CS 277: Control and Reinforcement Learning Winter 2022 Lecture 14: Bounded RL

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

assignments

• Quiz 5 is due tomorrow

Assignment 4 to be published soon

Today's lecture

MaxEnt IRL

Reward shaping

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

GAIL

Bounded RL

Informational quantities: refresher

Entropy:
$$\mathbb{H}[p(a)] = -\mathbb{E}_{a \sim p}[\log p(a)] = -\sum_{a} p(a)\log p(a)$$

- Conditional entropy: $\mathbb{H}[\pi | s] = -\mathbb{E}_{a \sim \pi}[\log \pi(a | s)]$

Expected relative entropy: $\mathbb{D}[\pi || \pi']$

- Expected cross entropy (aka NLL): $-\mathbb{E}_{(s,a)\sim p_{\pi}}[\log \pi'(a \mid s)]$
 - $\mathbb{D}[\pi || \pi'] = \mathsf{NLL} \mathbb{H}[\pi]$

• Expected conditional entropy: $\mathbb{H}[\pi] = \mathbb{E}_{s \sim p_{\pi}}[\mathbb{H}[\pi | s]] = -\mathbb{E}_{(s,a) \sim p_{\pi}}[\log \pi(a | s)]$

$$= \mathbb{E}_{(s,a) \sim p_{\pi}} \left[\log \frac{\pi(a \mid s)}{\pi'(a \mid s)} \right]$$

Modeling bounded teachers

An expert teacher maximizes the value

With trajectory-summed features $f_{\xi} =$

- Assume teacher has unintentional / uninformed prior policy π_0

Total cost:
$$\sum_{t} \mathbb{E}_{(s_t, a_t) \sim p^*} \left[\log \frac{\pi^*(a_t | s_t)}{\pi_0(a_t | s_t)} \right] = \mathbb{E}_{\xi \sim p^*} \left[\log \frac{p^*(\xi)}{p_0(\xi)} \right] = \mathbb{D}[p^*(\xi) || p_0(\xi)]$$

• Bounded optimality: $\max_{\pi^*} \mathbb{E}_{\xi \sim p^*}[\theta^{\mathsf{T}} f_{\xi}]$

$$\text{Lie } J_{\theta}^{\pi^*} = \sum_{t} \gamma^t \mathbb{E}_{s_t \sim p^*} [\theta^{\mathsf{T}} f_{s_t}] = \mathbb{E}_{\xi \sim p^*} [\theta^{\mathsf{T}} f_{\xi}]$$
$$= \sum_{t} \gamma^t f_{s_t}$$

• Bounded rationality: cost to intentionally diverge $\mathbb{D}[\pi^* \| \pi_0]$ (with π_0 uniform: $\mathbb{H}[\pi^*]$)

$$] - \tau \mathbb{D}[p^* \| p_0]$$

Bounded optimality: naïve solution

• Bounded optimality: $\max_{\xi \sim p^*} [\theta^{\mathsf{T}} f_{\xi}] - \mathbb{D}[p^* || p_0]$

- Naïve solution: allow any distribution p^* over trajectories

Add the constraint
$$\sum_{\xi} p^*(\xi) = 1$$
 w

• Differentiate by $p^*(\xi)$ and = 0 to optimize

 $\theta^{T} f_{\xi} - \log p^{*}(\xi) + \log p_{0}(\xi) - 1$

• No need to be consistent with dynamics $p(s' | s, a) \Rightarrow p^*$ may be unachievable

vith Lagrange multiplier λ

$$+ \lambda = 0 \Longrightarrow p^*(\xi) = \frac{p_0(\xi) \exp(\theta^{\mathsf{T}} f_{\xi})}{\sum_{\bar{\xi}} p_0(\bar{\xi}) \exp(\theta^{\mathsf{T}} f_{\bar{\xi}})}$$

