

CS 277: Control and Reinforcement Learning Winter 2022

Lecture 2: Imitation Learning

Roy Fox

Department of Computer Science Bren School of Information and Computer Sciences University of California, Irvine

Logistics

logistics

- Follow announcements and discussions on ed
- See website for schedule, recordings, resources, etc.

assignments

- Quiz 1 due this Friday
- Assignment 1 to be published soon

Imitation Learning (IL)

- How can we teach an agent to perform a task?
- Often there is an expert that already knows how to perform the task
 - A human operator who controls a robot
 - A black-box artificial agent that we can observe but not copy

SELECT START X B

- An agent with different representation or embodiment
- The expert can demonstrate the task to create a training dataset $\mathcal{D} = \{\xi^{(i)}\}_i$
 - Each demonstration is a trajectory $\xi = s_0, a_0, s_1, a_1, \dots$
 - Then the learner imitates these demonstrations

IL = Learning from Demonstrations (LfD)

- Teacher provides demonstration trajectories $\mathcal{D} = \{\xi^{(1)}, ..., \xi^{(m)}\}$
- Learner trains a policy π_{θ} to minimize a loss $\mathscr{L}(\theta)$
- For example, negative log-likelihood (NLL):

$$\begin{split} \arg\min_{\theta} \mathscr{L}_{\theta}(\xi) &= \arg\min_{\theta} (-\log p_{\theta}(\xi)) \\ &= \arg\max_{\theta} \left(\log p(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t \,|\, s_t) + \log p(s_{t+1} \,|\, s_t, a_t) \right) \\ &= \arg\max_{\theta} \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t \,|\, s_t) \end{split}$$

Today's lecture

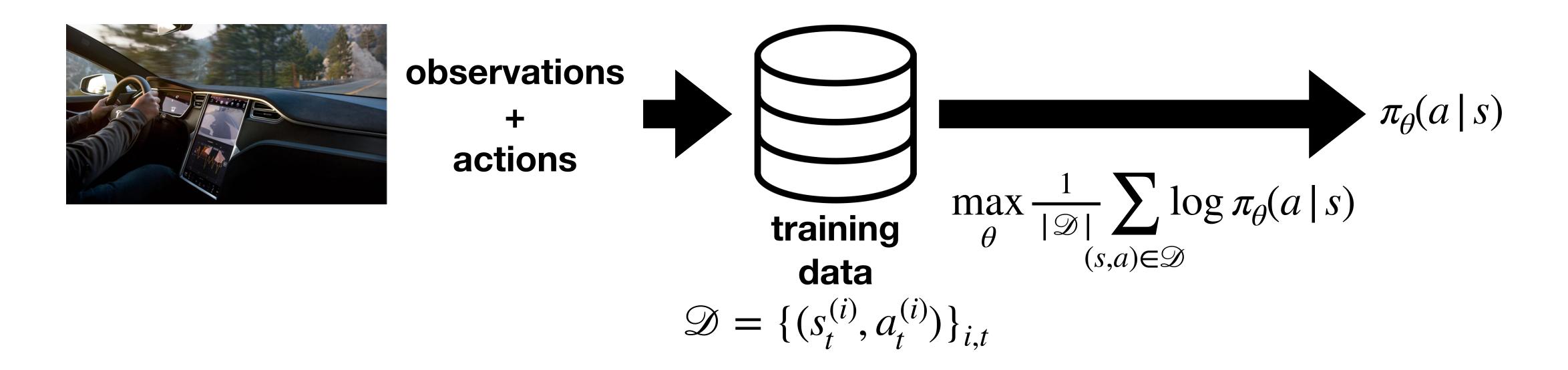
Behavior Cloning

Better behavior modeling

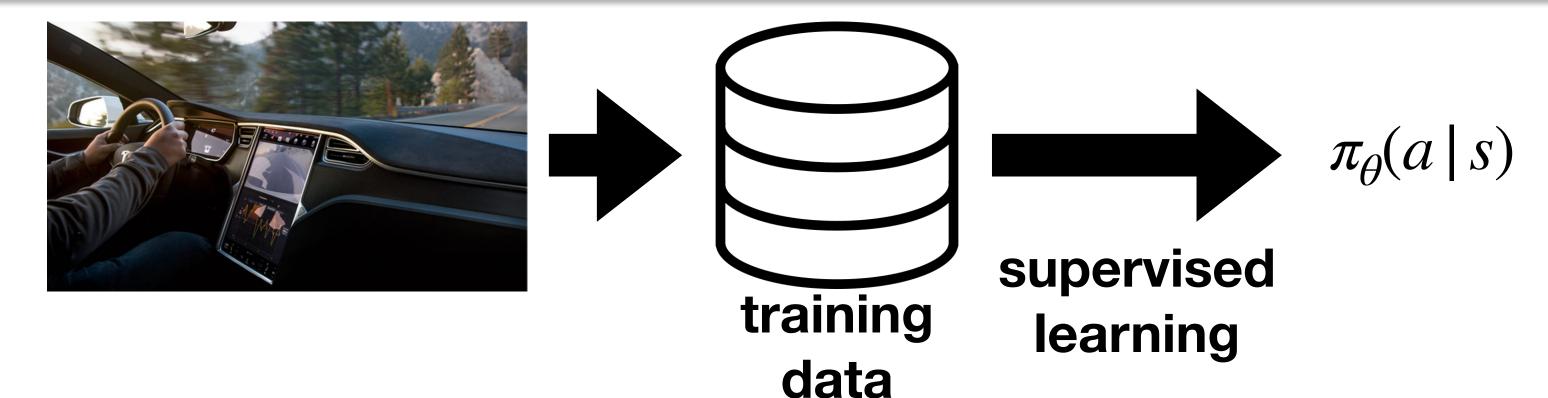
Alleviating train-test mismatch

Behavior Cloning (BC)

