U CI University of
California, Irvine

CS 277: Control and

Reinforcement Learning
Winter 2022

Lecture 6: Advanced Model-Free Methods

o -
/
l 4 3
\ /7
= e f
A 5
2 \

WiLL PREss &

Roy Fox -
Department of Computer Science %
Bren School of Information and Computer Sciences
University of California, Irvine

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Logistics

* Assignment 2 to be published soon

Roy Fox | CS 277 | Winter 2022 | Lecture 5: Policy-Gradient Methods

Today's lecture

Continuous action spaces

Trust-region methods

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Backup operator

» Value recursion: V,(s) = E(49~7(8, @) + YE 15,0 V()] = T LV 1(5)

 |In matrix notation:

—> — 7 P . 7
V=T, +y0, v, s | T isias | s
> where 1,(5) = E 51705, @], P(s,5) = E(19~lP(s'| 5, a)] s’
P
e Can be solved with linear algebra: 5115

v =(- yPﬂ)_17ﬂ

/

linear backup operator

largest eigenvalue magnitude

 The inverse always exists because P’ has spectral radius 1

DP

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Bellman operator

. Bellman operator: 7 [V](s) = max (s, a) + yE g5 4, [V()]

A

., Action-value version: 7 [Q](s,a) = r(s,a) + vy = (] S,a)Np[maX Q(s’,a)l
a/

o \alue Iteration = iteratively apply

« Why is this guaranteed to converge? J is a contraction:

|\ TIV,] = TIValllog = max vE s p[Vi(s) = V()] < 7IVi(s) = Vo)l o

S.d \

replace [with max

o V* = T [V*]is the unique fixed point ;

DP

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Q-Learning convergence

o Q—Learning: Q(S, Cl) —)a -+ y max Q(S/, a/)

A

in expectation, this is 7 [Q]
> Initeration 7, use learning rate a;

e Robbins—Monro: converges to O* with probability 1 (almost surely) if:

2 - - .—1/2
» Z a” < oo, implying a; — 0 faster than i

l

» Z a; = oo, implying a; — 0 not faster than i~

l

o Example: a; = i1 (like in averaging)

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Fitted Value lteration

» Bellman (TD) error: I [Vg](s) — V,

DP

 Minimizing the square error Is a projection - /@

PVl = min ||V = V|3 6
0

 If ® is convex, the projection is a non-expansion
2 2
[2°[Vi] = PVl < 1Vi = Valls
 Composition of contractions contracts; but norms mismatch (& : L_; &: L))

» So LT is generally not a contraction = no convergence guarantee

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

But isn't DQN just SGD?

Algorithm DON %
Initialize 6, set @ «— 0 9

§ < reset state oF
for each interaction step v
Sample a ~ e-greedy for Qgy(s, -) max

Get reward r and observe next state s’
Add (s, a,r,s’) to replay buffer D
Sample batch (s,a,r,s’) ~ D

r; s: terminal
Yi < , .
r; +ymaxy, Qs(s:,a’) otherwise
Y s - - 7
Descend LQ — (y — QQ(Sa Cl)) — moving target
every Tiarger Steps, set 0 < 6 « # 56D

s « reset state 1f s’ terminal, else s <« s’

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Is PG just SGD?

Algorithm REINFORCE

Initialize mg
repeat
Roll out & ~ py
Update with gradient g < R(&) 2., Vg log mg(a;|s;)

MF

max

» The gradient is unbiased for V ,J,

» The objective J, changes with @, but so does £ [Ly(x)] in general ML

o But the data distribution changes

> No convergence guarantees (not even locall!)

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Today's lecture

Convergence

Trust-region methods

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Continuous actions spaces

g N can do for large / continuous
 What do we need for policy-based methods" action spaces?

~ For rollouts: given s, sample from zy(a | 5)
» For policy update: given s and a, compute V log my(a | s)
 What do we need for value-based methods?

. For rollouts: given s, compute arg max Qy(s, a)

a X
X

., For value updates: given s, compute max Qy(s, a)
a

« How can we use value-based methods with continuous action spaces?