IRL with bounded teacher

- Assume that demonstrations are displayed as a second se
 - With partition function $Z_{\theta} = \mathbb{E}_{\overline{\xi} \sim p_0}[\exp(\theta^{T} f_{\overline{\xi}})]$
- Find θ that minimizes NLL of demonstrations

$$\nabla_{\theta} \log p_{\theta}(\xi) = \nabla_{\theta}(\theta^{\mathsf{T}} f_{\xi} - \log Z_{\theta}) = f_{\xi} - \frac{1}{Z_{\theta}} \nabla_{\theta} Z_{\theta}$$
$$= f_{\xi} - \frac{1}{Z_{\theta}} \mathbb{E}_{\bar{\xi} \sim p_{0}}[\exp(\theta^{\mathsf{T}} f_{\bar{\xi}}) f_{\bar{\xi}}] = f_{\xi} - \mathbb{E}_{\bar{\xi} \sim p_{\theta}}[f_{\bar{\xi}}]$$

• To compute gradient, we need p_{θ} , but how to compute Z_{θ} ?

stributed
$$p_{\theta}(\xi) = \frac{1}{Z_{\theta}} p_0(\xi) \exp(\theta^{T} f_{\xi})$$

Computing Z_{θ} : backward recursion

- Partition function: $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{\mathsf{T}} f_{\xi})]$
- Compute Z_{θ} recursively backward: like a value function, but + becomes \cdot
 - $Z_{\theta}(s_t, a_t) = \mathbb{E}_{p_0}[\exp(\theta f_{\xi > t}) | s_t,$ $Z_{\theta}(s_t) = \mathbb{E}_{p_0}[\exp(\theta f_{\xi > t}) | s_t]$
- How to get a policy from Z_{θ} ?

Marginalize:
$$\pi_{\theta}(a_t | s_t) = \frac{p_{\theta}(\xi | s_t, a_t)}{p_{\theta}(\xi | s_t)} = \pi_0(a_t | s_t) \frac{Z_{\theta}(s_t, a_t)}{Z_{\theta}(s_t)}$$

• This π_{θ} is not globally consistent $p_{\theta}(q)$

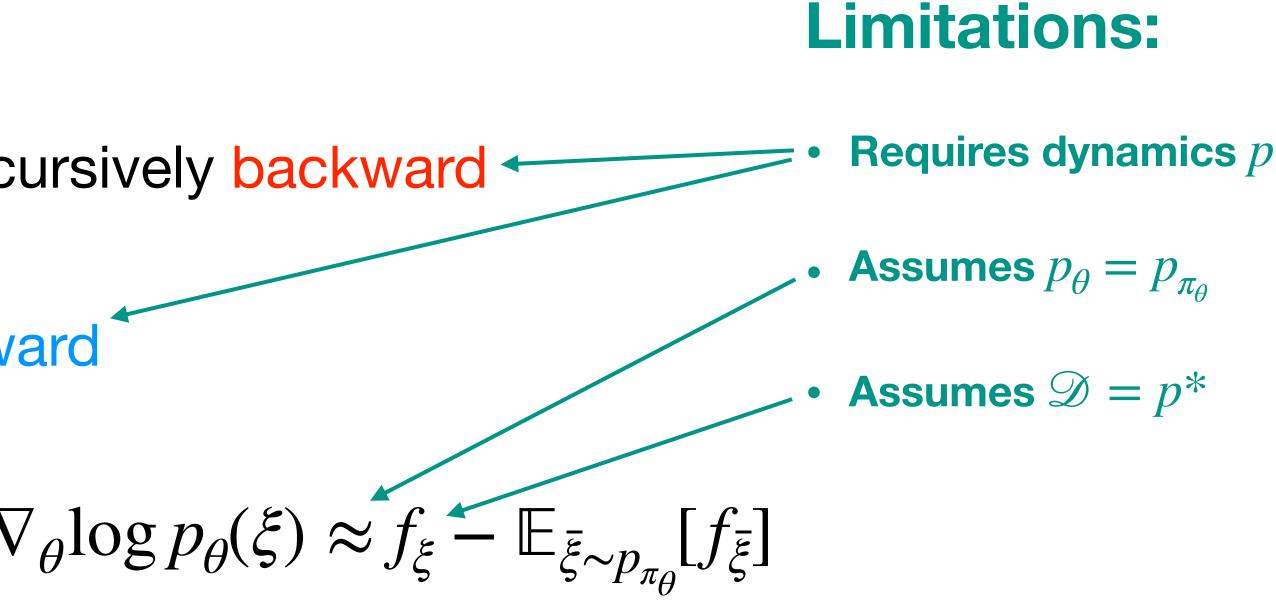
$$a_t] = \exp(\theta^{\mathsf{T}} f_{s_t}) \mathbb{E}_{(s_{t+1}|s_t,a_t) \sim p}[Z_{\theta}(s_{t+1})]$$
$$= \mathbb{E}_{(a_t|s_t) \sim \pi_0}[Z_{\theta}(s_t,a_t)]$$

