CS 277 (W22): Control and Reinforcement Learning

Quiz 6: Inverse RL and Bounded RL

Due date: Monday, March 7, 2022 (Pacific Time)

some actions are much better than others.

Roy Fox https://royf.org/crs/W22/CS277
Instructions: please solve the quiz in the marked spaces and submit this PDF to Gradescope.
Question 1 The Inverse RL (IRL) algorithms we saw also find a good policy. Comparing IRL to Imitation Learning (IL) (check all that hold):
☐ Learning both a reward function and a policy can be an easier problem than only learning a policy.
☐ IL methods that also learn a reward function are typically more robust to suboptimal demonstrations than those that don't.
☐ IL methods that also learn a reward function are typically more robust to conflicting or multi-modal demonstrations than those that don't.
□ Pre-training with IRL in one environment can provide a good starting point for IL in another environment with similar but different dynamics, such as in sim2real.
□ Pre-training with IRL in one task can provide a good starting point for IL in a completely different task with the same environment dynamics.
Question 2 Generative Adversarial Imitation Learning (GAIL) was formulated in terms of entropy-regularized RL with discriminator-based rewards; see lecture 14, slide 16, last line of the algorithm. If another RL algorithm is used in GAIL, is the justification to use discriminator-based rewards, as presented in slide 15, still correct? Yes / No.
Briefly justify:
Question 3 In Soft Q-Learning (SQL) (check all that hold):
\Box As $\beta \to 0$, the algorithm learns a value function Q_{π_0} that evaluates π_0 .
□ In large action spaces, we can obtain an unbiased estimate of the target value $r + \frac{\gamma}{\beta} \log \mathbb{E}_{(a' s') \sim \pi_0} [\exp \beta Q(s', a')]$ by replacing the expectation with a sample $(a' s') \sim \pi_0$.
☐ The soft-optimal policy can also be used for exploration.
\square When π_0 is uniform and β is finite. $O(s,a)$ penalizes actions that lead to future states in which