
Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

CS 277: Control and
Reinforcement Learning

Winter 2022
Lecture 14: Bounded RL

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences

University of California, Irvine

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Logistics

quizzes • Quiz 5 is due tomorrow

assignments • Assignment 4 to be published soon

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

GAIL

Reward shaping

Bounded RL

MaxEnt IRL

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Informational quantities: refresher

• Entropy:

• Conditional entropy:

• Expected conditional entropy:

• Expected relative entropy:

• Expected cross entropy (aka NLL):

‣

ℍ[p(a)] = − 𝔼a∼p[log p(a)] = − ∑
a

p(a)log p(a)

ℍ[π |s] = − 𝔼a∼π[log π(a |s)]

ℍ[π] = 𝔼s∼pπ
[ℍ[π |s]] = − 𝔼(s,a)∼pπ

[log π(a |s)]

𝔻[π∥π′] = 𝔼(s,a)∼pπ [log
π(a |s)
π′ (a |s)]

−𝔼(s,a)∼pπ
[log π′ (a |s)]

𝔻[π∥π′] = NLL − ℍ[π]

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Modeling bounded teachers

• An expert teacher maximizes the value

‣ With trajectory-summed features

• Assume teacher has unintentional / uninformed prior policy

‣ Bounded rationality: cost to intentionally diverge (with uniform:)

‣ Total cost:

• Bounded optimality:

Jπ*
θ = ∑

t

γt𝔼st∼p*[θ⊺fst
] = 𝔼ξ∼p*[θ⊺fξ]

fξ = ∑
t

γt fst

π0

𝔻[π*∥π0] π0 ℍ[π*]

∑
t

𝔼(st,at)∼p* [log
π*(at |st)
π0(at |st)] = 𝔼ξ∼p* [log p*(ξ)

p0(ξ)] = 𝔻[p*(ξ)∥p0(ξ)]

max
π*

𝔼ξ∼p*[θ⊺fξ] − τ𝔻[p*∥p0]

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Bounded optimality: naïve solution

• Bounded optimality:

‣ Naïve solution: allow any distribution over trajectories

‣ No need to be consistent with dynamics ⇒ may be unachievable

• Add the constraint with Lagrange multiplier

• Differentiate by and to optimize

max
π*

𝔼ξ∼p*[θ⊺fξ] − 𝔻[p*∥p0]

p*

p(s′ |s, a) p*

∑
ξ

p*(ξ) = 1 λ

p*(ξ) = 0

θ⊺fξ − log p*(ξ) + log p0(ξ) − 1 + λ = 0 ⟹ p*(ξ) =
p0(ξ)exp(θ⊺fξ)

∑ξ̄ p0(ξ̄)exp(θ⊺fξ̄)

p*

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

IRL with bounded teacher

• Assume that demonstrations are distributed

‣ With partition function

• Find that minimizes NLL of demonstrations

‣ To compute gradient, we need , but how to compute ?

pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

Zθ = 𝔼ξ̄∼p0
[exp(θ⊺fξ̄)]

θ

∇θlog pθ(ξ) = ∇θ(θ⊺fξ − log Zθ) = fξ−
1
Zθ

∇θZθ

= fξ−
1
Zθ

𝔼ξ̄∼p0
[exp(θ⊺fξ̄)fξ̄] = fξ − 𝔼ξ̄∼pθ

[fξ̄]

pθ Zθ

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Computing : backward recursionZθ

• Partition function:

• Compute recursively backward: like a value function, but + becomes ·

• How to get a policy from ?

‣ Marginalize:

‣ This is not globally consistent , ignores the dynamics

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

Zθ

Zθ(st, at) = 𝔼p0
[exp(θ⊺fξ≥t) |st, at] = exp(θ⊺fst

)𝔼(st+1|st,at)∼p[Zθ(st+1)]
Zθ(st) = 𝔼p0

[exp(θ⊺fξ≥t) |st] = 𝔼(at|st)∼π0
[Zθ(st, at)]

Zθ

πθ(at |st) =
pθ(ξ |st, at)

pθ(ξ |st)
= π0(at |st)

Zθ(st, at)
Zθ(st)

πθ pθ(ξ) ≠ pπθ
(ξ) pθ(ξ)

consistent may not even existπ

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

MaxEnt IRL

• For each sample :

‣ Compute recursively backward

‣ Compute recursively forward

‣ Take a gradient step to improve :

• At the optimum: feature matching

‣ MaxEnt IRL approximates s.t.