- Behavior Cloning:
 - ▶ Break down trajectories $\{\xi^{(1)},...,\xi^{(m)}\}$ into steps $\{(s_0^{(1)},a_0^{(1)}),...,(s_{T_m-1}^{(m)},a_{T_m-1}^{(m)})\}$
 - Train $\pi_{\theta}: s \mapsto a$ using supervised learning



Behavior Cloning (BC)



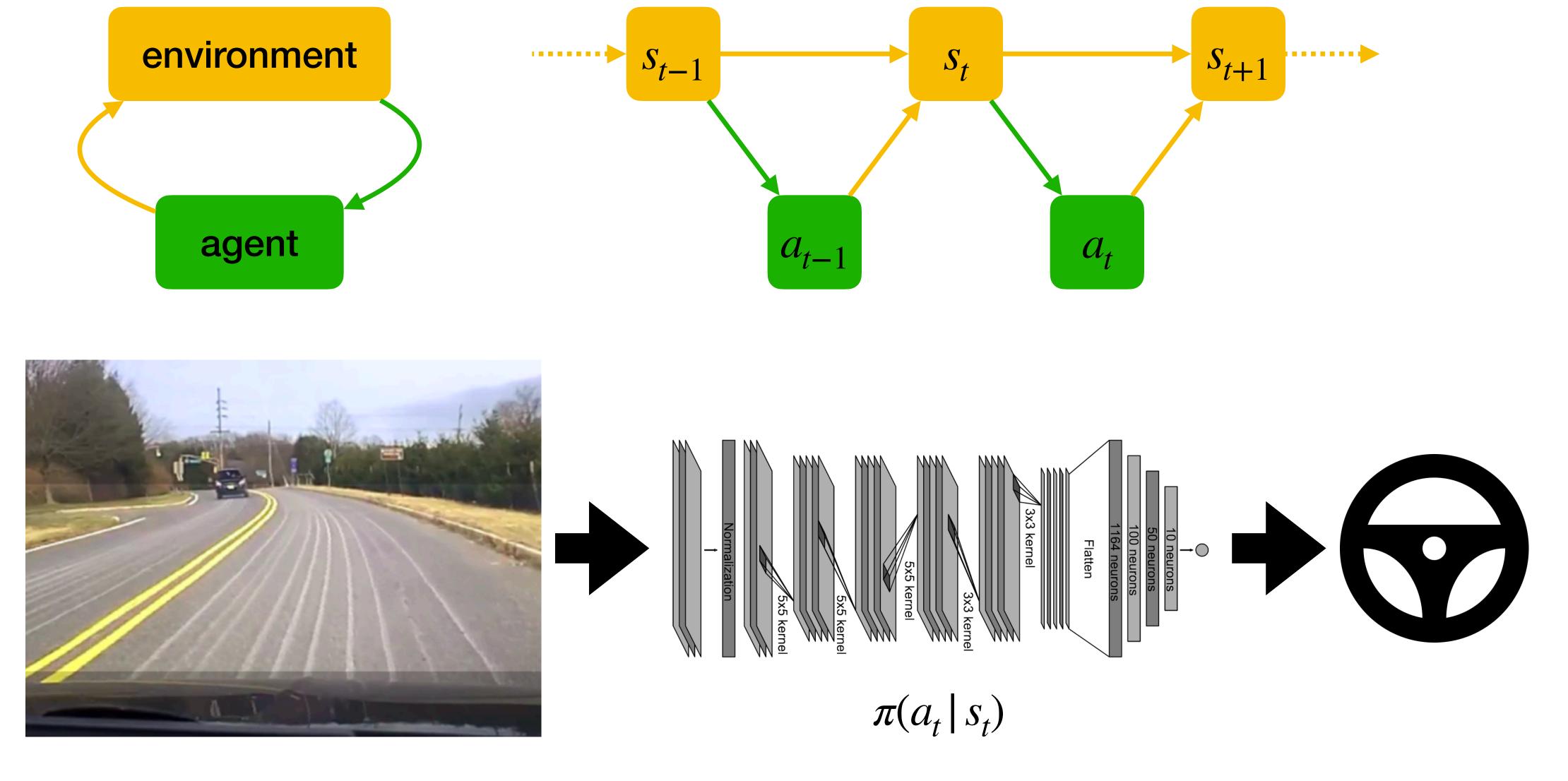
Benefits:

- Simple, flexible can use any learning algorithm
- Model-free never need to know the environment

Drawbacks:

- Only as good as the demonstrator
- Only good in demonstrated states how do we evaluate?
 - Validation loss (on held out data)? Task success rate in rollouts?

