# CS 277: Control and Reinforcement Learning Winter 2022 Lecture 7: Exploration

### Roy Fox

**Department of Computer Science** Bren School of Information and Computer Sciences University of California, Irvine









### assignments



• Assignment 2 due next Tuesday

### • Quiz 4 to be published soon

### Today's lecture

### **Multi-Armed Bandits**

### **Exploration in Deep RL**

## Multi-Armed Bandits (MABs)

- Basic setting: single instance x, multiple actions  $a_1, \ldots, a_k$ 
  - Each time we take action  $a_i$  we see a noisy reward  $r_t \sim p_i$
- Can we maximize the expected reward max  $\mathbb{E}_{r \sim p_i}[r]$ ?
  - We can use the mean as an estimate
- Challenge: is the best mean so far the best action?
  - Or is there another that's better than it appeared so far?

$$e \mu_i = \mathbb{E}_{r \sim p_i}[r] \approx \frac{1}{n(i)} \sum_{t \in \mathcal{T}_i} r_t$$







## **Exploration vs. exploitation**

- Exploitation = choose actions that seems good (so far)
- Exploration = see if we're missing out on even better ones
- Naïve solution: learn r by trying every action enough times
  - Suppose we can't wait that long: we care about rewards while we learn
- Regret = how much worse our return is than an optimal action

 $\rho(I) =$ 

$$T\mu_{a^*} - \sum_{t=0}^{T-1} r_t$$

• Can we get the regret to grow sub-linearly with  $T? \implies$  average goes to 0:  $\frac{\rho(T)}{T} \rightarrow 0$ 





<u>http://iosband.github.io/2015/07/28/Beat-the-bandit.html</u>

### Simple exploration: $\epsilon$ -greedy

- With probability *E*:
  - Select action uniformly at random
- Otherwise (w.p.  $1 \epsilon$ ):
  - Select best (on average) action so far
- Problem 1: all non-greedy actions selected with same probability
- Problem 2: must have  $\epsilon \to 0$ , or we keep accumulating regret
  - But at what rate should  $\epsilon$  vanish?



### **Boltzmann exploration**

# Keep an average of past rewards $\hat{\mu}_i = \frac{1}{n(i)} \sum_{t \in \mathcal{T}_i} r_t$

# Boltzmann (softmax) exploration: $\pi(a_i) = \operatorname{softmax}_{\beta} \hat{\mu}_i = \frac{\exp(\beta \hat{\mu}_i)}{\sum_i \exp(\beta \hat{\mu}_i)}$

- Obviously bad actions  $\hat{\mu}_i \ll \max_i \hat{\mu}_j$  are unlikely to be used (but can!)
  - **Problem:** still must have  $\beta \to \infty$ , or we keep accumulating regret

# **Optimism under uncertainty**

- Tradeoff: explore less used actions, but don't be late to start exploiting what's known
  - Principle: optimism under uncertainty = explore to the extent you're uncertain, otherwise exploit
- By the central limit theorem, the mean rewa
- Be optimistic by slowly-growing number of standard deviations:  $\bullet$

 $a = \arg m$ 

- Upper confidence bound (UCB): likely  $\mu_i \leq \hat{\mu}_i + c\sigma_i$ ; unknown variance  $\implies$  let c grow
- But not too fast, or we fail to exploit what we do know
- Regret:  $\rho(T) = O(\log T)$ , provably optimal

ard 
$$\hat{\mu}_i$$
 of arm *i* quickly  $\rightarrow \mathcal{N}\left(\mu_i, O\left(\frac{1}{n(i)}\right)\right)$ 

$$\max_{i} \hat{\mu}_{i} + \sqrt{\frac{2\ln T}{n(i)}}$$

# Thompson sampling

- Consider a model of the reward distribution  $p_{\theta_i}(r \mid a_i)$
- Suppose we start with some prior  $q(\theta)$ 
  - Taking action  $a_t$ , see reward  $r_t \implies$  update posterior  $q(\theta | \{(a_{< t}, r_{< t})\})$
- Thompson sampling:
  - Sample  $\theta \sim q$  from the posterior

• Take the optimal action  $a^* = \max_{r \sim p_{\theta i}} [r]$ 

- Update the belief (different methods for doing this)
- Repeat

### Other online learning settings

- What is the reward for action  $a_i$ ?
  - MAB: random variable with distribution  $p_i(r)$
  - Adversarial bandits: adversary selects  $r_i$  for every action
    - The adversary knows our algorithm! And past action selection! But not future actions
      - Learner must be stochastic (= unpredictable) in choosing actions
    - Amazingly, there are learners with regret guarantees
- Contextual bandits: we also get instance x, make decision  $\pi(a \mid x)$ 
  - Can we generalize to unseen instances?