ξ ∼ 𝒟

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

𝔼ξ̄∼pπθ
[fξ̄]

θ ∇θlog pθ(ξ) ≈ fξ − 𝔼ξ̄∼pπθ
[fξ̄]

𝔼ξ∼𝒟[fξ] = 𝔼ξ∼pπθ
[fξ]

max
θ

ℍ[πθ] 𝔼ξ∼𝒟[fξ] = 𝔼ξ∼pπθ
[fξ]

Limitations:

• Requires dynamics

• Assumes

• Assumes

p

pθ = pπθ

𝒟 = p*

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

GAIL

Reward shaping

Bounded RL

MaxEnt IRL

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

IRL: downstream tasks

• One IRL motivation: learn reward function for downstream tasks

 ...such as RL

• IL = RL ○ IRL (composition of RL on IRL)

• Some IRL algorithms already learn as part of learning for

‣ Let's directly optimize IRL for the overall IL task = learn good

π θ r : s ↦ θ⊺fs

π

inverse
reinforcement

learning

reinforcement
learningdemonstrations reward

function policy

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

IL as RL ○ IRL

• Entropy-regularized RL:

• MaxEnt IRL:

• For any , our objective with respect to is:

‣ This form of function is called the convex conjugate of

max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}

max
r∈ℝ𝒮 {𝔼s∼p*[r(s)] − max

π∈Π
{𝔼s∼pπ

[r(s)] + ℍ[π]}} − ψ(r)

π r

ψ̂(p* − pπ) = max
r∈ℝ𝒮 {⟨p* − pπ, r⟩ − ψ(r)}

ψ̂ : ℝ𝒮 → ℝ ψ

regularization over
reward function space

∈ ℝ𝒮

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Reward-function regularizers

• Without regularizer: ⇒ solution only exists when

‣ Learner achieves teacher's state distribution: perfect solution, but hard to find

• Hard linearity constraint:

‣ Max-entropy feature matching (MaxEnt IRL)

‣ Great when the reward function really is linear in , otherwise no guarantees

ψ̂(p* − pπ) = max
r∈ℝ𝒮 {⟨p* − pπ, r⟩ − ψ(r)}

ψ = 0 p* = pπ

ψ(r) = { 0 if r(s) = θ⊺fs
∞ otherwise

fs

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Generative Adversarial Networks (GANs)
• Train generative model to generate states / observations

‣ Can we focus the training on failure modes?

• Also train discriminator to score instances

‣ Kind of like a critic: are generated instances good?

• predicts the probability

‣ Trained with cross-entropy loss:

• The generator tries to fool the discriminator:

pθ(s)

Dϕ(s) ∈ [0,1]

Dϕ(s) p(s generated by learner |s) =
pθ(s)

pθ(s) + p*(s)

max
ϕ

{𝔼s∼pθ
[log Dϕ(s)] + 𝔼s∼p*[log(1 − Dϕ(s))]}

min
θ

𝔼s∼pθ
[log Dϕ(s)]

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

• Consider the regularizer

• It's convex conjugate is:

‣ This is a GAN: generator imitating teacher ; discriminator

ψGA(r) = 𝔼s∼p*[r(s) − log(1 − exp(−r(s)))]

ψ̂GA(p* − pπ) = max
r∈ℝ𝒮 {⟨p* − pπ, r⟩ − ψGA(r)}

= max
r∈ℝ𝒮

𝔼s∼p*[r(s) − r(s) + log(1 − D(s))] − 𝔼s∼pπ
[

⏞
r(s)]

= max
r∈ℝ𝒮

𝔼s∼pπ
[log D(s)] + 𝔼s∼p*[log(1 − D(s))]

pπ p* D(s) = exp(−r(s))

D(s)

Teacher-based reward-function regularizer

−log D(s)

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Generative Adversarial Imitation Learning (GAIL)