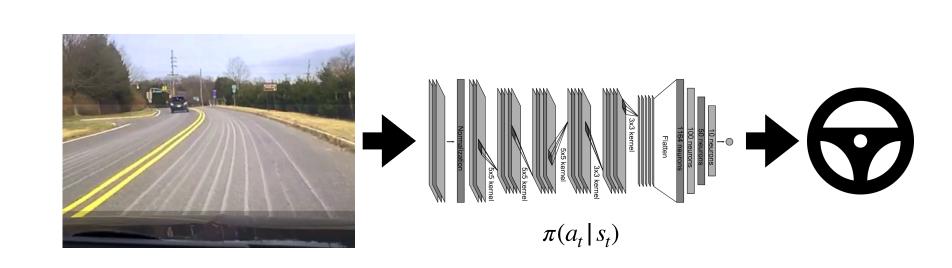
A policy is a (stochastic) function



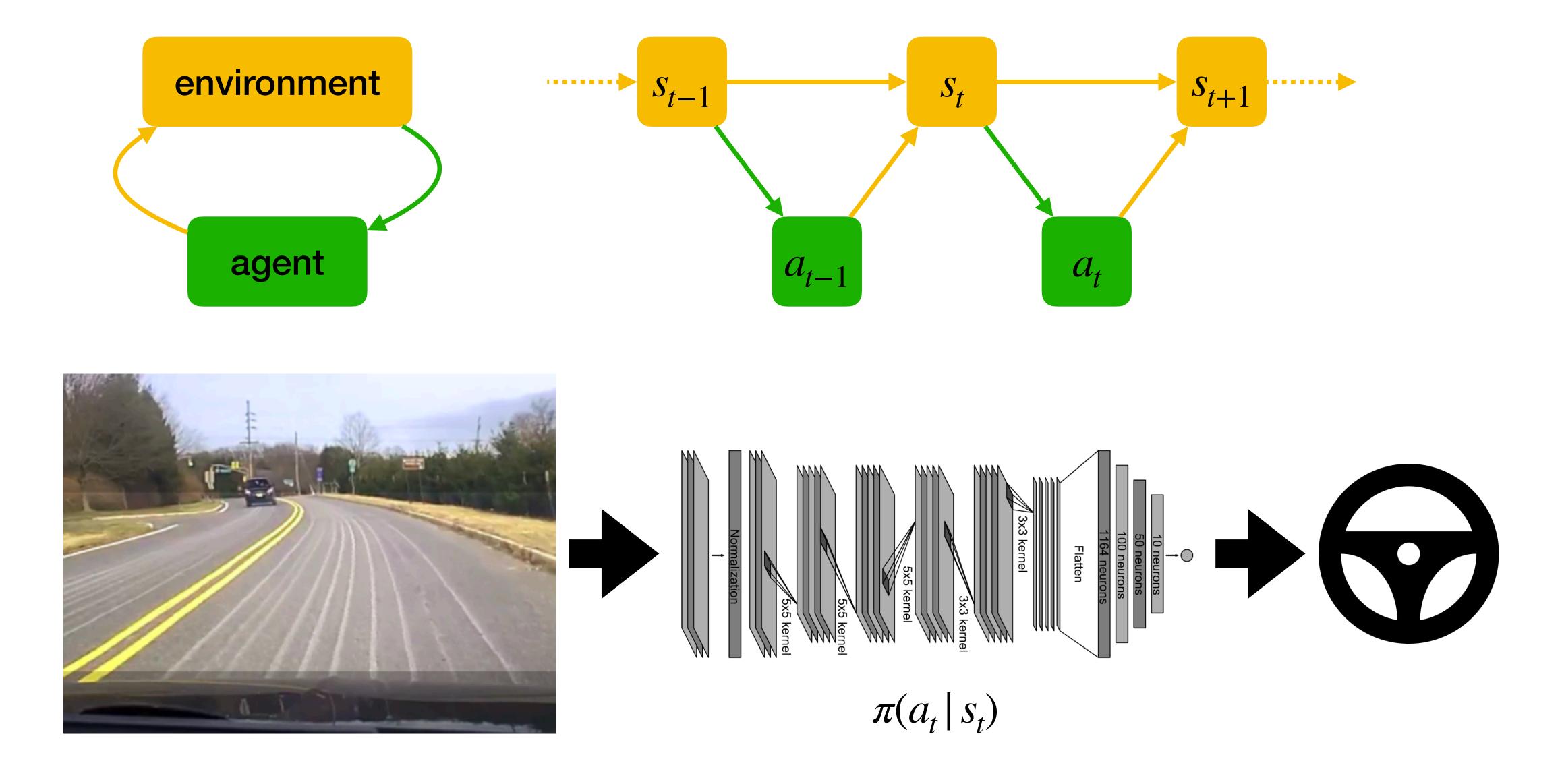
Stochastic policies

- Learned models are often deterministic functions $f_{\theta}: x \mapsto y$
- To implement a stochastic policy: output distribution parameters
- Examples:
 - Discrete action space: categorical distribution
 - π_{θ} : $s \mapsto \{\lambda_a\}_a$; $\pi_{\theta}(a \mid s) = \operatorname{softmax}_a \lambda_a \propto \exp \lambda_a$
 - Continuous action space: Gaussian distribution

