
Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

CS 277: Control and 
Reinforcement Learning 

Winter 2022 
Lecture 14: Bounded RL

Roy Fox

Department of Computer Science

Bren School of Information and Computer Sciences

University of California, Irvine




Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Logistics

quizzes • Quiz 5 is due tomorrow

assignments • Assignment 4 to be published soon



Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Today's lecture

GAIL

Reward shaping

Bounded RL

MaxEnt IRL



Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Informational quantities: refresher

• Entropy: 


• Conditional entropy: 


• Expected conditional entropy: 


• Expected relative entropy: 


• Expected cross entropy (aka NLL): 


‣

ℍ[p(a)] = − 𝔼a∼p[log p(a)] = − ∑
a

p(a)log p(a)

ℍ[π |s] = − 𝔼a∼π[log π(a |s)]

ℍ[π] = 𝔼s∼pπ
[ℍ[π |s]] = − 𝔼(s,a)∼pπ

[log π(a |s)]

𝔻[π∥π′ ] = 𝔼(s,a)∼pπ [log
π(a |s)
π′ (a |s) ]

−𝔼(s,a)∼pπ
[log π′ (a |s)]

𝔻[π∥π′ ] = NLL − ℍ[π]
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Modeling bounded teachers

• An expert teacher maximizes the value 


‣ With trajectory-summed features 


• Assume teacher has unintentional / uninformed prior policy 


‣ Bounded rationality: cost to intentionally diverge  (with  uniform: )


‣ Total cost: 


• Bounded optimality: 

Jπ*
θ = ∑

t

γt𝔼st∼p*[θ⊺fst
] = 𝔼ξ∼p*[θ⊺fξ]

fξ = ∑
t

γt fst

π0

𝔻[π*∥π0] π0 ℍ[π*]

∑
t

𝔼(st,at)∼p* [log
π*(at |st)
π0(at |st) ] = 𝔼ξ∼p* [log p*(ξ)

p0(ξ) ] = 𝔻[p*(ξ)∥p0(ξ)]

max
π*

𝔼ξ∼p*[θ⊺fξ] − τ𝔻[p*∥p0]
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Bounded optimality: naïve solution

• Bounded optimality: 


‣ Naïve solution: allow any distribution  over trajectories


‣ No need to be consistent with dynamics  ⇒  may be unachievable


• Add the constraint  with Lagrange multiplier 


• Differentiate by  and  to optimize


   

max
π*

𝔼ξ∼p*[θ⊺fξ] − 𝔻[p*∥p0]

p*

p(s′ |s, a) p*

∑
ξ

p*(ξ) = 1 λ

p*(ξ) = 0

θ⊺fξ − log p*(ξ) + log p0(ξ) − 1 + λ = 0 ⟹ p*(ξ) =
p0(ξ)exp(θ⊺fξ)

∑ξ̄ p0(ξ̄)exp(θ⊺fξ̄)

p*
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IRL with bounded teacher

• Assume that demonstrations are distributed 


‣ With partition function 


• Find  that minimizes NLL of demonstrations


 


‣ To compute gradient, we need , but how to compute ?

pθ(ξ) = 1
Zθ

p0(ξ)exp(θ⊺fξ)

Zθ = 𝔼ξ̄∼p0
[exp(θ⊺fξ̄)]

θ

∇θlog pθ(ξ) = ∇θ(θ⊺fξ − log Zθ) = fξ−
1
Zθ

∇θZθ

= fξ−
1
Zθ

𝔼ξ̄∼p0
[exp(θ⊺fξ̄)fξ̄] = fξ − 𝔼ξ̄∼pθ

[ fξ̄]

pθ Zθ
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Computing : backward recursionZθ

• Partition function: 


• Compute  recursively backward: like a value function, but + becomes ·


 


• How to get a policy from ?