### **Today's lecture**

### **Multi-Armed Bandits**

### **Exploration in Deep RL**

## Learning with sparse rewards

- Montezuma's Revenge
  - Key = 100 points
  - Door = 500 points
  - Skull = 0 points
    - Is it good? Bad? Affects something off-screen? Opens up an easter egg?
  - Humans have a head start with transfer from known objects
- Exploration before learning:
  - Random walk until you get some points could take a while!





# RL exploration is more complicated...

- Need to consider states and dynamics
- Need coordinated behavior to get anywhere
  - E.g., cross a bridge to get the game started...
  - Random exploration will kill us with high probability
    - Structured exploration: noise over time has joint distribution, temporal structure
- How to define regret?
  - With respect to constant action? We can outperform it
  - With respect to optimal policy? May be too hard to learn  $\implies$  linear regret
  - Most approaches are heuristic, no regret guarantees; often train-time rewards don't matter





### **Count-based exploration**

• Generalizing UCB exploration a = a

- Count visitations to each state n(s) (or state-action n(s, a))
- Optimism under uncertainty: add exploration bonus to scarcely-visited states
  - $\tilde{r} = r$
  - $r_e$  should be monotonic decreasing in n(s)
  - Need to tune its weight

$$\arg\max_{i}\hat{\mu}_{i} + \sqrt{\frac{2\ln T}{n(i)}} \text{ from MAB to RL}$$

$$+ r_e(n(s))$$

# Density model for count-based exploration

- How to represent "counts" in large state spaces?
  - We may never see the same state twice
  - If a state is very similar to ones we've seen often, is it new?
- Train a density model  $p_{\phi}(s)$  over past experience
- Unlike generative models, we care about getting the density correctly
  - But we don't care about the quality of samples
- Density models for images:
  - CTS, PixelRNN, PixelCNN, etc.



### **Pseudo-counts**

• How to infer pseudo-counts from a density

• After another visit:

- To recover the pseudo-count:
  - $p_{\phi'} \leftarrow \text{mock-update}$  the density model with another visit of *s*
  - Compute

$$\hat{N} = \frac{1 - p_{\phi'}(s)}{p_{\phi'}(s) - p_{\phi}(s)} p_{\phi}(s) \qquad \hat{n}(s) = \hat{N}p_{\phi}(s)$$

$$p_{\phi}(s) = \frac{n(s)}{N}$$

$$p_{\phi}(s) = \frac{n(s) + 1}{N + 1}$$

### **Exploration bonus**

- What's a good exploration bonus?
- In bandits: Upper Confidence Bound (UCB)

$$r_e(n(s)) = \sqrt{\frac{2\ln N}{n(s)}}$$

• In RL, often:

$$r_e(n(s)) = \sqrt{\frac{1}{n(s)}}$$



**20 MILLION TRAINING FRAMES** 



### **10 MILLION TRAINING FRAMES**



**50 MILLION TRAINING FRAMES** 





# Thompson sampling for RL

- Keep a distribution over models  $p_{\theta}(\phi)$
- What's our "model"? Idea 1: MDP; Idea 2: Q-function

- Thompson sampling over Q-functions:
  - Sample  $Q \sim p_{\theta}$
  - , Roll out an episode with the greedy policy  $\pi(s) = \arg \max Q(s, a)$
  - Update  $p_{ heta}$  to be more likely for Q' that gives low empirical Bellman error
  - Repeat



- Online learning = getting good rewards while learning
  - In contrast: learn however, but deploy good policy
- Online learning requires trading off exploration-exploitation
  - Don't overfit to too little data
  - Don't be late to use what you've learned
- Optimism under uncertainty: exploration bonus for novelty  $\bullet$
- Thompson sampling: coordinated exploration actions
- Same principles hold in RL