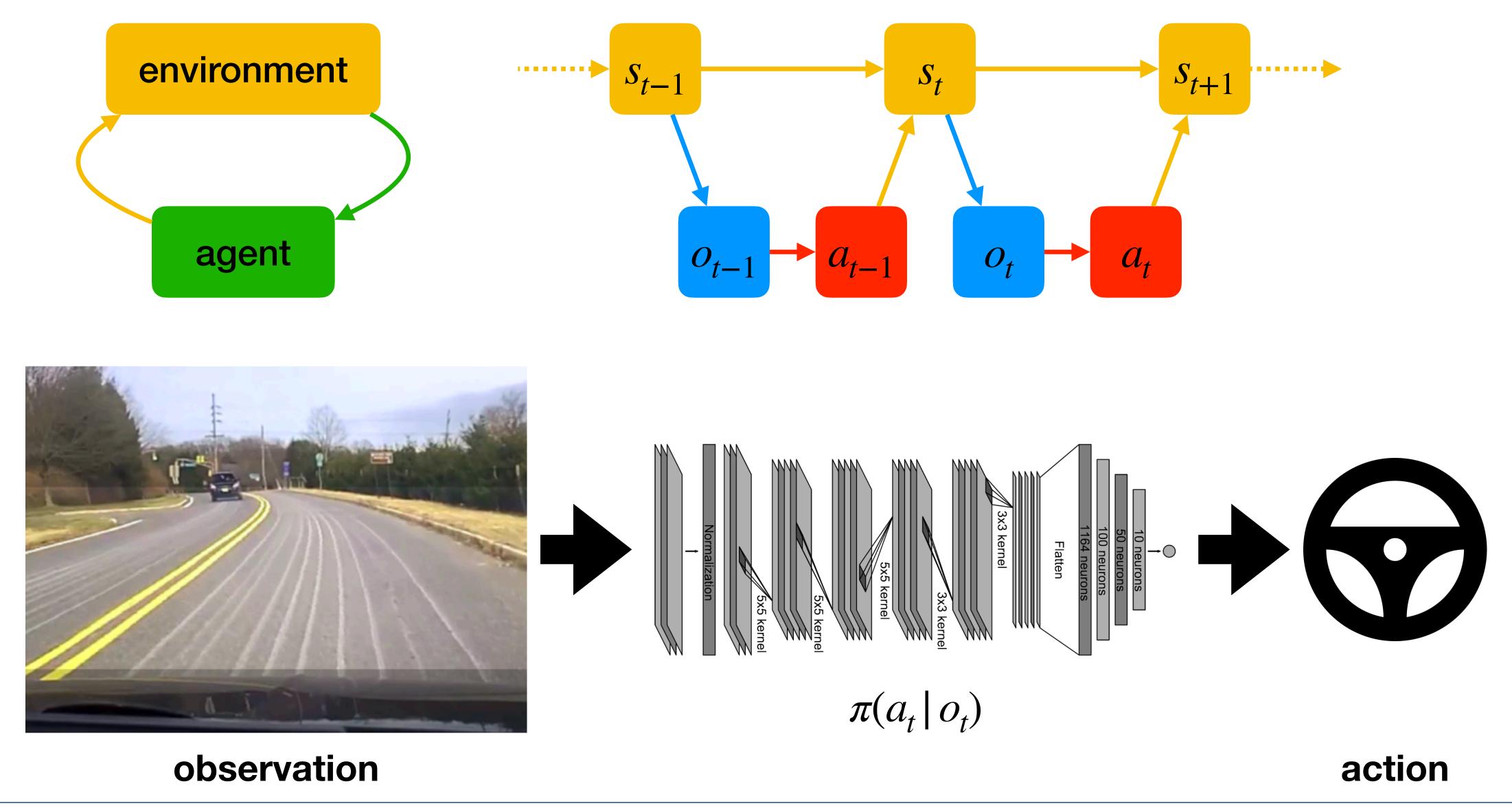
$$- \pi_{\theta} : s \mapsto (\mu, \Sigma); \pi_{\theta}(a \mid s) = \mathcal{N}(\mu, \Sigma)$$



A policy is a (stochastic) function

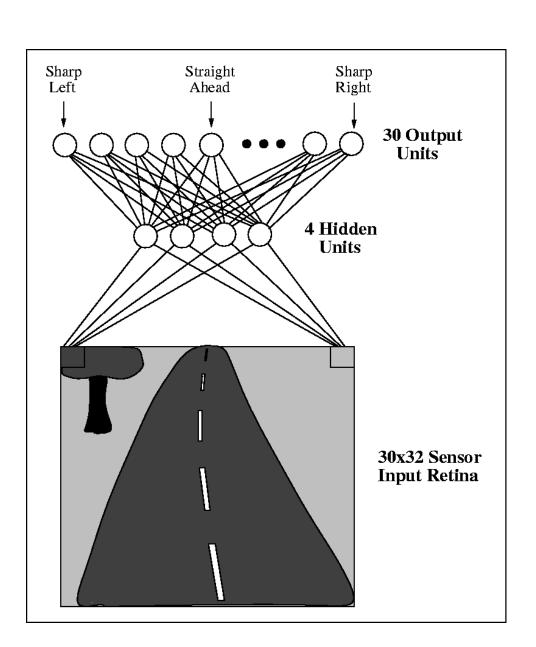


A policy is a (stochastic) function

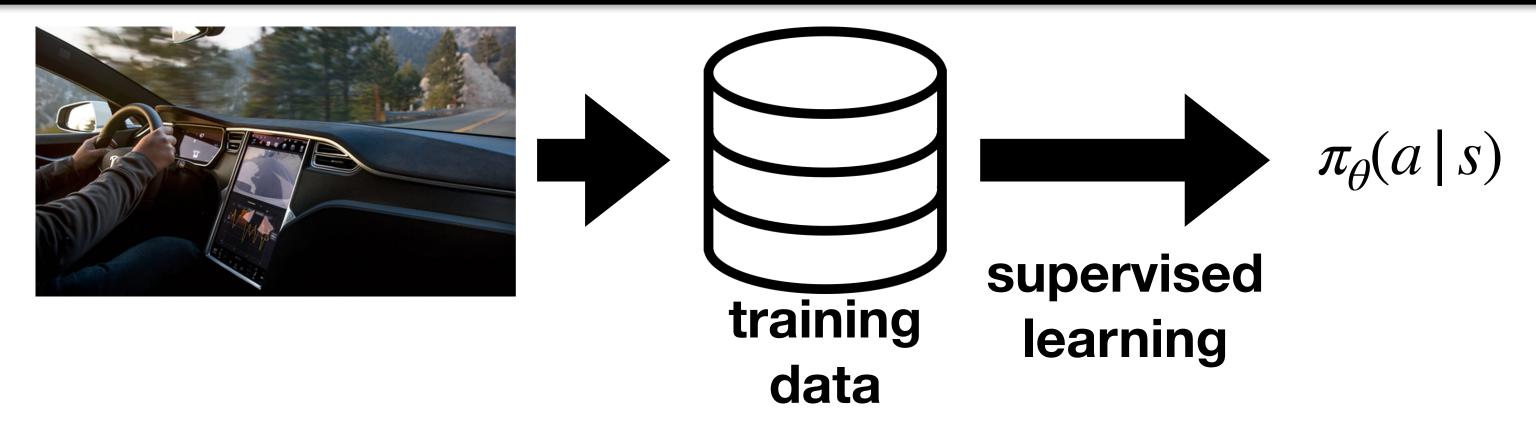


ALVINN

Autonomous Land Vehicle in a Neural Network (ALVINN, 1989)