consistent π may not even exist

$$\xi \neq p_{\pi_{\theta}}(\xi), p_{\theta}(\xi)$$
 ignores the dynamics

MaxEnt IRL

- For each sample $\xi \sim \mathcal{D}$:
 - Compute $Z_{\theta} = \mathbb{E}_{\xi \sim p_0}[\exp(\theta^{\mathsf{T}} f_{\xi})]$ recursively backward •
 - Compute $\mathbb{E}_{\bar{\xi} \sim p_{\pi o}}[f_{\bar{\xi}}]$ recursively forward
 - ► Take a gradient step to improve θ : $\nabla_{\theta} \log p_{\theta}(\xi) \approx f_{\xi} \mathbb{E}_{\bar{\xi} \sim p_{\pi_{\theta}}}[f_{\bar{\xi}}]$
- At the optimum: feature matching $\mathbb{E}_{\xi \sim \mathscr{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi o}}[f_{\xi}]$
 - ▶ MaxEnt IRL approximates $\max_{z} \mathbb{H}[\pi_{\theta}]$ s.t. $\mathbb{E}_{\xi \sim \mathscr{D}}[f_{\xi}] = \mathbb{E}_{\xi \sim p_{\pi_{\theta}}}[f_{\xi}]$ θ



Today's lecture

MaxEnt IRL

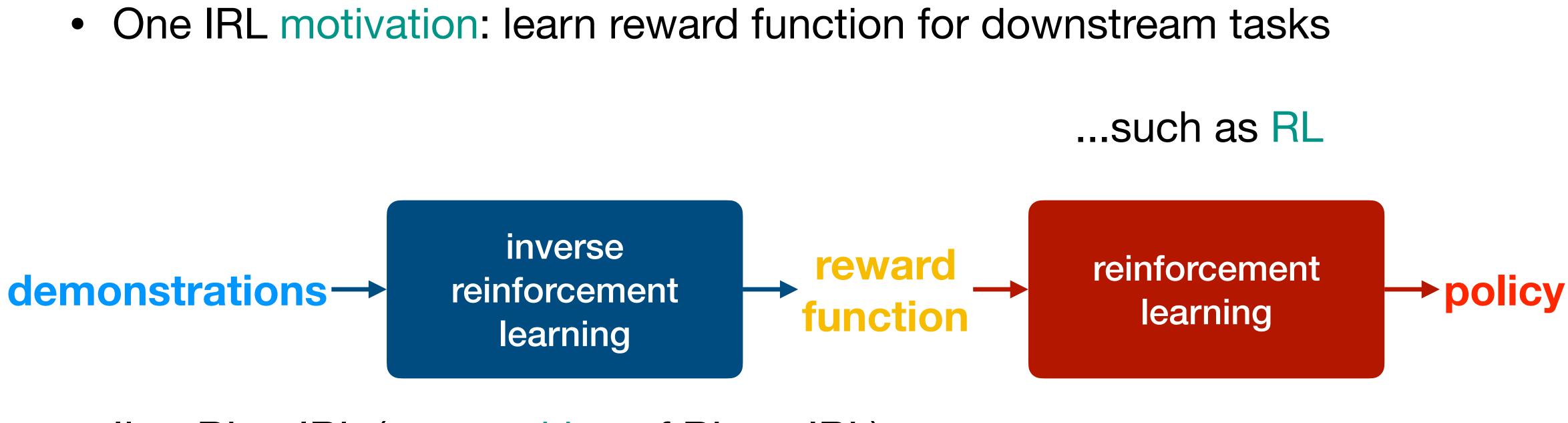
Reward shaping

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

GAIL

Bounded RL

IRL: downstream tasks



- $IL = RL \circ IRL$ (composition of RL on IRL)
- - Let's directly optimize IRL for the overall IL task = learn good π

• Some IRL algorithms already learn π as part of learning θ for $r: s \mapsto \theta f_s$

IL as RL o IRL

- Entropy-regularized RL: $\max_{\pi \in \Pi} \{ \mathbb{E}_{s \sim \mu}$
