UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2022

Lecture 14: Bounded RL

s
| o/ .
= &u,,_."‘/‘ "}\
WiLL PREss &
| EVER
FOR)

Roy Fox -
Department of Computer Science %
Bren School of Information and Computer Sciences .
University of California, Irvine Rt D

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Logistics

* Assignment 4 to be published soon

- e Quiz 5 is due tomorrow

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

GAIL

Reward shaping
Bounded RL

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Informational quantities: refresher

entropy: Hip(a)] = — E,, [log p(a)] = —) p(a)log p(a)

» Conditional entropy: H[z|s] = = E___ [log n(a | s)]

e EXpected conditional entropy: H[xz] = —SNpﬂ[IH][nl s|] = — —(S,a),\,pﬂ[log n(als)]

ma|s)]

w'(als)

Expected relative entropy: D[z||7'] = E 4., [log

» Expected cross entropy (aka NLL): — -(S,a)Npﬂ[log 7'(als)]

» D[x||z'] = NLL — H[x]

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Modeling bounded teachers

_ An expert teacher maximizes the value J; = Z y'E, e[0T] = Eeo:[07f:]

[

>

With trajectory-summed features fgg = Z y' s,

[

« Assume teacher has unintentional / uninformed prior policy 7,

> Bounded rationality: cost to intentionally diverge D[z || 7] (with 7, uniform: H[z*])

= DIp*lpo(S)]

7*(a.|s,)]

p*(S)
g Total cost: Z _(Staat)Np* ll()g mo(a | s;)]
[

= Fevp llog @)

. Bounded optimality: max -Cpr*[HTfé] — D[p*||po]

7Z->I<

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Bounded optimality: naive solution

. Bounded optimality: nj{ax e[0Tfc] — DIp*||py]
>I<p>l<

> Nalive solution: allow any distribution p* over trajectories

>~ No need to be consistent with dynamics p(s’| s, a) = p* may be unachievable

Add the constraint Zp*(cf) =] with Lagrange multiplier A
¢

» Differentiate by p*(&) and = 0 to optimize

po()exp(6'f;)

OTF. — log p*(&) + 1 I+ A=0=p"0) =55 0r
fe —log p*(5) +log py(S) — 1 + — Pr) 2 Po©)exp (017

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

|IRL with bounded teacher

. Assume that demonstrations are distributed py(&) = Zi po(f)eXp(HT]%)
0

> With partition function Z, = ngo[eXp(Qng)]

e Find @ that minimizes NLL of demonstrations

Volog py(&) = Vo(0'f; — log Z) = fi= Vo7,

= fe= 7 Beup [expO2)f] = f: — Bz, [£

>~ To compute gradient, we need p,, but how to compute Z,?

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Computing Z,: backward recursion

o Partition function: Z; = —ngO[exp(é’T]%)]

« Compute Ze recursively backward: like a value function, but + becomes -

Zy(S;, a;) = "po[eXP(H ngzt) | 5., a,] = exp(0 Tfst) — (s, +1‘St,at)~p[z(9(st+1)]
ZH(SZ‘) — _po[eXp(eTfth) ‘ St] — _(at‘St)NﬂO[Ze(St’ at)]

« How to get a policy from Z,?

. . p@(é ‘ Sts Clt) 25, a,)
Marginalize: my(a,| s,) = = ry(a,| s, HZ@)

’ po(&ls))

consistent 7 may not even exist

/

» This 1, is not globally consistent py(&) # pﬂe(f), pPo(&) ignores the dynamics

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

MaxEnt IRL

e For each sample & ~ : Limitations:

» Compute Z, = k., [exp(0'f)] recursively backward « * Requires dynamics p
/ | Assumes p@ — pﬂ@
» Compute [z =| recursively forward
p prn’(g[fé:] y / e Assumes QZ — p>I<

- Take a gradient step to improve 0: Vylogpy(c) = f- — E EN%[Jél

. At the optimum: feature matching E._g[f:] = ‘5,\,]%[]%]

., MaxEnt IRL approximates max H[xz,| s.t. -5,\,@[]‘5] = k.., [fcf]
0 70

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

MaxEnt IRL

Reward shaping
Bounded RL

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

|IRL: downstream tasks

e One IRL motivation: learn reward function for downstream tasks

...such as RL

Inverse

demonstrations— B {11l
learning

reinforcement

policy

learning

 [L=RL oIRL (composition of RL on IRL)
» Some IRL algorithms already learn 7 as part of learning 6 for r : s — 0'f_