‣ Marginalize: 


‣ This  is not globally consistent ,  ignores the dynamics

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

Zθ

Zθ(st, at) = 𝔼p0
[exp(θ⊺fξ≥t) |st, at] = exp(θ⊺fst

)𝔼(st+1|st,at)∼p[Zθ(st+1)]
Zθ(st) = 𝔼p0

[exp(θ⊺fξ≥t) |st] = 𝔼(at|st)∼π0
[Zθ(st, at)]

Zθ

πθ(at |st) =
pθ(ξ |st, at)

pθ(ξ |st)
= π0(at |st)

Zθ(st, at)
Zθ(st)

πθ pθ(ξ) ≠ pπθ
(ξ) pθ(ξ)

consistent  may not even existπ
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MaxEnt IRL

• For each sample :


‣ Compute  recursively backward


‣ Compute  recursively forward


‣ Take a gradient step to improve : 


• At the optimum: feature matching 


‣ MaxEnt IRL approximates    s.t. 

ξ ∼ 𝒟

Zθ = 𝔼ξ∼p0
[exp(θ⊺fξ)]

𝔼ξ̄∼pπθ
[ fξ̄]

θ ∇θlog pθ(ξ) ≈ fξ − 𝔼ξ̄∼pπθ
[ fξ̄]

𝔼ξ∼𝒟[ fξ] = 𝔼ξ∼pπθ
[ fξ]

max
θ

ℍ[πθ] 𝔼ξ∼𝒟[ fξ] = 𝔼ξ∼pπθ
[ fξ]

Limitations: 

• Requires dynamics  

• Assumes  

• Assumes 

p

pθ = pπθ

𝒟 = p*
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IRL: downstream tasks

• One IRL motivation: learn reward function for downstream tasks


                                                                                 ...such as RL


• IL = RL ○ IRL (composition of RL on IRL)


• Some IRL algorithms already learn  as part of learning  for 


‣ Let's directly optimize IRL for the overall IL task = learn good 

π θ r : s ↦ θ⊺fs

π

inverse 
reinforcement 

learning

reinforcement 
learningdemonstrations reward 

function policy
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IL as RL ○ IRL

• Entropy-regularized RL: 


• MaxEnt IRL: 


• For any , our objective with respect to  is:


 


‣ This form of function  is called the convex conjugate of 

max
π∈Π

{𝔼s∼pπ
[r(s)] + ℍ[π]}

max
r∈ℝ𝒮 {𝔼s∼p*[r(s)] − max

π∈Π
{𝔼s∼pπ

[r(s)] + ℍ[π]}} − ψ(r)

π r

ψ̂(p* − pπ) = max
r∈ℝ𝒮 {⟨p* − pπ, r⟩ − ψ(r)}

ψ̂ : ℝ𝒮 → ℝ ψ

regularization over 
reward function space

∈ ℝ𝒮



Roy Fox | CS 277 | Winter 2022 | Lecture 14: Bounded RL

Reward-function regularizers

 


• Without regularizer:  ⇒ solution only exists when 


‣ Learner achieves teacher's state distribution: perfect solution, but hard to find


• Hard linearity constraint: 


‣ Max-entropy feature matching (MaxEnt IRL)


‣ Great when the reward function really is linear in , otherwise no guarantees

ψ̂(p* − pπ) = max
r∈ℝ𝒮 {⟨p* − pπ, r⟩ − ψ(r)}

ψ = 0 p* = pπ

ψ(r) = { 0 if r(s) = θ⊺fs
∞ otherwise

fs
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Generative Adversarial Networks (GANs)
• Train generative model  to generate states / observations


‣ Can we focus the training on failure modes?


• Also train discriminator  to score instances


‣ Kind of like a critic: are generated instances good?


•  predicts the probability 


‣ Trained with cross-entropy loss: 


• The generator tries to fool the discriminator: 

pθ(s)

Dϕ(s) ∈ [0,1]

Dϕ(s) p(s generated by learner |s) =
pθ(s)

pθ(s) + p*(s)

max
ϕ

{𝔼s∼pθ
[log Dϕ(s)] + 𝔼s∼p*[log(1 − Dϕ(s))]}

min
θ

𝔼s∼pθ
[log Dϕ(s)]
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• Consider the regularizer


 


• It's convex conjugate is:


 


‣ This is a GAN: generator  imitating teacher ; discriminator 

ψGA(r) = 𝔼s∼p*[r(s) − log(1 − exp(−r(s)))]