• We've already seen entropy-regularized PG algorithms: TRPO, PPO

‣ More later

<latexit sha1_base64="TD5/mVwDdC3y0H7c1dUf/DiXrj4=">AAADS3icZVFNb9NAEN26lBbzlcKRy4j4kEISJRUCgVSppUVNpB7CR9pK2dTa2IuzYr27Wm+aBsv/giv8I34Av4Mb4sA6sVLczGl29s17b2ZGirPEtFq/1pz1Wxu3N7fuuHfv3X/wsLL96DSREx3QfiC51OcjklDOBO0bZjg9V5qSeMTp2ejLYf5/dkl1wqT4ZGaKDmMSCfaZBcTYkr/tbOIRjZhIYyaYIhHNBsEwbTVfY0OvzJSFZpy5BYTwSGpmxnE26AxdHBCVc6THB92TVQwLbO2jIYam+G3aFWpi3mQQ0liKxOi5OoTEWOsGPHyYHmWAExaDunjmLTu7ghlGOPtKQUnOgpmFKuZjM6aGeHUIWRJoZq0TIzV4Rz5WY5a3f6CKEuMCFEQevmKAI2oSD7TkHOTElLiya+xBElARzk2dZHPGmu3egT3A7/w0Wdi0lWwAmMsIFqq1ZAeG8LyEyacqULV2Y4mzwP/1urHS8pKW7MDU7hCoMFqqWUPTaMKJtmsIoXdcB0/nanvQKOvng/eFYdzFdoAbpyhVivfy5q7r+pVqq9maB6wm7SKpoiJ6fqWOWX7VNJSW38WaCjoNZBwTy5yPca2WZjl9+ybZanK622y/bL54v1vd7xRCW+gJeopqqI1eoX3UQT3UR4EjnG/Od+eH89P57fxx/i6gzlrR8xiVYn3jH+EUBfk=</latexit>

Algorithm GAIL
Input: demonstration dataset D ⇠ ?⇤

Initialize policy c\ , discriminator ⇡q

repeat
b roll out c\
Ascend Lq (b) = EB⇠b [log ⇡q (B)] + EB⇠D [log(1 � ⇡q (B))]
Improve c\ with entropy-regularized PG, A (B) = � log ⇡q (B)

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Recap
• To understand behavior: infer the intentions of observed agents

• If teacher is optimal for a reward function

‣ The reward function should make an optimizer imitate the teacher

‣ State (or state–action) distribution of learner should match the teacher

• In this view, Inverse Reinforcement Learning (IRL) is a game:

‣ Reward is optimized to show how much the teacher is better than the learner

‣ Learner optimizes for the reward

‣ Reward is like a discriminator (high = probably teacher); learner like a generator

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

GAIL

Reward shaping

Bounded RL

MaxEnt IRL

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Relation between RL and IL
• What makes RL harder than IL?

‣ IL: teacher policy indicates a good action to take in

‣ RL: does not indicate a globally good action; does, but it's nonlocal

• But didn't we see an equivalence between RL and IL?

‣ NLL loss in BC:

- and sampled from teacher distribution, this could make IL harder than RL

‣ Policy Gradient:

- and sampled from learner distribution

π*(a |s) s

r(s, a) Q*(s, a)

𝔼(s,a)∼p*[∇θlog πθ(a |s)]

s a

𝔼(s,a)∼pθ
[R∇θlog πθ(a |s)]

s a

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

IL as sparse-reward RL

• NLL BC: maximize

‣ Experience from teacher distribution

- RL: experience from learner distribution

‣ Pseudo-return for successful trajectory

- RL: in every step

• Sparse reward = most rewards are 0 / constant ⇒ rare learning signal

‣ on success ⇒ very sparse; but doesn't IL provide dense learning signal?

𝔼(s,a)∼p*[log πθ(a |s)] = − 𝔻[π*∥πθ] − ℍ[π*]

p*

pθ

R = 1success

rt = r(st, at)

R = 1

constant in θ

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

IL as dense-reward RL

• What if instead we minimize the other relative entropy?

‣ This is exactly the RL objective, with , entropy regularizer

‣ Now does give global information on optimal action

‣ In fact, with deterministic teacher, for any suboptimal action

• The same return can be viewed as sum of sparse rewards, or dense

‣ How should we design for easy RL?

𝔻[πθ∥π*] = − 𝔼(s,a)∼pθ
[log π*(a |s)] − ℍ[πθ]

r(s, a) = log π*(a |s)

r(s, a)

r(s, a) = − ∞

r

teacher labeling of learner states/actions
as in DAgger

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Reward shaping
• Ideal reward: for any suboptimal action ⇒ as hard to provide as

‣ We need supervision signal that's sufficiently easy to design + program

• Sparse reward functions may be easier to design than dense ones

‣ E.g., may be easy to identify good goal states, safety violations, etc.