- MaxEnt IRL: $\max_{r \in \mathbb{R}^{\mathcal{S}}} \{ \mathbb{E}_{s \sim p^*}[r(s)] m_{\pi} \}_{\pi}$
- For any π , our object

$$\hat{\psi}(p^* - p_{\pi}) = \max_{r \in \mathbb{R}^{\mathscr{S}}} \left\{ \langle \widetilde{p^* - p_{\pi}}, r \rangle - \psi(r) \right\}$$

• This form of function $\hat{\psi} : \mathbb{R}^{\mathscr{S}} \to \mathbb{R}$ is called the convex conjugate of ψ

$$\max_{\pi \in \Pi} \{ \mathbb{E}_{s \sim p_{\pi}}[r(s)] + \mathbb{H}[\pi] \}$$
regularization over
reward function s
$$\int_{\pi \in \Pi} \{ \mathbb{E}_{s \sim p_{\pi}}[r(s)] + \mathbb{H}[\pi] \} \} - \psi(r)$$

Reward-function regularizers

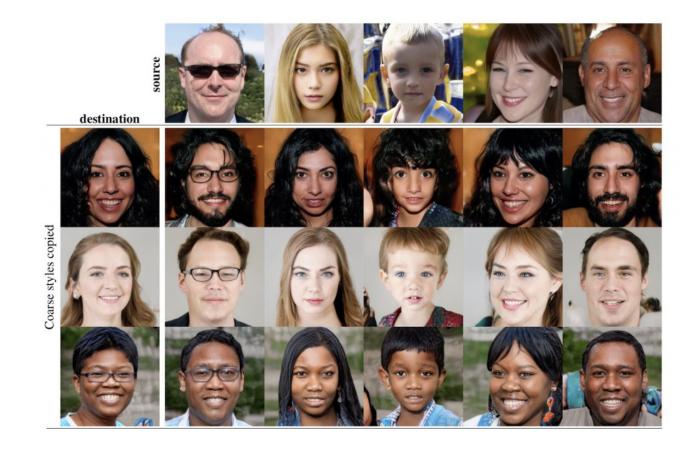
$$\hat{\psi}(p^* - p_{\pi}) = \max_{r \in \mathbb{R}^{\mathcal{S}}} \left\{ \langle p^* - p_{\pi}, r \rangle - \psi(r) \right\}$$

- Without regularizer: $\psi = 0 \Rightarrow$ solution only exists when $p^* = p_{\pi}$
 - Learner achieves teacher's state distribution: perfect solution, but hard to find
- Hard linearity constraint: $\psi(r) = \begin{cases} 0 & \text{if } r(s) = \theta^{\mathsf{T}} f_s \\ \infty & \text{otherwise} \end{cases}$
 - Max-entropy feature matching (MaxEnt IRL)

• Great when the reward function really is linear in f_s , otherwise no guarantees

Generative Adversarial Networks (GANs)