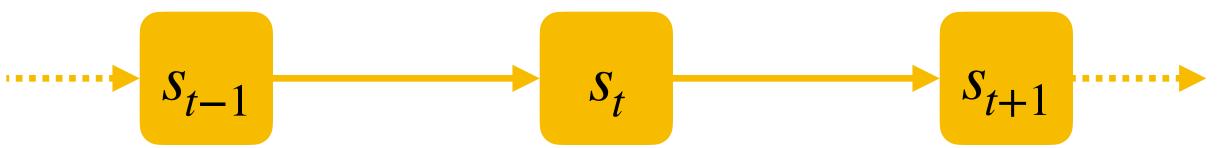


Inaccuracy in BC

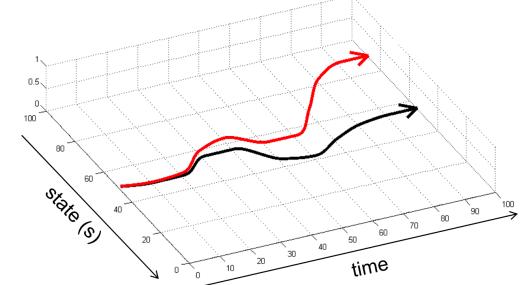


- We could evaluate on held out teacher data, but really interested in using π_{θ}
- If the policy approximates the teacher $\pi_{\theta}(a_t \mid s_t) \approx \pi^*(a_t \mid s_t)$
 - The trajectory distribution will also approximate teacher behavior $p_{\theta}(\xi) pprox p^*(\xi)$
- But errors accumulate over time
 - May reach states not seen in the training dataset

The impact of inaccurate dynamics



- Errors in learning are unavoidable
- What impact do they have on sequential behavior?



- Bounded one-step error in a dynamical model $\sum_{s'} \left| p_{\theta}(s'|s) p^*(s'|s) \right| \le \epsilon$
 - Can lead to growing error over time $\sum_{s_t} \left| p_{\theta}(s_t) p^*(s_t) \right| \le \epsilon t$
 - ullet Not too bad by itself, but can drift outside training distribution ${\mathscr D}$

Today's lecture

Behavior Cloning

Better behavior modeling

Alleviating train-test mismatch

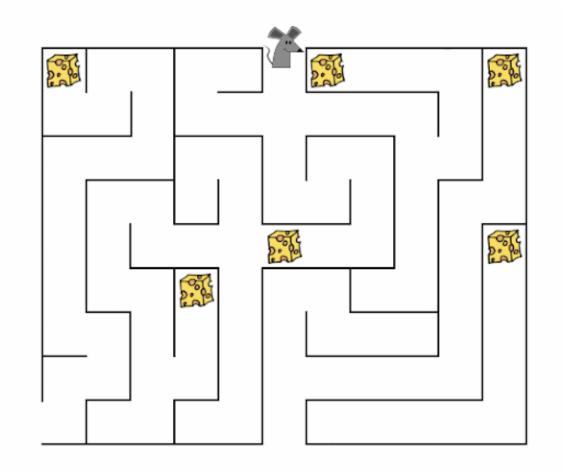
Modeling other agents is hard

- Is there sufficient data? Demonstrating puts a burden on the teacher
- Are demonstrations correct? Humans are fallible, some supervision is hard
- Are demonstrations consistent? Some tasks can be done in multiple ways
- Is the state partially observable? $o_t \stackrel{?}{=} s_t$
- Are the learner and teacher observations the same? $o_t \stackrel{?}{=} o_t^*$

Inconsistent demonstrations: multiple goals

- What if the task is to reach one of multiple goals?
 - Different episodes can successfully reach different goals
 - We need to train one policy to reach multiple goals

- Goal-conditioned policy: $\pi_{\theta}(a_t | s_t, g)$
- More generally: task-conditioned policy $\pi_{\theta}(a_t \mid s_t, \tau)$
 - Goal = desired final state; but how to represent other kinds of tasks?



Goal-conditioned Behavior Cloning

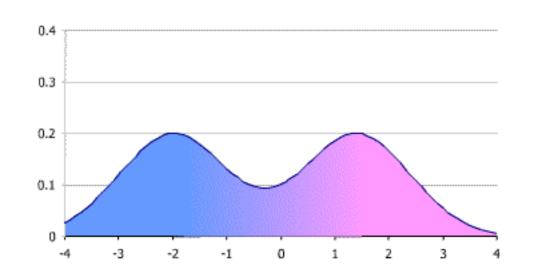
- Can we train a goal-conditioned policy $\pi_{\theta}(a_t | s_t, g)$ from demonstrations?
 - Assume goal = state that the agent should reach
- How can we know the goal in demonstrations $\xi = s_0, a_0, s_1, a_1, \dots$?
 - Manual labeling? $\mathcal{D} = \{(\xi^{(i)}, g^{(i)})\}_i$
- Hindsight: take each s_t as the goal of the trajectory leading to it

$$s_0, a_0, \ldots, s_{t-1}, a_{t-1}, s_t = g$$

• Supervised learning of $\pi(a \mid s, g)$ from data points $((s_t, g = s_t), a_t)$ for t' > t

Inconsistency due to multimodal behavior

- Goal-conditioning assumes known goals
 - More generally, known behavior modifiers
- Usually, the behavior mode is unknown
 - Need multimodal policy $\pi(a \mid s)$
 - Mixture models (e.g. GMM)



- Latent-variable models (e.g. normalizing flows)
- Need to be consistent along a trajectory
 - Condition the policy on memory of past actions $\pi(a_t \mid s_t, a_{\leq t})$

