CS 277: Control and Reinforcement Learning Winter 2022 Lecture 18: Open Questions

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

evaluations

Course evaluations due end of the week, March 13

assignments

• Assignment 5 due next Tuesday

Why so many algorithms?

- We may have different modeling assumptions \bullet
 - Is the environment stochastic or deterministic?
 - Is the state / action space continuous or discrete?
 - Is the horizon episodic or infinite?
- We may care about different tradeoffs lacksquare

 - Algorithmic stability, reproducibility, ease of use (existing code), ease of adaptation
- Different difficulty to represent or learn in different domains
 - Represent / learn a policy or a model?
 - Discover structure? Memory? Transfer / share with other tasks?

Sample efficiency? Computational efficiency while learning / executing? Succinct representation?

Flowchart: which algorithm to choose?

On- or off-policy data?

- The faster our simulator \Rightarrow the faster we can refresh our data
 - And still keep sufficient diversity for training
- Fast enough \Rightarrow can use on-policy data
 - No need for replay buffer
 - No train \rightarrow test distributional mismatch (= covariate shift)
 - Can still use off-policy algorithms with on-policy data
- Extremely slow simulator \Rightarrow not even off-policy, just offline RL

Topics we covered

- Imitation learning
- Policy evaluation + improvement
 - Monte-Carlo vs. Temporal
 Difference
 - On- vs. off-policy
- Policy Gradient
 - Advantage estimation, Actor–Critic
- Exploration

- Optimal control
- Planning, model-based learning
- Partial observability
- Inverse RL
- Bounded RL
- Structured control
- Multi-task learning

Topics we didn't cover

- Hindsight Experience Replay (HER)
- Eligibility traces
- Generalized Value Functions (GVF)
 - Successor representation
- Value Iteration / Prediction Nets (VIN / VPN) • Curiosity + empowerment
- Natural policy gradient
 - Mirror descent
- **Distributional RL**
- **Bayesian RL**

- Hyperparameter tuning
- Distributed RL
- Robot learning
- Safety

- Preference elicitation
- Offline RL
- Meta-learning
- Lifelong learning

Trends and open questions in ML

- Bayesian Deep Learning
- Optimization theory
- Neuro-symbolic Al
- Meta-learning / learning to learn
- Lifelong learning
- Causality
- Interpretability, explainability
- Al ethics: fairness, debiasing, alignment

Bayesian RL

- Two kinds of uncertainty
 - Aleatoric = things I haven't seen / haven't happened yet: $p(s_t | m_t), p(r_{t+k} | m_t), \dots$
 - Epistemic (= model uncertainty) = things I haven't modeled / learned yet: \hat{p} , π_{θ} , Q_{ϕ} , ...
- Standard RL already considers aleatoric uncertainty
 - "Overtake truck quickly, to reduce time with partial observability, probability of crash"
- Bayesian RL can estimate epistemic uncertainty: $p(\theta | \mathcal{D})$
 - Can help improve exploration (cf. Thompson sampling)
 - Can improve learning in bounded agents (uncertain $Q \Rightarrow$ winner's curse)

Optimization ⇔ RL

- Special considerations of optimization \rightarrow RL:
 - Covariate shift
 - Temporal-Difference \Rightarrow non-stationary loss landscape
 - Saddle points in multi-agent RL
- $RL \rightarrow optimization$: iterative optimization is a dynamical process
 - Gradient descent = maximize "reward" of descending loss landscape
 - Optimal control concepts (e.g. Langevin dynamics) key in analysis

Neuro-symbolic RL

- - E.g. modularity
- Structured control = discrete memory components
 - Can help sample efficiency, generalization, transfer, interpretability, ...
- How to learn under given structure?
- How to discover optimal structure?

Is there any benefit to discrete components in gradient-based methods?

Meta-learning ⇔ RL

- Multi-task learning = transfer / share learning products between tasks
 - E.g. features, models, policies, skills
- Meta-learning = transfer / share learning of learner components
 - Network architecture = Neural Architecture Search (NAS) meta-learning ---- learning/adaptation H $\nabla \mathcal{L}_3$ Optimizer hyperparameters $\nabla \mathcal{L}_2$ $\nabla \mathcal{L}_1$ Parameter initializations (MAML)
- Learning to perform sequence of tasks = sequential decision making
 - E.g. can use RNNs

Trends and open questions in ML

- Bayesian Deep Learning
- Optimization theory
- Neuro-symbolic Al
- Meta-learning / learning to learn
- Lifelong learning
- Causality
- Interpretability, explainability
- Al ethics: fairness, debiasing, alignment

Reproducibility crisis

- Reinforcement learning has seen immense success
 - But remains largely irreproducible, hard to deploy
- Many algorithms are very sensitive to hyperparameters
- Very sensitive to parameter initialization
 - Need to evaluate over many runs, prone to cherry-picking
- Small implementation details may have unexpected effects
- How to go beyond this pre-paradigmatic phase?
 - Better RL theory
 - Build practical RL (and ML) as experimental field

Other open questions

- Imitation learning / inverse RL
 - How to discover structure / memory features in teacher demonstrations?
- Bounded RL
 - How much "bounded" should the agent be?
 - How to anneal this coefficient?
- Structured control
 - Which structures are useful for (multi-task) control?
 - Which structures can we discover?
- Multi-task learning
 - How to discover which tasks are related / unrelated?