- Train generative model $p_{\theta}(s)$ to generate states / observations
 - Can we focus the training on failure modes?
- Also train discriminator $D_{\phi}(s) \in [0,1]$ to score instances
 - Kind of like a critic: are generated instances good?
- $D_{\phi}(s)$ predicts the probability p(s gen)
 - Trained with cross-entropy loss: max
- The generator tries to fool the discrim



erated by learner
$$|s) = \frac{p_{\theta}(s)}{p_{\theta}(s) + p^*(s)}$$

$$\left\{\mathbb{E}_{s\sim p_{\theta}}[\log D_{\phi}(s)] + \mathbb{E}_{s\sim p^{*}}[\log(1 - D_{\phi}(s))]\right\}$$

$$\underset{\theta}{\text{minator: min}} \mathbb{E}_{s \sim p_{\theta}}[\log D_{\phi}(s)]$$

Teacher-based reward-function regularizer

• Consider the regularizer

$$\psi_{\mathrm{GA}}(r) = \mathbb{E}_{s \sim p^*}[r(s)]$$

• It's convex conjugate is:

$$\hat{\psi}_{\text{GA}}(p^* - p_{\pi}) = \max_{r \in \mathbb{R}^{\mathcal{S}}} \left\{ \langle p^* - p_{\pi}, r \rangle - \psi_{\text{GA}}(r) \right\} \xrightarrow{-\log D(s)} \\ = \max_{r \in \mathbb{R}^{\mathcal{S}}} \mathbb{E}_{s \sim p^*}[r(s) - r(s) + \log(1 - D(s))] - \mathbb{E}_{s \sim p_{\pi}}[\widetilde{r(s)}] \\ = \max_{r \in \mathbb{R}^{\mathcal{S}}} \mathbb{E}_{s \sim p}\left[\log D(s)\right] + \mathbb{E}_{s \sim p^*}[\log(1 - D(s))]$$

$$= \max_{r \in \mathbb{R}^{\mathcal{S}}} \left\{ \langle p^* - p_{\pi}, r \rangle - \psi_{GA}(r) \right\}$$

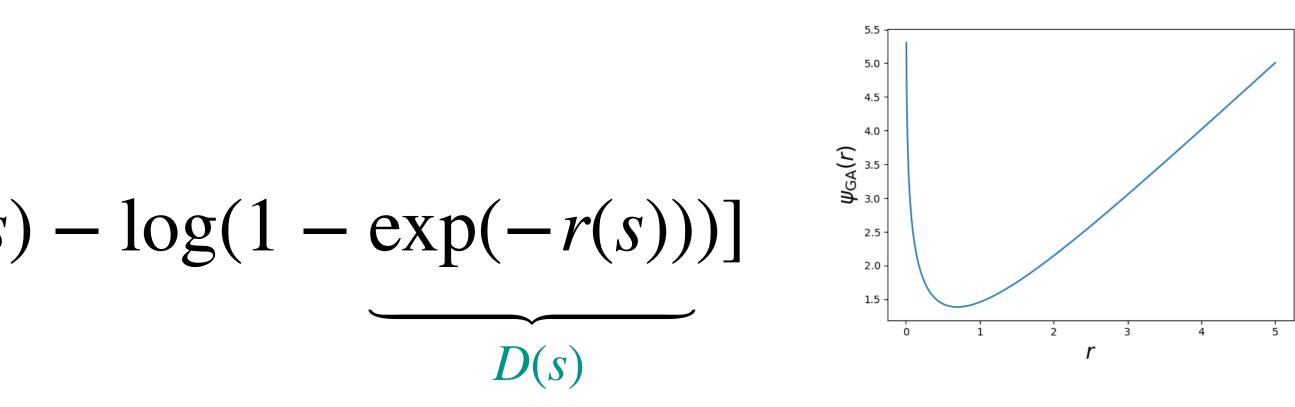
$$= \max_{r \in \mathbb{R}^{\mathcal{S}}} \mathbb{E}_{s \sim p^*} [r(s) - r(s) + \log(1 - D(s))] - \mathbb{E}_{s \sim p_{\pi}} [\widetilde{r(s)}]$$