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

ldea 1: DQN with stochastic optimization

. If we can't enumerate A, let's sample aq, ..., a, and take max (s, a,)
i

> Sample from what distribution?
o Let's find an ad-hoc approximately greedy policy &
. Run value-based algorithm; whenever it needs max Q(s, a):

a

Algorithm Stochastic optimization

Initialize

repeat
Sample ay,...,ay ~n
Select k/c top values Q(s,a;) fori =1,...k
Fit to these “‘elites”

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

ldea 2: easily maximizable Q

w
» Represent (J, in a way that is directly maximizable ®
| 1 o
. Example: quadratic Qy(s, a) = —5(61 — Up($))TPy(s)(a — puy(s)) + Vy(s) .
@
arg max Qy(s, a) = py(s) /\
a |
mdx Q@(Sa a) = VQ(S) T / ——
a |
* Possible architecture: dueling network / \
A V()
/ I /, v,
g i=p= [

174

Ay(s,a) = —=(a — uy(s))TPy(s)(a — y(s))

[Gu et al., 2016]

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

ldea 3: learn optimizing policy

» Previous methods: represent a) maximizer or train one ad-hoc

. More general method: let a deterministic py(s) learn to maximize Q¢(s, a)

» This makes it an Actor—Critic method

e Deterministic Policy Gradient Theorem:

V., (8) = VO, (s, pg(s)) = VgQ, (S, e(s)) + VO, (s, pe(s))
i VQQ/M(S 'MH(S)) T 7k (S'\Saﬂe(S))NP[VQ ﬂe(S,)]

pseudo-reward 7

Volo= 2 VE, [VoQu (50 i) = T, [V0,5 1)

tNGeo(l—y) -

[Silver et al., 2014]

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Deep Deterministic Policy Gradient (DDPGQG)

» Evaluating O: feed actor py(s) into critic O (s, a) Sy 9 Q) —
K —
* Back-propagation (chain rule): —Votg(s) V,0,(s,a)—

V@]@ — _S"’Pe[V@Q¢(S9 /’té’(s))]
= E,_, [Vore(s)V, 05, a = po(s))]

e DDPG: MF
> Train critic O ;: TD policy evaluation op
» Train actor 7,: ascend Q(s, fy) with gradient through 4, a0

[Lillicrap et al., 2016]

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Today's lecture

Convergence

Continuous action spaces

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Importance Sampling

» Suppose you want to estimate = | f(x)]

> but only have samples x ~ p’

* Importance sampling:

p(x)
— L/ =, [p,(x) f(X)]

p(x)
p'(x)

Importance (IS) weights: p(x) =

>

> Estimate: p(x)f(x) withx ~ p’

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

IS application 1: multi-step Q-Learning

n-step Q-Learning: Q(s,, a,) — Z Ve maX O(S,.,,, a)
At=0

» On-policy data (#;, 7y 1y - -+ Frppy_1> Si1p): @, CAN be anything

. but must have a,, ,, = arg max QJ(s,, 5, @) for LHS = E[RHS] (Bellman optimality)
a

_ To be off-policy: update Q(s;, a,) — E yAp2r, A+ Y max O(s,, ., a)
d
At=0

+ At
For data from 7/, with p~' = H

iI=1+1

m(a;|s;)

>

7'(a;|s;)

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

IS application 2: off-policy policy evaluation
we

. Estimate J, = E;_, [R(¢)] off-policy: J, = ‘5,\,],”,[;0,7;/(5)1?(5)]

it () = 24D _ Tl o

] " pn’(g) / 7t (at ‘ St) p(s’| s, a) cancels out

» p(&) can be very large or small = high variance

e Some reduction: r, is not affected by future actions

. JZ'(CZ / ‘ \) /)
To= Y eyl 0iCn) = 2 By v | [~

[{ 1<t 7T (af, ‘ St’)

[Precup et al., 2000]

