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Today's lecture

Linear Quadratic Regulator

Hamiltonian
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Why Optimal Control?

 Optimal Control involves environments simple enough to solve directly
> |Important applications
> Powerful and profound theory

» Useful insights / components for harder domains
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Linear Time-Invariant (LTl) systems

A A
Xr—1 Xy Arr1

 Continuous state space: x, € |
« Simplest system — linear: x,, | = Ax, A e R™

> Linear Time-Invariant (LTl): A does not depend on ¢

 How does the system evolve over time?
— [
x, = A'X,

« Adding drift b doesn't add insight
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Stability

» To analyze: use eigenvectors Ae = Ae

« Consider a basis of eigenvectors ¢y, ..., e, & C"

xO—Zae — x1=AxO=ZaZ/IZel —> X, —Zal :€;
i

. Instability: some |[4]| > 1, so that lim ||x,|| = oo
[— 00

. Stability: all [|4;]] < 1, sothat lim x, = 0

[— 00

>~ When ||4;|| = 1, component never vanishes or explodes; still called unstable
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Linear control systems

A A
1 Ay

m

At A1

« Continuous action (control) space: u, € |

. Controlled LTI system: x,, | = Ax, + Bu, B € R/™m

x, = A'x, + At_lBuO + .-+ ABu, ,+ Bu,_,

U, 1

U, -

x, = A'xy + [B AB --- At—lB]

U
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Reachability

U1
. | i ? U,
Can we reach a given state X, at time " x =A%+ [ AB - a-'g||" 2
» |f and only If X, —Atxo € Span [B AB ... Af—lB] “0
has d
» Cayley-Hamilton: A satisfies py(1) = |Al — A | - Ais’sng;:r;y LA . An-!
» Sufficient to consider controllability matrix: ¢ = [B AB ... An—lg]

 Reachability: can we reach all states eventually?

> If and only if spané = R" <= ranké =n

. To reach x: control ' = €~ 1(x — A"x,)
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Stabilizability

. reach X = Iy
Can we reach x = 0 eventually v =A%+ B AB
» For each mode ¢; (eigenvector of A):

> Is ||4|| < 1? = stable, otherwise unstable

- Stable modes reach 0 on their own

~ If unstable, is e; € span'6’? = stabilizable, otherwise unstabilizable

- Stabilizable modes = unstable, but controllable

» The system (A, B) is stabilizable if all modes are stable or stabilizable

\
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Today's lecture

Stability, reachability, stabilizability

Hamiltonian
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Quadratic costs

e Simplest reward: linear has no maximum = concave quadratic

» Consider cost: c(x,, u,) = —xTth i Ru,

. O € R s positive semidefinite O > 0: %xTQx > () for all x

> No incentive to go to infinity in any direction

. R € R™™ s positive definite R > 0: %MTRM > () for all u

> |ncentive for finite control in all directions

o Usually, finite or infinite horizon, no discounting
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Linear Quadratic Regulator (LQR)

* Linear Quadratic Regulation (LQR) optimization problem:

> Given LTI dynamics + quadratic cost (A, B, O, R)

environment
> Find the control function u, = z(x,)

T—1 T—1
 That minimizes J* = 2 c(x, u,) = %2 (xtTth + utTRut)

> Such that x,,; = Ax, + Bu, for all ¢
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Solving the LQR

Bellman recursion: Vi(x,) = minc(x,, u,) + V, (X, 1)

U, \

X, 1 = Ax, + Bu,

» Let's solve while also proving by induction that V. is quadratic
» Base case: V, =0

. M
> Assume: Vi (6 ) = 3X 51Xy St41Z 0

» Solve: Vut(c(xt, u)+ V.. 1(x.) =0
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Bellman optimality

Vie () = %XILSHIXHI
0 = Vut(C(Xt, ) + Vi 1(X41))

X, 1 =Ax, + Bu,

1
—2 Vut(xtTth + u,; Ru, + (Ax, + Bu,)'S, | (Ax, + Bu,))
= Ru, + B'S,. (Ax, + Bu,)

I/t>I< —_ (R + BTSt 1B)_1BTSt 1Axt

[

e Plugging ut* iInto the Bellman recursion and rearranging terms:
1 _
Vi(x) = Sx1(Q + AT(S,y — S B(R + BTS,,1B)™'BTS,, DA)x,