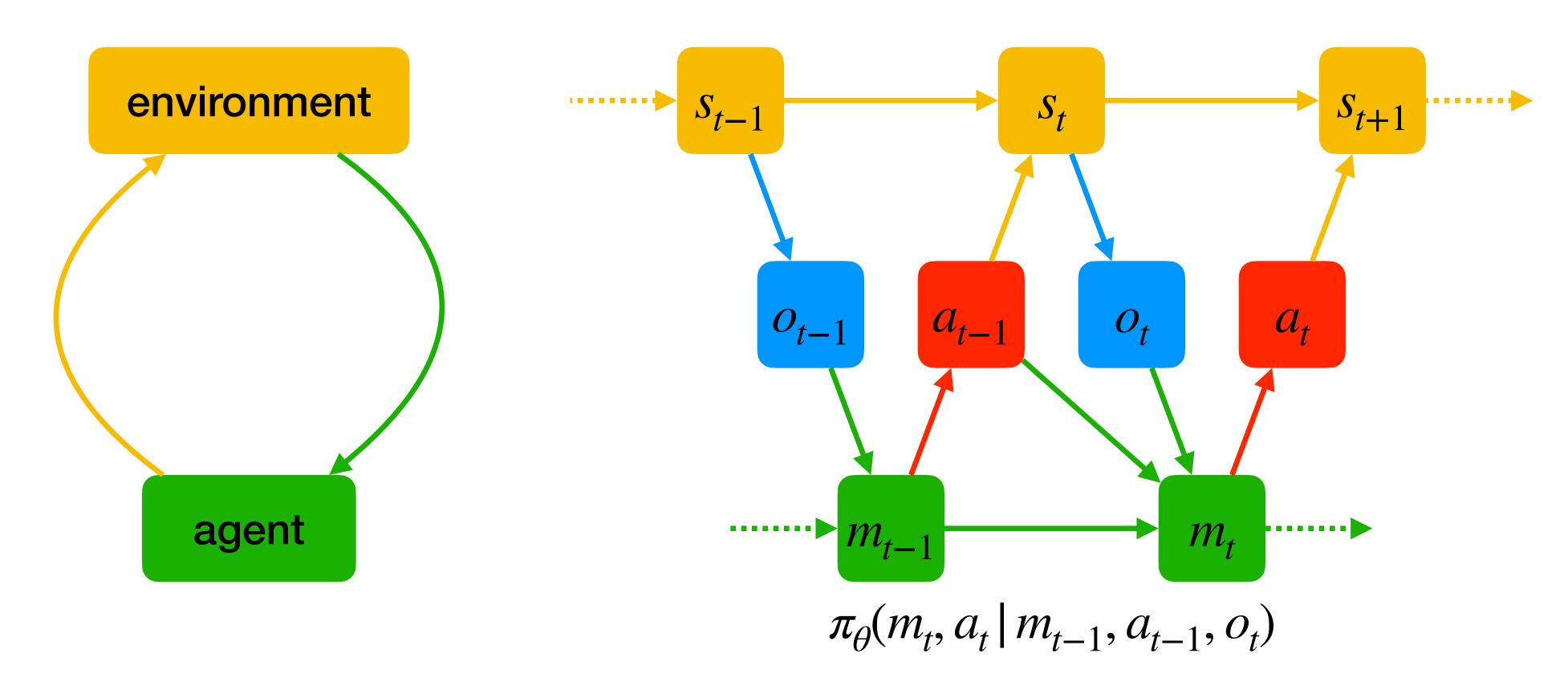
Modeling partially observable behavior

- Partial observations are not Markov
 - Generally, this means $p(o_{t+1} \mid o_t, a_t) \neq p(o_{t+1} \mid o_{\leq t}, a_{\leq t})$
 - Reactive policy $\pi_{\theta}(a_t | o_t)$ may not be optimal
 - May need $\pi_{\theta}(a_t | o_{\leq t})$, or even $\pi_{\theta}(a_t | o_{\leq t}, a_{< t})$; but how?
- Can use $\mathrm{RNNs}\,f_{\theta}:(h_{t-1},a_{t-1},o_t)\mapsto h_t$, or other memory models
- But memory state is latent in demonstrations
 - ► Modeling memory is hard → prior structure may help; more on this later

Modeling memory



Modeling memory



- A common architecture:
 - A recurrent model $m_t = f_{\theta}(m_{t-1}, a_{t-1}, o_t)$; and an action model $\pi_{\theta}(a_t \mid m_t)$