$$= \max_{r \in \mathbb{R}^{\mathcal{S}}} \mathbb{E}_{s \sim p} [\log D(s)] + \mathbb{E}_{s \sim p^*} [\log(1 - D(s))]$$

$$= \max_{r \in \mathbb{R}^{\delta}} \left\{ \langle p^* - p_{\pi}, r \rangle - \psi_{GA}(r) \right\}$$

$$= \max_{r \in \mathbb{R}^{\delta}} \mathbb{E}_{s \sim p^*}[r(s) - r(s) + \log(1 - D(s))] - \mathbb{E}_{s \sim p_{\pi}}[\widetilde{r(s)}]$$

$$= \max_{r \in \mathbb{R}^{\delta}} \mathbb{E}_{s \sim p_{\pi}}[\log D(s)] + \mathbb{E}_{s \sim p^*}[\log(1 - D(s))]$$



• This is a GAN: generator p_{π} imitating teacher p^* ; discriminator $D(s) = \exp(-r(s))$

Generative Adversarial Imitation Learning (GAIL)

Algorithm GAIL

Input: demonstration dataset $\mathcal{D} \sim p^*$ Initialize policy π_{θ} , discriminator D_{ϕ} repeat

 $\xi \leftarrow \text{roll out } \pi_{\theta}$

- We've already seen entropy-regularized PG algorithms: TRPO, PPO
 - More later

Ascend $\mathcal{L}_{\phi}(\xi) = \mathbb{E}_{s \sim \xi}[\log D_{\phi}(s)] + \mathbb{E}_{s \sim \mathcal{D}}[\log(1 - D_{\phi}(s))]$ Improve π_{θ} with entropy-regularized PG, $r(s) = -\log D_{\phi}(s)$

Recap

- To understand behavior: infer the intentions of observed agents
- If teacher is optimal for a reward function
 - The reward function should make an optimizer imitate the teacher
 - State (or state-action) distribution of learner should match the teacher
- In this view, Inverse Reinforcement Learning (IRL) is a game:

 - Learner optimizes for the reward

Reward is optimized to show how much the teacher is better than the learner

Reward is like a discriminator (high = probably teacher); learner like a generator

Today's lecture

MaxEnt IRL

Reward shaping

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

GAIL

Bounded RL

Relation between RL and IL

- What makes RL harder than IL?
 - IL: teacher policy $\pi^*(a \mid s)$ indicates a good action to take in s
 - RL: r(s, a) does not indicate a globally good action; $Q^*(s, a)$ does, but it's nonlocal
- But didn't we see an equivalence between RL and IL?
 - NLL loss in BC: $\mathbb{E}_{(s,a)\sim p^*}[\nabla_{\theta}\log \pi_{\theta}(a \mid s)]$
 - s and a sampled from teacher distribution, this could make IL harder than RL
 - Policy Gradient: $\mathbb{E}_{(s,a) \sim p_{\theta}}[R \nabla_{\theta} \log \pi_{\theta}(a \mid s)]$
 - s and a sampled from learner distribution

IL as sparse-reward RL

- NLL BC: maximize $\mathbb{E}_{(s,a)\sim p^*}[\log \pi_{\theta}(a \mid s)] = -\mathbb{D}[\pi^* \mid \pi_{\theta}] \mathbb{H}[\pi^*]$ constant in θ
 - Experience from teacher distribution p^*
 - RL: experience from learner distribution p_{θ}
 - Pseudo-return $R = 1_{\text{success}}$ for successful trajectory
 - RL: $r_t = r(s_t, a_t)$ in every step
- Sparse reward = most rewards are 0 / constant \Rightarrow rare learning signal

• R = 1 on success \Rightarrow very sparse; but doesn't IL provide dense learning signal?

