CS 277 (W22): Control and Reinforcement Learning

Quiz 2: Imitation and TD Learning

Due date: Wednesday, January 19, 2022 (Pacific Time)
Roy Fox https://royf.org/crs/W22/CS277
Instructions: please solve the quiz in the marked spaces and submit this PDF to Gradescope.
Question 1 Check all that hold in Imitation Learning:
\square With enough data, BC can learn an optimal policy, even if the optimal demonstrator is perturbed by ϵ -greedy behavior (i.e. has probability ϵ to take a uniformly random action).
☐ It may be impossible, with any amount of data, to successfully imitate a demonstrator with a different state observability (different sensors) than the learner.
☐ Both DAgger and DART can overcome inconsistent demonstrations more easily than BC.
□ DART tends to outperform DAgger if teacher actions tend to get worse the less likely a state is to appear in (noiseless) teacher demonstrations.
Question 2 Value Iteration in finite state and action spaces (check all that hold):
□ Converges regardless of how it is initialized.
\Box Can be computed in $O(S ^2 A)$ time per iteration.
☐ Finds the optimal value function in a finite number of iterations.
Question 3 Reinforcement learning with MC policy evaluation (check all that hold):
☐ Always converges in finite state and action spaces, if it samples enough data in each iteration.
☐ Can benefit from a replay buffer, due to the data diversity it provides.
\Box Can benefit from using an ϵ -greedy interaction policy, compared with greedy.
\Box If using ϵ -greedy, can benefit from gradually taking ϵ to 0, compared with constant ϵ .
Question 4 We discussed Fitted Value-Iteration (FVI), Fitted Q-Iteration (FQI), and Sampling-based Fitted Q-Iteration, but not Sampling-based Fitted Value-Iteration (using V). Is such an algorithm possible? Yes / No .
Briefly justify:

Question 5	In Deep Q-Learning (check all that hold):	
------------	---	--

- □ Representing the Q function with a network that outputs a size |A| vector enables taking its maximum.
 □ Using a replay buffer stabilizes the training process.
- \Box Gradually taking the ϵ (of ϵ -greedy exploration) to 0 throughout learning lessens the train–test distribution mismatch.
- □ Using a target network is useful in diversifying the target values to effectively consider more experience.