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

IS application 3: Off-policy Policy Gradient

Policy Gradient: VyJy = Z V' Eenp [R () Vglog my(a, | s,)]

Off-Policy PG: VyJ, = Z Y Eep,lr H(E IR (&) Vglog my(a, | 5)]

> R, (&) = future discounted rewards affected by m,(q, | s,) =

» pY(E.,) = past probability ratios that affect 7,(q, | s,)

« Should we discount by y’? Not if we care about evidence from later states

ﬂ@(at ‘ Sl‘)

Pef(fq) has high variance, some methods just use p, (a,|s) =
ﬂ@’(at | St) [Liu et al., 2018]

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Performance Difference Lemma

* Policy gradient = small changes in policy; can we make large changes?

For any x, &: Z y'A (s,a,) = Z y'(r,+yV (s,)= V.(s)) = R(f)/— V_(so)

advantage of entire trajectory

 EXxpectation by different policy: Performance Difference Lemma

N VE g ayep [Ax a)] = Ecy [R(E) = Vi)l = J, —

AN

So ~ p in both 7 and 7’

» We want to maximize over 7z, with 7 fixed

Compare: PG Theorem V ,J, = Z Y'E (s ayp [Ar, (5 @) V glog my(a, | 5))]

[
[Kakade and Langford, 2002]

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Finding best next policy

 With current policy 7: find max J, — J; = max Z y! = (s, at)Npﬂ[Aﬁ(St, a,)]

U U
[

> Can use 7 to evaluate A

» But we don't have data (s,,a,) ~ p, ; idea: sample from 7

> Trick guestion: is this on-policy or off-policy? On-policy data, but needs IS weight

m,?X 2 y' Ck thﬁ[Pg(égt)Aﬁ(Sta a,)]
t

. - m(a,|s;) . -
. Isit reasonable to use pZ(«,|s,) = ———— instead? i.e. drop p~.

m(a;|s,)

(E<p)

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Trust-Region Policy Optimization (TRPO

» Trust region = space around 7 where p(5_,) =~ 1

» Easier to consider

_§<thﬁ[10g p(§<z)] ~ ()

— _§<thﬁ[10gp(5<t)] —])[ﬁ(§<t)uﬂ(§<t)] — Z

Trace of unconstrained optimization with trust-region method

5</Np,-,[])[ﬁ.(at’ ‘ St’) H]Z'(Clt/ | St’)]]

I'<t
. — v —
. TRPO: mglx (S,a)Npé[pé(a\s)Aé(s, a)] s.t. smpil Vrg(als)||myals)]] < e @
o
» Ap estimated with critic A, ®
» Computational tricks for gradient-based optimization @

[Schulman et al., 2015]

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Proximal Policy Optimization (PPO)

. Same motivation: ascend E g), [/ e(a | 5)A (s, a)] with m, staying near 7

> PPO-Penalty: add a penalty term for E,_, [D[zz(a|s)|zy(a|s)]]

» PPO-Clip: ascend [LH(S a)| with

—(5,0)~pp

Lg(s, a) = min(p e(a | 5)AH(s, a),Ay(s,a) + |€Az(s,a)|)

no incentive # doesn't happen

e This caps the incentive for @ to deviate from @ at: PPO has lots more tricks
to limit divergence

. pe(a |5) < 1 + e forAy(s,a) > 0 (when we want to increase 7z,(a | s))

. pg(a |5) > 1 —efor Ag(s,a) < O(when we want to decrease 7y(a | 5))
[Schulman et al., 2017]

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

Recap

 Model-based policy evaluation can be solved linearly
e Deep RL isn't just SGD

> EXxception: policy gradient on offline (batch) data
e Value-based methods struggle to max in continuous action spaces

> DDPG: 7, learns to maximize (J, (actor—critic method)

e Importance Sampling decouples expectation and sampling distributions
> Optimize on-policy objectives with off-policy data

> TRPO and PPO: sample from current policy to evaluate next policy, if it's close

Roy Fox | CS 277 | Winter 2022 | Lecture 6: Advanced Model-Free Methods

