb{E}_{s \sim p^*} [\theta^{\intercal} f_s] - \mathbb{E}_{s \sim p_{\pi}} [\theta^{\intercal} f_s] \}$

Algorithm Feature Matching

Initialize policy set $\Pi = \{\pi_0\}$

repeat

Solve Quadratic Program: $\max_{\eta, \|\theta\|_2 \le 1} \eta$ must be bounded, or solution at ∞ s.t. $\mathbb{E}_{s \sim \mathcal{D}}[\theta^{\mathsf{T}} f_s] \ge \mathbb{E}_{s \sim p_{\pi}}[\theta^{\mathsf{T}} f_s] + \eta \quad \forall \pi \in \Pi$

 $\pi \leftarrow \text{optimal policy for } r_{\theta}(s) = \theta^{\intercal} f_{s}$

Add π to Π

• On convergence: π optimal for θ (no gap), can't find θ with gap

feature matching

$$\to \mathbb{E}_{s \sim \mathcal{D}}[\theta^{\intercal} f_s] \approx \mathbb{E}_{s \sim p_{\pi}}[\theta^{\intercal} f_s] \text{ for all } \theta \Rightarrow \mathbb{E}_{s \sim \mathcal{D}}[f_s] \approx \mathbb{E}_{s \sim p_{\pi}}[f_s]$$

Today's lecture

Belief-state MDPs

RNNs

IRL, Feature Matching

MaxEnt IRL

Modeling bounded teachers

- An expert teacher maximizes the value $J_{\theta}^{\pi^*} = \sum_{t} \gamma^t \mathbb{E}_{s_t \sim p^*} [\theta^\intercal f_{s_t}] = \mathbb{E}_{\xi \sim p^*} [\theta^\intercal f_{\xi}]$
 - With trajectory-summed features $f_{\xi} = \sum_{t} \gamma^{t} f_{S_{t}}$
- Assume teacher has unintentional / uninformed prior policy π_0
 - ▶ Bounded rationality: cost to intentionally diverge $\mathbb{D}[\pi^* || \pi_0]$ (with π_0 uniform: $\mathbb{H}[\pi^*]$)

Total cost:
$$\sum_{t} \mathbb{E}_{(s_{t}, a_{t}) \sim p^{*}} \left[\log \frac{\pi^{*}(a_{t}|s_{t})}{\pi_{0}(a_{t}|s_{t})} \right] = \mathbb{E}_{\xi \sim p^{*}} \left[\log \frac{p^{*}(\xi)}{p_{0}(\xi)} \right] = \mathbb{D}[p^{*}(\xi) || p_{0}(\xi)]$$

. Bounded optimality:
$$\max_{\pi^*} \mathbb{E}_{\xi \sim p^*} [\theta^\intercal f_{\xi}] - \tau \mathbb{D}[p^* \| p_0]$$

Bounded optimality: naïve solution

- . Bounded optimality: $\max_{f^*} \mathbb{E}_{\xi \sim p^*} [\theta^\intercal f_{\xi}] \mathbb{D}[p^* || p_0]$
 - Naïve solution: allow any distribution p^* over trajectories
 - ► No need to be consistent with dynamics $p(s'|s,a) \Rightarrow p^*$ may be unachievable
- . Add the constraint $\sum_{\xi} p^*(\xi) = 1$ with Lagrange multiplier λ
- Differentiate by $p^*(\xi)$ and = 0 to optimize

$$\theta^{\mathsf{T}} f_{\xi} - \log p^*(\xi) + \log p_0(\xi) - 1 + \lambda = 0 \Longrightarrow p^*(\xi) = \frac{p_0(\xi) \exp(\theta^{\mathsf{T}} f_{\xi})}{\sum_{\bar{\xi}} p_0(\bar{\xi}) \exp(\theta^{\mathsf{T}} f_{\bar{\xi}})}$$

IRL with bounded teacher

- Assume that demonstrations are distributed $p_{\theta}(\xi) = \frac{1}{Z_{\theta}} p_0(\xi) \exp(\theta^\intercal f_{\xi})$
 - With partition function $Z_{\theta} = \mathbb{E}_{\bar{\xi} \sim p_0} [\exp(\theta^\intercal f_{\bar{\xi}})]$
- ullet Find eta that minimizes NLL of demonstrations

$$\nabla_{\theta} \log p_{\theta}(\xi) = \nabla_{\theta}(\theta^{\mathsf{T}} f_{\xi} - \log Z_{\theta}) = f_{\xi} - \frac{1}{Z_{\theta}} \nabla_{\theta} Z_{\theta}$$

$$= f_{\xi} - \frac{1}{Z_{\theta}} \mathbb{E}_{\bar{\xi} \sim p_{0}} [\exp(\theta^{\mathsf{T}} f_{\bar{\xi}}) f_{\bar{\xi}}] = f_{\xi} - \mathbb{E}_{\bar{\xi} \sim p_{\theta}} [f_{\bar{\xi}}]$$

- To compute gradient, we need p_{θ} , but how to compute Z_{θ} ?

Computing Z_{θ} : backward recursion

- Partition function: $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{\mathsf{T}} f_{\xi})]$
- Compute Z_{θ} recursively backward: like a value function, but + becomes \cdot

$$Z_{\theta}(s_t, a_t) = \mathbb{E}_{p_0}[\exp(\theta^{\intercal} f_{\xi \geq t}) \mid s_t, a_t] = \exp(\theta^{\intercal} f_{s_t}) \mathbb{E}_{(s_{t+1} \mid s_t, a_t) \sim p}[Z_{\theta}(s_{t+1})]$$

$$Z_{\theta}(s_t) = \mathbb{E}_{p_0}[\exp(\theta^{\intercal} f_{\xi \geq t}) \mid s_t] = \mathbb{E}_{(a_t \mid s_t) \sim \pi_0}[Z_{\theta}(s_t, a_t)]$$

• How to get a policy from Z_{θ} ?

$$\text{Marginalize: } \pi_{\theta}(a_t \mid s_t) = \frac{p_{\theta}(\xi \mid s_t, a_t)}{p_{\theta}(\xi \mid s_t)} = \pi_0(a_t \mid s_t) \frac{Z_{\theta}(s_t, a_t)}{Z_{\theta}(s_t)}$$

consistent π may not even exist

- This π_{θ} is not globally consistent $p_{\theta}(\xi) \neq p_{\pi_{\theta}}(\xi)$, $p_{\theta}(\xi)$ ignores the dynamics

MaxEnt IRL

• For each sample $\xi \sim \mathcal{D}$:

Limitations:

- Compute $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{\intercal} f_{\xi})]$ recursively backward •
- Compute $\mathbb{E}_{\bar{\xi} \sim p_{\pi_{\theta}}}[f_{\bar{\xi}}]$ recursively forward
- Take a gradient step to improve θ : $\nabla_{\theta} \log p_{\theta}(\xi) \approx f_{\xi} \mathbb{E}_{\bar{\xi} \sim p_{\pi_{\theta}}}[f_{\bar{\xi}}]$
- At the optimum: feature matching $\mathbb{E}_{\xi \sim \mathcal{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi_{\theta}}}[f_{\xi}]$
 - $\text{MaxEnt IRL approximates } \max_{\theta} \mathbb{H}[\pi_{\theta}] \quad \text{s.t. } \mathbb{E}_{\xi \sim \mathcal{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi_{\theta}}}[f_{\xi}]$

Requires dynamics p

• Assumes $p_{\theta} = p_{\pi_{\theta}}$

• Assumes $\mathcal{D} = p^*$