> Let's directly optimize IRL for the overall IL task = learn good &

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

IL as RL o IRL

. Entropy-regularized RL: max { ‘SNpﬂ[l”(S)] + H[]Z']} regularization over

nell reward function space

/

. MaxEnt IRL: max = F(9)] — max {Eqp [F()] + H[7] } } — w(r)

 For any m, our objective with respect to r is:
c R°

W(p* — p,) = max {(p* — D) — w(r)}

reR°®

&

> This form of function y : R° — R is called the convex conjugate of i

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Reward-function regularizers

p(p* — p,) = max {(p* —p,,r) — ()}

reR°®

e Without regularizer: w = 0 = solution only exists when p* = p_

» Learner achieves teacher's state distribution: perfect solution, but hard to find

0 ifr(s) =0'f,

. Hard linearity constraint: y/(r) =
co otherwise

» Max-entropy feature matching (MaxEnt IRL)

~ Great when the reward function really is linear in ,, otherwise no guarantees

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Generative Adversarial Networks (GANS)

» Train generative model py(s) to generate states / observations

> Can we focus the training on failure modes?

» Also train discriminator Dy(s) € [0,1] to score instances

> Kind of like a critic: are generated instances good?

Po(S)

. Dy(s) predicts the probability p(s generated by learner | s) = o) + p*(s)

_ Trained with cross-entropy loss: max { = S~p9[10g D¢(S)] + = SNP*[log(l — D¢(S))]}

¢

. The generator tries to fool the discriminator: min E SNpe[log D¢(S)]
(0

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Teacher-based reward-function regularizer

e Consider the regularizer

_—
~—

5.5
5.0 1
4.5 A
4.0 1
(.
3.5 4
<
O
3.0 1
2.5 1
2.0 A
1.5 A
6 1 2 3 4 5
r

woa(r) = E,_ur(s) — log(1 — exp(—r(s)))]

D(s)

e It's convex conjugate is:

Wea(P™ — p,) = max {(P* — P 1) — WGA(V)}

reR°®

>

—log D(s)

= max E,_.[r(s) — r(s) + log(1 = D(s))] = E,, [()]

reR°®

— MmMax
reR®

=sop 1102 D(s)] + E;_«[log(1 — D(s))]

» This is a GAN: generator p_ imitating teacher p*; discriminator D(s) = exp(—r(s))

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Generative Adversarial Imitation Learning (GAIL)

Algorithm GAIL

Input: demonstration dataset D ~ p*

Initialize policy g, discriminator D

repeat
& <« roll out my
Ascend L;(&) = Ege[log Dy (s)] + Es.p[log(l — Dy(s))]
Improve my with entropy-regularized PG, r(s) = —log D 4(s)

 We've already seen entropy-regularized PG algorithms: TRPO, PPO

» More later

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Recap

* To understand behavior: infer the intentions of observed agents

e |f teacher is optimal for a reward function
> The reward function should make an optimizer imitate the teacher
> State (or state—action) distribution of learner should match the teacher
* |n this view, Inverse Reinforcement Learning (IRL) iIs a game:
» Reward is optimized to show how much the teacher is better than the learner

» Learner optimizes for the reward

> Reward is like a discriminator (high = probably teacher); learner like a generator

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

MaxEnt IRL
GAIL

Bounded RL

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Relation between RL and IL
e What makes RL harder than IL?

» |L: teacher policy 7*(a | §) indicates a good action to take in s

» RL: r(s, a) does not indicate a globally good action; O*(s, a) does, but it's nonlocal

 But didn't we see an equivalence between RL and IL?

» NLL loss in BC; _(S,a)Np*[V@l()g 71'9(61 ‘ S)]

- s and a sampled from teacher distribution, this could make |IL harder than RL

» Policy Gradient: [RV log ny(a|s)]

- (Saa)Npe

- s and a sampled from learner distribution

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

IL as sparse-reward RL

» NLL BC: maximize E,) «[log my(a | s)] = — D[z*||zy] — H[7*]

N

. L . tant in 0
> Experience from teacher distribution p* ConsEm

- RL: experience from learner distribution p,
> Pseudo-return R = lg,ccess for successful trajectory
- RL: 7, = r(s,, a,) in every step

o Sparse reward = most rewards are 0 / constant = rare learning signal

» R = 1 on success = very sparse; but doesn't IL provide dense learning signal?