IL as dense-reward RL

What if instead we minimize the other relative entropy?

$$\mathbb{D}[\pi_{\theta} \| \pi^*] = -\mathbb{E}_{(s,a)}$$

- Now r(s, a) does give global information on optimal action
- The same return can be viewed as sum of sparse rewards, or dense
 - How should we design r for easy RL?

$\underset{\iota) \sim p_{\theta}}{\text{teacher labeling of learner states/actions} as in DAgger}$

• This is exactly the RL objective, with $r(s, a) = \log \pi^*(a \mid s)$, entropy regularizer

• In fact, with deterministic teacher, $r(s, a) = -\infty$ for any suboptimal action

Reward shaping

- Ideal reward: $r(s, a) = -\infty$ for any suboptimal action \Rightarrow as hard to provide as π^*
 - We need supervision signal that's sufficiently easy to design + program
- Sparse reward functions may be easier to design than dense ones
 - E.g., may be easy to identify good goal states, safety violations, etc.
- Reward shaping: art of adjusting the reward function for easier RL; some tips:
 - Reward "bottleneck states": subgoals that are likely to lead to bigger goals
 - Break down long sequences of coordinated actions \Rightarrow better exploration
 - E.g. reward beacons on long narrow paths, for exploration to stumble upon

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

MaxEnt IRL

Linearly solvable MDPs

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

GAIL

Bounded RL

Bounded optimality

• Bounded optimizer = trades off value and divergence from prior $\pi_0(a \mid s)$

$$\max_{\pi} \mathbb{E}_{(s,a) \sim p_{\pi}}[r(s,a)] - \tau \mathbb{D}[\pi \| \pi_0] = \max_{\pi} \mathbb{E}_{(s,a) \sim p_{\pi}} \left[\beta r(s,a) - \log \frac{\pi(a \mid s)}{\pi_0(a \mid s)} \right]$$

- $\beta = \frac{1}{2}$ is the tradeoff coefficient between value and relative entropy
 - Similar to the inverse-temperature in thermodynamics
 - As $\beta \to 0$, the agent will fall back to the prior $\pi \to \pi_0$
 - As $\beta \to \infty$, the agent will be a perfect value optimizer $\pi \to \pi^*$
- We'll see reasons to have finite β

Simplifying assumption

- MaxEnt IRL was approximate because it violated dynamical constraints
 - $p_{\pi}(\xi) \propto \pi_0(\xi) \exp(R(\xi))$, regardless of trajectory feasibility
- For simplicity, let's do the same for RL
 - Suppose the environment is fully controllable $s_{t+1} = a_t$
 - Bellman equation:

$$V_{\beta}^{*}(s) = \max_{\pi} \mathbb{E}_{(s'|s) \sim \pi} \left[r(s) = r(s) - \frac{1}{\beta} \min_{\pi} \mathbb{D} \left[\pi \right] \right]$$

$$\frac{1}{\beta} \log \frac{\pi(s'|s)}{\pi_0(s'|s)} + \gamma V_\beta^*(s') \right]$$
$$\left\| \frac{\pi_0(s'|s) \exp(\beta \gamma V_\beta^*(s'))}{Z_\beta'(s)} \right\| + \frac{1}{\beta} \log Z_\beta'(s)$$

Linearly-Solvable MDPs (LMDPs)

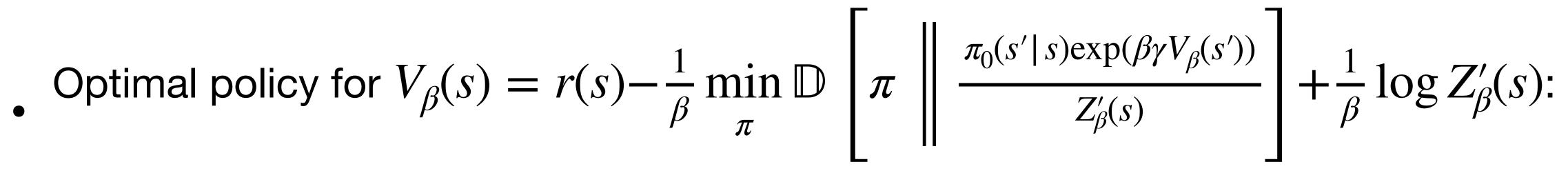
• Soft-greedy policy: $\pi_{\beta}(s' \mid s) \propto \pi_0(s' \mid s) \exp(\beta \gamma V_{\beta}(s'))$