ψ̂GA(p* − pπ) = max
r∈ℝ𝒮 {⟨p* − pπ, r⟩ − ψGA(r)}

= max
r∈ℝ𝒮

𝔼s∼p*[r(s) − r(s) + log(1 − D(s))] − 𝔼s∼pπ
[

⏞
r(s) ]

= max
r∈ℝ𝒮

𝔼s∼pπ
[log D(s)] + 𝔼s∼p*[log(1 − D(s))]

pπ p* D(s) = exp(−r(s))

D(s)

Teacher-based reward-function regularizer

−log D(s)
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Generative Adversarial Imitation Learning (GAIL)

• We've already seen entropy-regularized PG algorithms: TRPO, PPO


‣ More later

<latexit sha1_base64="TD5/mVwDdC3y0H7c1dUf/DiXrj4="></latexit>

Algorithm GAIL
Input: demonstration dataset D ⇠ ?⇤

Initialize policy c\ , discriminator ⇡q

repeat
b  roll out c\
Ascend Lq (b) = EB⇠b [log ⇡q (B)] + EB⇠D [log(1 � ⇡q (B))]
Improve c\ with entropy-regularized PG, A (B) = � log ⇡q (B)
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Recap
• To understand behavior: infer the intentions of observed agents


• If teacher is optimal for a reward function


‣ The reward function should make an optimizer imitate the teacher


‣ State (or state–action) distribution of learner should match the teacher


• In this view, Inverse Reinforcement Learning (IRL) is a game:


‣ Reward is optimized to show how much the teacher is better than the learner


‣ Learner optimizes for the reward


‣ Reward is like a discriminator (high = probably teacher); learner like a generator
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Relation between RL and IL
• What makes RL harder than IL?


‣ IL: teacher policy  indicates a good action to take in 


‣ RL:  does not indicate a globally good action;  does, but it's nonlocal


• But didn't we see an equivalence between RL and IL?


‣ NLL loss in BC: 


-  and  sampled from teacher distribution, this could make IL harder than RL


‣ Policy Gradient: 


-  and  sampled from learner distribution

π*(a |s) s

r(s, a) Q*(s, a)

𝔼(s,a)∼p*[∇θlog πθ(a |s)]

s a

𝔼(s,a)∼pθ
[R∇θlog πθ(a |s)]

s a
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IL as sparse-reward RL

• NLL BC: maximize 


‣ Experience from teacher distribution 


- RL: experience from learner distribution 


‣ Pseudo-return  for successful trajectory


- RL:  in every step


• Sparse reward = most rewards are 0 / constant ⇒ rare learning signal


‣  on success ⇒ very sparse; but doesn't IL provide dense learning signal?

𝔼(s,a)∼p*[log πθ(a |s)] = − 𝔻[π*∥πθ] − ℍ[π*]

p*

pθ

R = 1success

rt = r(st, at)

R = 1

constant in θ
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IL as dense-reward RL

• What if instead we minimize the other relative entropy?


 


‣ This is exactly the RL objective, with , entropy regularizer


‣ Now  does give global information on optimal action


‣ In fact, with deterministic teacher,  for any suboptimal action


• The same return can be viewed as sum of sparse rewards, or dense


‣ How should we design  for easy RL?

𝔻[πθ∥π*] = − 𝔼(s,a)∼pθ
[log π*(a |s)] − ℍ[πθ]

r(s, a) = log π*(a |s)

r(s, a)

r(s, a) = − ∞

r

teacher labeling of learner states/actions 
as in DAgger
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Reward shaping
• Ideal reward:  for any suboptimal action ⇒ as hard to provide as 


‣ We need supervision signal that's sufficiently easy to design + program


• Sparse reward functions may be easier to design than dense ones


‣ E.g., may be easy to identify good goal states, safety violations, etc.