Today's lecture

Behavior Cloning

Better behavior modeling

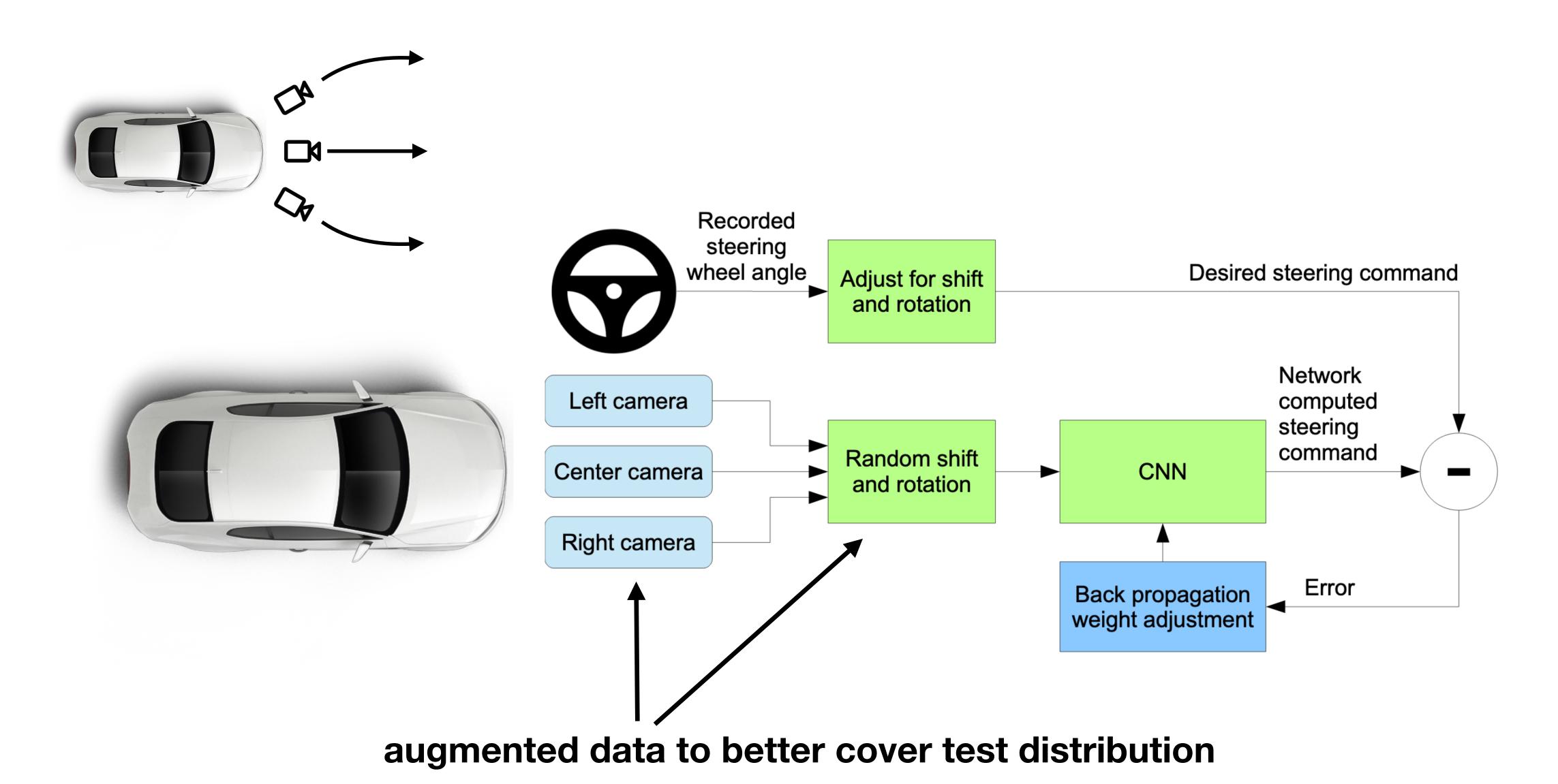
Alleviating train-test mismatch

Alleviating train-test mismatch

- ML promises generalization when training distribution = test distribution
 - But this is challenging in IL: errors accumulate
 - We can quickly get to error states that we haven't seen fixed
 - Train-test distribution mismatch = covariate shift
- Ideas:
 - Augment the training dataset to expand the distribution
 - ► Update train distribution → test distribution
 - Intervene during demonstrations to expand the distribution

Imitation Learning can work

How did they do it?



DAgger: Dataset Aggregation

- Can we collect demonstration data from the test distribution?
 - We don't know $p_{\theta}(\xi)$ until we're done training θ
 - But we get closer and closer during training

Algorithm DAgger

Collect dataset \mathcal{D} of teacher demonstrations $\xi \sim p^*$ repeat

Train π_{θ} on \mathcal{D}

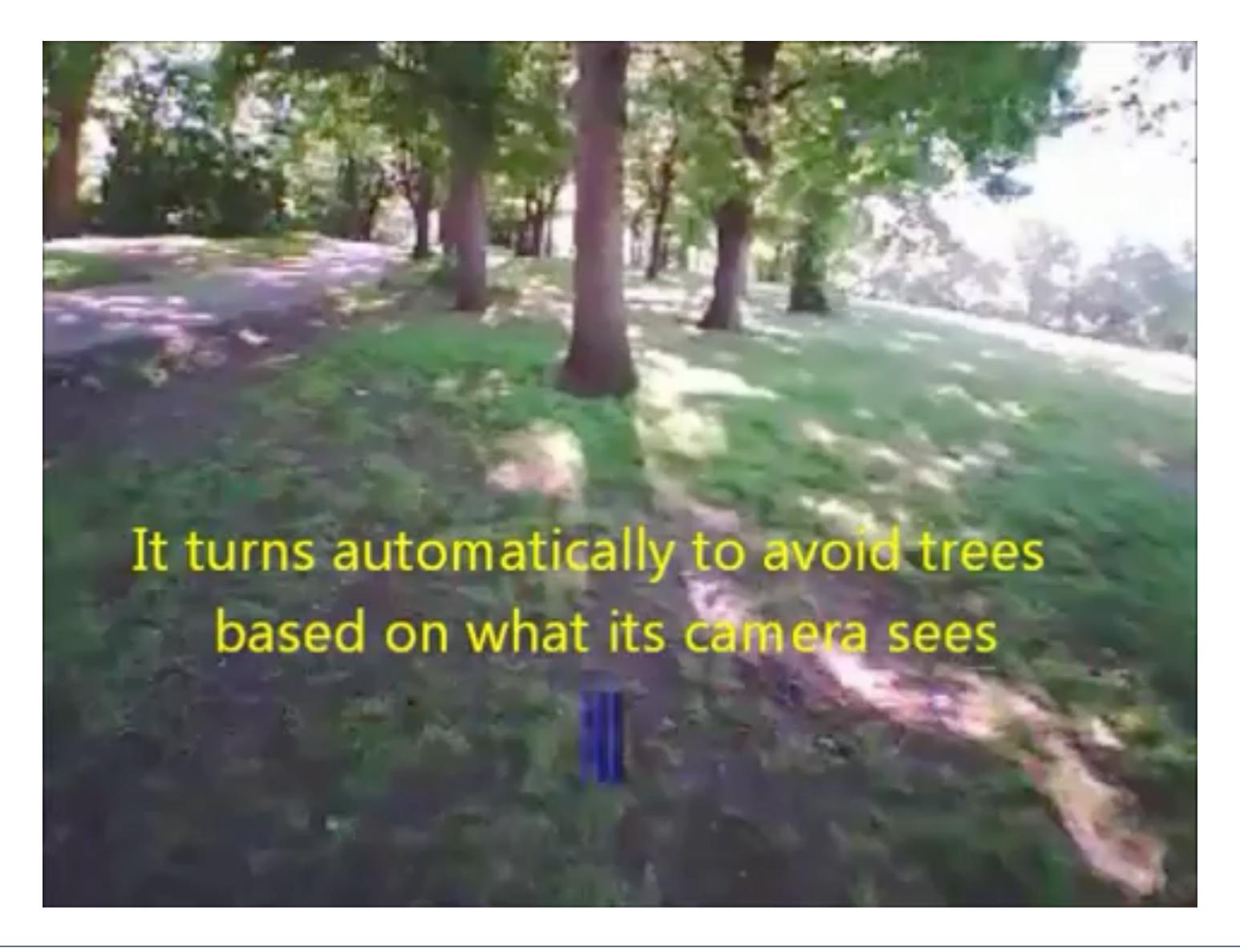
Execute π_{θ} to get $\xi \sim p_{\theta}$