• Value recursion: $V_{\beta}(s) = r(s) + \frac{1}{\beta} \log s$

$$Z_{\beta}(s) = \exp(\beta V_{\beta}(s)) = \exp(\beta r(s))Z'_{\beta}(s) = \exp(\beta r(s))\mathbb{E}_{(s'|s)\sim\pi_0}[Z^{\gamma}_{\beta}(s')]$$

e undiscounted case $\gamma = 1$, with $D = \operatorname{diag}(\exp\beta r): z = DP_0 z$

- In th
- We can solve for z, and therefore π , by finding a right-eigenvector of DP_0



$$Z'_{\beta}(s) = r(s) + \frac{1}{\beta} \log \mathbb{E}_{(s'|s) \sim \pi_0} [\exp(\beta \gamma V_{\beta}(s'))]$$

Z-learning

 $Z(s) = \exp(\beta r)$

- We can do the same model-free:
 - Given experience (s, r, s') sampled by the prior policy π_0
 - Update $Z(s) \rightarrow \exp(\beta r) Z^{\gamma}(s')$

Later: the general case, p(s'|s) =

$$\Upsilon(s))\mathbb{E}_{(s'|s)\sim\pi_0}[Z^{\gamma}(s')]$$

• Full-controllability condition ($s_{t+1} = a_t$) can be relaxed to allow $\pi_0(s' \mid s) = 0$

• But we still allow any transition distribution $\pi(s' \mid s)$ over the remaining support

$$\sum \pi(a \,|\, s) p(s' \,|\, s, a)$$

 \mathcal{A}

Duality between value and log prob

- We've seen many cases where log-probs play the role of reward / value
 - Or values the role of logits (unnormalized log-probs)
- Examples:
 - In LQG, $\log p(x | \hat{x}) = -\frac{1}{2}x^{T}\Sigma x + \text{const}$; costs / values are quadratic
 - , In value-based algorithms, good exploration policy: $\pi(a \mid s) = \operatorname{softmax} \beta Q(s, a)$
 - Imitation Learning can be viewed as RL with $r(s, a) = \log p^*(a | s)$
 - ► In IRL, a reward function can be viewed as a discriminator $D(s) = \exp(-r(s))$

Full-controllability duality

- Bounded control in LMDP: Z(s) =
- Backward filtering in a partially observable system with dynamics $\pi_0(s' \mid s)$

$$p(o_{\geq t} | s_t) = p(o_t | s_t) \mathbb{E}_{(s_{t+1} | s_t) \sim \pi_0} [p(o_{\geq t+1} | s_{t+1})]$$

$$p(s_t | o_{\geq t}) \propto p(s_t) p(o_{\geq t} | s_t)$$

$$p(s_t | o_{\geq t}) \propto p(s_t) p(o_{\geq t} | s_t)$$

$$p(s_t | o_{\geq t}) \propto p(s_t) p(o_{\geq t} | s_t)$$

$$p(s_t | o_{\geq t}) \propto p(s_t) p(o_{\geq t} | s_t)$$

$$p(s_t | o_{\geq t}) \propto p(s_t) p(o_{\geq t} | s_t)$$

$$p(s_t | o_{\geq t} | s_t) = p(o | s)$$

- Ea
 - Intuition: find states that give good reward \Leftrightarrow high likelihood of observations
- Exact equivalence only in the fully-controllable case
 - Partially controllable case takes more nuanced analysis

$$\exp(\beta r(s)) \mathbb{E}_{(s'|s) \sim \pi_0}[Z^{\gamma}(s')]$$