• Reward shaping: art of adjusting the reward function for easier RL; some tips:


‣ Reward “bottleneck states”: subgoals that are likely to lead to bigger goals


‣ Break down long sequences of coordinated actions ⇒ better exploration


- E.g. reward beacons on long narrow paths, for exploration to stumble upon

r(s, a) = − ∞ π*
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Bounded optimality
• Bounded optimizer = trades off value and divergence from prior 


 


•  is the tradeoff coefficient between value and relative entropy


‣ Similar to the inverse-temperature in thermodynamics


‣ As , the agent will fall back to the prior 


‣ As , the agent will be a perfect value optimizer 


• We'll see reasons to have finite 

π0(a |s)

max
π

𝔼(s,a)∼pπ
[r(s, a)] − τ𝔻[π∥π0] = max

π
𝔼(s,a)∼pπ [βr(s, a) − log π(a |s)

π0(a |s) ]
β = 1

τ

β → 0 π → π0

β → ∞ π → π*

β
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Simplifying assumption
• MaxEnt IRL was approximate because it violated dynamical constraints


‣ , regardless of trajectory feasibility


• For simplicity, let's do the same for RL


‣ Suppose the environment is fully controllable 


‣ Bellman equation:


 

pπ(ξ) ∝ π0(ξ)exp(R(ξ))

st+1 = at

V*β (s) = max
π

𝔼(s′ |s)∼π [r(s)− 1
β log π(s′ |s)

π0(s′ |s) +γV*β (s′ )]
= r(s)− 1

β min
π

𝔻 [π
π0(s′ |s)exp(βγV*β (s′ ))

Z′ β(s) ]+ 1
β log Z′ β(s)
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Linearly-Solvable MDPs (LMDPs)

• Optimal policy for :


‣ Soft-greedy policy: 


• Value recursion:  


 


• In the undiscounted case , with : 


• We can solve for , and therefore , by finding a right-eigenvector of 

Vβ(s) = r(s)− 1
β min

π
𝔻 [π

π0(s′ |s)exp(βγVβ(s′ ))

Z′ β(s) ]+ 1
β log Z′ β(s)

πβ(s′ |s) ∝ π0(s′ |s)exp(βγVβ(s′ ))

Vβ(s) = r(s)+ 1
β log Z′ β(s) = r(s)+ 1

β log 𝔼(s′ |s)∼π0
[exp(βγVβ(s′ ))]

Zβ(s) = exp(βVβ(s)) = exp(βr(s))Z′ β(s) = exp(βr(s))𝔼(s′ |s)∼π0
[Zγ

β(s′ )]

γ = 1 D = diag(exp βr) z = DP0z

z π DP0
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Z-learning
 


• We can do the same model-free:


‣ Given experience  sampled by the prior policy 


‣ Update 


• Full-controllability condition ( ) can be relaxed to allow 


‣ But we still allow any transition distribution  over the remaining support


‣ Later: the general case, 

Z(s) = exp(βr(s))𝔼(s′ |s)∼π0
[Zγ(s′ )]

(s, r, s′ ) π0

Z(s) → exp(βr)Zγ(s′ )

st+1 = at π0(s′ |s) = 0

π(s′ |s)

p(s′ |s) = ∑
a

π(a |s)p(s′ |s, a)
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Duality between value and log prob
• We've seen many cases where log-probs play the role of reward / value


‣ Or values the role of logits (unnormalized log-probs)


• Examples:


‣ In LQG, ; costs / values are quadratic


‣ In value-based algorithms, good exploration policy: 


‣ Imitation Learning can be viewed as RL with 


‣ In IRL, a reward function can be viewed as a discriminator 

log p(x | ̂x) = − 1
2 x⊺Σx + const

π(a |s) = softmax
a

βQ(s, a)

r(s, a) = log p*(a |s)

D(s) = exp(−r(s))
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Full-controllability duality

• Bounded control in LMDP: ptim 


• Backward filtering in a partially observable system with dynamics 


 


• Equivalent if  and 


‣ Intuition: find states that give good reward ⇔ high likelihood of observations


• Exact equivalence only in the fully-controllable case


‣ Partially controllable case takes more nuanced analysis

Z(s) = exp(βr(s))𝔼(s′ |s)∼π0
[Zγ(s′ )]

π0(s′ |s)

p(o≥t |st) = p(ot |st)𝔼(st+1|st)∼π0
[p(o≥t+1 |st+1)]

Z(s) = p(o≥t |st) exp(βr(s)) = p(o |s)

p(st |o≥t) ∝ p(st)p(o≥t |st)

st+1stst−1

ot−1 ot

π0 π0