• Reward shaping: art of adjusting the reward function for easier RL; some tips:

‣ Reward “bottleneck states”: subgoals that are likely to lead to bigger goals

‣ Break down long sequences of coordinated actions ⇒ better exploration

- E.g. reward beacons on long narrow paths, for exploration to stumble upon

r(s, a) = − ∞ π*

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

GAIL

Linearly solvable MDPs

Bounded RL

MaxEnt IRL

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Bounded optimality
• Bounded optimizer = trades off value and divergence from prior

• is the tradeoff coefficient between value and relative entropy

‣ Similar to the inverse-temperature in thermodynamics

‣ As , the agent will fall back to the prior

‣ As , the agent will be a perfect value optimizer

• We'll see reasons to have finite

π0(a |s)

max
π

𝔼(s,a)∼pπ
[r(s, a)] − τ𝔻[π∥π0] = max

π
𝔼(s,a)∼pπ [βr(s, a) − log π(a |s)

π0(a |s)]
β = 1

τ

β → 0 π → π0

β → ∞ π → π*

β

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Simplifying assumption
• MaxEnt IRL was approximate because it violated dynamical constraints

‣ , regardless of trajectory feasibility

• For simplicity, let's do the same for RL

‣ Suppose the environment is fully controllable

‣ Bellman equation:

pπ(ξ) ∝ π0(ξ)exp(R(ξ))

st+1 = at

V*β (s) = max
π

𝔼(s′ |s)∼π [r(s)− 1
β log π(s′ |s)

π0(s′ |s) +γV*β (s′)]
= r(s)− 1

β min
π

𝔻 [π
π0(s′ |s)exp(βγV*β (s′))

Z′ β(s)]+ 1
β log Z′ β(s)

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Linearly-Solvable MDPs (LMDPs)

• Optimal policy for :

‣ Soft-greedy policy:

• Value recursion:

• In the undiscounted case , with :

• We can solve for , and therefore , by finding a right-eigenvector of

Vβ(s) = r(s)− 1
β min

π
𝔻 [π

π0(s′ |s)exp(βγVβ(s′))

Z′ β(s)]+ 1
β log Z′ β(s)

πβ(s′ |s) ∝ π0(s′ |s)exp(βγVβ(s′))

Vβ(s) = r(s)+ 1
β log Z′ β(s) = r(s)+ 1

β log 𝔼(s′ |s)∼π0
[exp(βγVβ(s′))]

Zβ(s) = exp(βVβ(s)) = exp(βr(s))Z′ β(s) = exp(βr(s))𝔼(s′ |s)∼π0
[Zγ

β(s′)]

γ = 1 D = diag(exp βr) z = DP0z

z π DP0

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Z-learning

• We can do the same model-free:

‣ Given experience sampled by the prior policy

‣ Update

• Full-controllability condition () can be relaxed to allow

‣ But we still allow any transition distribution over the remaining support

‣ Later: the general case,

Z(s) = exp(βr(s))𝔼(s′ |s)∼π0
[Zγ(s′)]

(s, r, s′) π0

Z(s) → exp(βr)Zγ(s′)

st+1 = at π0(s′ |s) = 0

π(s′ |s)

p(s′ |s) = ∑
a

π(a |s)p(s′ |s, a)

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Duality between value and log prob
• We've seen many cases where log-probs play the role of reward / value

‣ Or values the role of logits (unnormalized log-probs)

• Examples:

‣ In LQG, ; costs / values are quadratic

‣ In value-based algorithms, good exploration policy:

‣ Imitation Learning can be viewed as RL with

‣ In IRL, a reward function can be viewed as a discriminator

log p(x | ̂x) = − 1
2 x⊺Σx + const

π(a |s) = softmax
a

βQ(s, a)

r(s, a) = log p*(a |s)

D(s) = exp(−r(s))

Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Full-controllability duality

• Bounded control in LMDP: ptim

• Backward filtering in a partially observable system with dynamics

• Equivalent if and

‣ Intuition: find states that give good reward ⇔ high likelihood of observations

• Exact equivalence only in the fully-controllable case

‣ Partially controllable case takes more nuanced analysis

Z(s) = exp(βr(s))𝔼(s′ |s)∼π0
[Zγ(s′)]

π0(s′ |s)

p(o≥t |st) = p(ot |st)𝔼(st+1|st)∼π0
[p(o≥t+1 |st+1)]

Z(s) = p(o≥t |st) exp(βr(s)) = p(o |s)

p(st |o≥t) ∝ p(st)p(o≥t |st)

st+1stst−1

ot−1 ot

π0 π0