. Ricatti equation: S, = Q + AT(S,,; — S,, ;B(R + B'S, . ,B)"'BTS,, )A
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Optimal control: properties
o Linear control policy: u, = Lx,

» Feedback gain: L, = — (R + BTS,, ;B)"'BTS A

. Quadratic value (cost-to-go) function V(x,) = %xtTStxt

» Cost Hessian §, = Vin is the same for all x,

» Ricatti equation for S, can be solved recursively backward

S =0+A%S,, - S, B(R+B'S,_,B)"'BTS, )A

> Without knowing any actual states or controls (!) = at system design time
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Infinite horizon

T-1
Average cost: J = lim = c(x, u,)

T
I

» For each finite T we solve with Bellman recursion, affected by end V. = ()

> |n the limit, end effects go away = converge to time-independent

e Discrete-time algebraic Ricatti equation (DARE):

S=0+AT(S - SB(R+ B'SB)"'BTSA

» Optimal cost-to-go function: V(x) = %XTSX; optimal cost: J = %XOTSXO
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Non-homogeneous case

* More generally, LQR can have lower-order terms
Xep1 = JiX 1) = Ax, + B, + b,
1
c (X, uU) = —xTtht+ Su R, + u/Nx, + q'x, + r/u, + s,
. . . . | - N
. More flexible modeling, e.g. tracking a target trajectory E(Xt —X)'0x, — X,)

» Solved essentially the same way

» Cost-to-go V(x,) will also have lower-order terms
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Today's lecture

Stability, reachability, stabilizability

Linear Quadratic Regulator
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Co-state

c, € R f, e R”
» Consider the cost-to-go V/'(x,) = c(x, u,) + V7 ,(f(x,, u,))

* To study its landscape over state space, consider its gradient

I/t = thVtﬂ = thct T \ ﬂ thft = thct T I/t+1 thft

Xer1 11

» Jacobian of the dynamics: V, f, € | nxn

» Co-state v, € R" = direction of steepest increase in cost-to-go

» Linear backward recursion v, = V, ¢, + v, V, [, initialization: vy = 0
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Hamiltonian

* Cost-to-go recursion: (first-order approximation)

Vi) =cx,u) + Vi () = e u) + x4 Ve Vi

X1

N\

 Hamiltonian = first-order approximation of the cost-to-go co-state v,

A (Xp Vyy15 W) = (X 1) + 1y 1 J(X, Uy)
> Related to, but not the same as the Hamiltonian in physics
 The Hamiltonian is useful to get first-order conditions for optimal control

> Equivalent to Bellman optimality

> Even more useful in continuous time (equivalent to Hamilton-Jacobi—Bellman)
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Pontryagin's maximum principle

o Hamiltonian: Z (x,, v, (, u,) = c(x,u,) + v, f(x,, u,)

 Necessary optimality conditions:

V=1 Vi 1= Xy V=0

Vi1

A A N, W
SRy ? § y { 1
_ . 2 e i ’
e T 4t ke
iy /' . '&“Lw

Lv Pontryagin

o« V. Z,=V,c,+ 1,1V, [, =1, necessary forv, = V_ V[ to be the co-state

. V, H ;= fx,u) = x| necessary for x, to be the state for dynamics f

T-1
Objective: min J s.t. x,, | = f(x,, u,); Lagrangian: &£ = Z H,— VX
U
=0
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Hamiltonian in LQR

 The Hamiltonian is generally high-degree, many local optima, hard to solve

e |n LQR, the Hamiltonian is quadratic

1 1
= 7xOx+—u/Ru, + v, (Ax, + Bu,)

* This suggests forward-backward recursions for x, v, and u:

v % = Ax, + Bu,
Ut — th%l‘ — DZ‘-I-IA + XtTQ
V., =Ru,+BWw =0

« The solution coincides with the Ricatti equations with v = S,x, u, = Lx,
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Recap

e | QR = simplest dynamics: linear; simplest cost: quadratic

» Can characterize stability, reachability, stabilizability in terms of (A, B)

* Can use Ricatti equation to find cost-to-go Hessian

* Equivalently: Hamiltonian gives state forward / co-state backward recursions
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