CS 277 (W22): Control and Reinforcement Learning

Quiz 5: Model-Based and Partial Observability

Due date: Frida	ay, February 25, 2022 (Pacific Time)
Roy Fox https://royf.o	rg/crs/W22/CS277
Instructions: please	solve the quiz in the marked spaces and submit this PDF to Gradescope.
	sampling experience (s, a, r, s') for RL, an arbitrary-reset simulator $\hat{p}(s' s, a)$ any state s , is more useful than a simulator that cannot, in the following ways
\Box s can be sample	d from an arbitrary distribution.
\Box a can be sample	ed on-policy $(a s) \sim \pi$.
\Box $(r, s' s, a)$ can be	pe sampled multiple times.
\Box s can be set to s	' after every sample (except when s' is terminal), to get entire trajectories.
Question 2 In Ite	rative LQR (iLQR) (check all that hold):
☐ If the dynamics one step.	is globally linear and the cost globally quadratic, the algorithm converges in
☐ The cost Hessia	ns are guaranteed to be positive (semi)-definite $\nabla_x^2 \hat{c}_t \ge 0, \nabla_u^2 \hat{c}_t > 0.$
☐ The algorithm a	lways converges, but possibly to a local optimum.
(or learned) mod	an interact with a deterministic environment can run iLQR without a known del: after updating the policy to the LQR optimum, the new trajectory can be get out in the environment.
MDP in a subset <i>S</i> of unknown states, whil	odel-based exploration algorithms, let \hat{M} be a good approximation of the real states (<i>known</i> states). \hat{M}' is similar to \hat{M} , except that \hat{M} gives reward 0 in \hat{M}' gives the maximum reward r_{max} . Check all that hold for the optimal optimal policy π' in \hat{M}' :
\Box If π has low pro	bability to reach an unknown state, than it is near-optimal in M .
\Box If π' has low pro	obability to reach an unknown state, than it is near-optimal in M .
\Box π tends to have	a higher probability than does π' to reach an unknown state.
\Box E ³ uses π' rathe	er than π for exploration, because π' is optimistic under uncertainty and thus

explores more.

Question 4 Model Predictive Control (MPC) uses an approximate model for planning, but then only executes each plan for a single step, and re-plans after every action. This scheme partly mitigates the accumulation of model error. This is true regardless of observability, and can be beneficially used in unobservable environments. **True / False**.

Briefly justify:			

Question 5 Using RNNs in deep RL (check all that hold):

- \square REINFORCE with an RNN policy $\pi_{\theta}(a_t|m_t)$, with $m_t = f_{\theta}(m_{t-1}, o_t)$, can compute an unbiased policy gradient $\sum_t R(\xi) \nabla_{\theta} \log \pi_{\theta}(a_t|m_t)$.
- \square A2C (on an entire sampled trajectory ξ) with an RNN actor as above and a critic $V_{\phi}(m_t)$ can compute an unbiased policy gradient $\sum_t (R_{\geq t}(\xi) V_{\phi}(m_t)) \nabla_{\theta} \log \pi_{\theta}(a_t|m_t)$.
- □ In actor–critic algorithms with an RNN actor as above, the critic has the correct policy value when $V_{\phi}(m) = \mathbb{E}[R_{\geq t}(\xi)|m_t = m]$ for each RNN state m.
- \square In value-based algorithms, a value network $Q_{\theta}(m_t, a_t)$ that pre-processes observations with $m_t = f_{\theta}(m_{t-1}, o_t)$ is at the optimal value when it satisfies the Bellman recursion, $Q_{\theta}(m, a) = \mathbb{E}[r + \max_{a'} Q_{\theta}(m', a') | m, a]$, for each RNN state m and action a.