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

IL as dense-reward RL

 What if instead we minimize the other relative entropy?
teacher labeling of learner states/actions

])[7@”77*] = —

r'd
_(S,Cl)rvpe[log n*(als)] — H[JZ'H]

as in DAgger

~ This is exactly the RL objective, with (s, a) = log 7*(a | s), entropy regularizer

» Now r(s, a) does give global information on optimal action

> |n fact, with deterministic teacher, r(s,a) = — oo for any suboptimal action

 The same return can be viewed as sum of sparse rewards, or dense

> How should we design r for easy RL?

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Reward shaping

o |deal reward: r(s,a) = — oo for any suboptimal action = as hard to provide as 7*

> We need supervision signal that's sufficiently easy to design + program
o Sparse reward functions may be easier to design than dense ones
> E.g., may be easy to identify good goal states, safety violations, etc.

 Reward shaping: art of adjusting the reward function for easier RL; some tips:
> Reward “bottleneck states”. subgoals that are likely to lead to bigger goals

> Break down long sequences of coordinated actions = better exploration

- E.g. reward beacons on long narrow paths, for exploration to stumble upon

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

MaxEnt IRL
GAIL

Linearly solvable MDPs

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Bounded optimality

» Bounded optimizer = trades off value and divergence from prior my(a | 5)

n(als)

Max £ o), 105, @] = 1D1zlizol = max)., | fris, a) =log 220

e = % IS the tradeoff coefficient between value and relative entropy

> Similar to the inverse-temperature in thermodynamics

> As [— 0, the agent will fall back to the prior & —
>~ As fj — o0, the agent will be a perfect value optimizer &1 — 7*

» We'll see reasons to have finite

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Simplifying assumption

 MaxEnt IRL was approximate because It violated dynamical constraints
» p(&) x m(&)exp(R(E)), regardless of trajectory feasibility

* For simplicity, let's do the same for RL

> Suppose the environment is fully controllable s, = a,

> Bellman equation:

7(s’|s)

mo(s'| 5)

V;(S) max k1., r(s)—%log +}’V,ZI< (S’)]

U

L 7o(s [)exp(BrViEGs) | |
r(s)—; m;n) | 7S E— +ElogZﬁ(s)

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Linearly-Solvable MDPs (LMDPs)

7o(5" |)exp(BrV(s)
Zj(s)

Optimal policy for V(s) = r(s)—% min D [71'] +% log Zé(s):

~ Soft-greedy policy: 7y(s'| s) o mo(s'| s)exp(ByVi(s"))

Value recursion: Vﬁ(s) = r(s)+% log Zb(s) — r(s)+% log = (s S)Nﬂo[ﬁXP(ﬁV Vﬂ(S)]

Z,(s) = exp(BV(s)) = exp(Br(s)Zj(s) = exp(Br(s)E 51y [Z1(s")]

N/

In the undiscounted case y = 1, with D = diag(exp fr): z = DPz

We can solve for z, and therefore x, by finding a right-eigenvector of DP,,

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Z-learning

Z(s) = exp(pr(s)) "(S'\S)NﬂO[Zy(S)]

 We can do the same model-free:
~ Given experience (s, r, s') sampled by the prior policy
> Update Z(s) — exp(fr)Z7(s’)

» Full-controllability condition (s,, ; = a,) can be relaxed to allow 7y(s’|s) = 0
> But we still allow any transition distribution 7z(s’| s) over the remaining support

Later: the general case, p(s’|s) = Z n(al|s)p(s’|s, a)

>

a

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Duality between value and log prob

* \We've seen many cases where log-probs play the role of reward / value

> Or values the role of logits (unnormalized log-probs)

 Examples:

1

» In LQG, logp(x|X) = —ExTZx + const; costs / values are quadratic

., In value-based algorithms, good exploration policy: z(a|s) = softmax SQ(s, a)
a

> |Imitation Learning can be viewed as RL with r(s, a) = log p*(a| s)

> In IRL, a reward function can be viewed as a discriminator D(s) = exp(—r(s))

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Full-controllability duality

. Bounded control in LMDP: Z(s) = exp(Sr(s))E S)N,TO[ZV(S’)]

» Backward filtering in a partially observable system with dynamics 7y(s’| s)

p(s,| Ozt) X p(Sz)p(OZt | 5,)

p(ozt | St) — p(Ot | St) _(St+1|st)~ﬂ0[p(02t+1 | St+1)] —
» Equivalent if Z(s) = p(0s,|s,) and exp(fr(s)) = p(o]|s) \. \.

> Intuition: find states that give good reward < high likelihood of observations

 Exact equivalence only in the fully-controllable case

» Partially controllable case takes more nuanced analysis

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