Ask teacher to label $(a_t^*|s_t) \sim \pi^*$

Aggregate $\{(s_t, a_t^*)\}_t$ into \mathcal{D}

but how? challenging...

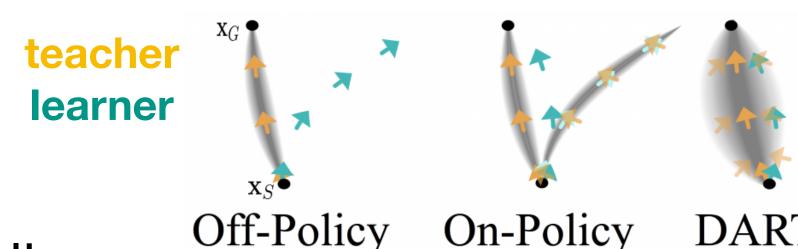
DAgger demo



Video: Stéphane Ross

DART: Disturbances Augmenting Robot Training

Off-policy vs. on-policy



- On-policy = data comes from the learner's current policy
- Off-policy = data comes from another policy (another agent or past learner)
- In off-policy IL (e.g. BC) learner may go off the teacher's support
- In on-policy IL (e.g. DAgger) learner initially goes off, until corrected
- DART: increase the data support by injecting noise during demonstrations
 - Force teacher into slight-error states, to see how they are fixed

DART

- Noise = perturbation of actions $q(\tilde{a} \mid a)$
 - New effective dynamics: $\tilde{p}(s'|s,a) = \sum_{\tilde{a}} q(\tilde{a}|a)p(s'|s,\tilde{a})$
 - For example, in continuous actions: $\tilde{a} = a + \epsilon$; $\epsilon \sim \mathcal{N}(0, \Sigma)$

Algorithm DART

repeat

Collect dataset \mathcal{D} of teacher demonstrations $\xi \sim \tilde{p}^*$

Train π_{θ} on \mathcal{D}

Update noise q such that p_{θ} is better supported by \tilde{p}^*

Image: Michael Laskey

Collect Demonstration

Optimize Noise

 $\psi_n = f(\theta^n)$

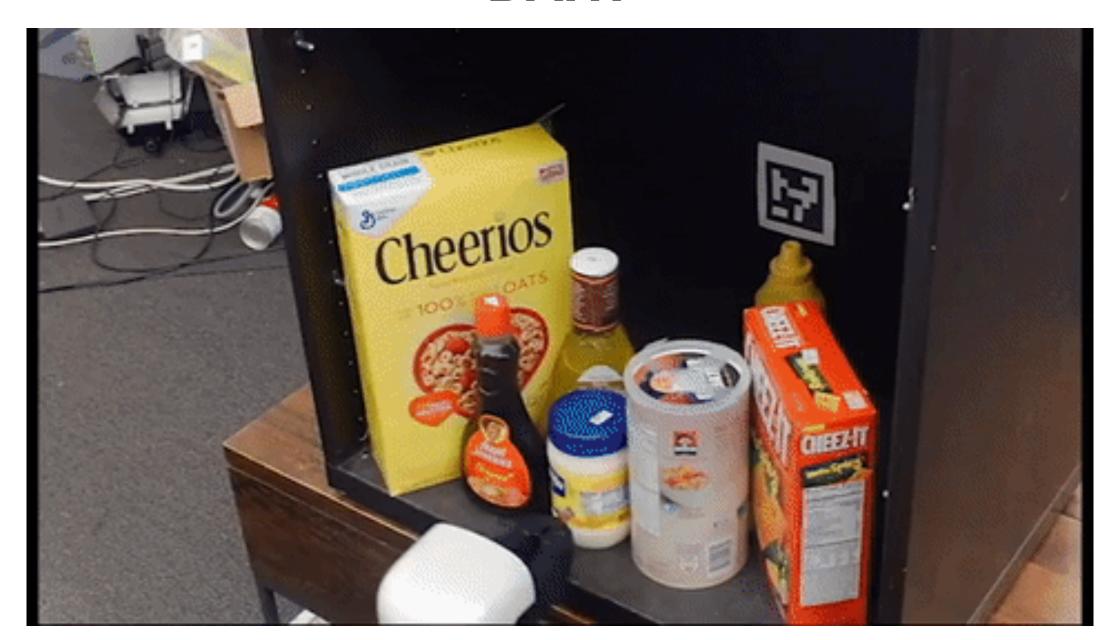
Train Estimator

 $\min_{\theta} \sum_{n=1}^{N} J(\theta, \theta^* | \xi_n)$

Grasping task

Behavior Cloning

DART



[Laskey et al., 2017]

Recap

- Imitation Learning = Learning from Demonstrations
 - Learn policy $\pi(a \mid s)$ from teacher demonstrations
- Behavior Cloning: supervised learning
 - Minimize loss, e.g. NLL, on training set of trajectories
- Accurate imitation is crucial
 - Improve imitation through goal-conditioning, multimodal policies, memory, etc.
- Errors accumulate and cause train-test distribution mismatch
 - Can be alleviated through augmentation, on-policy data collection, noise injection

