CS 277 (W24): Control and Reinforcement Learning Exercise 3

Due date: Tuesday, February 20, 2024 (Pacific Time)

Roy Fox https://royf.org/crs/CS277/W24

Instructions: In theory questions, a formal proof is not needed (unless specified otherwise); instead, briefly explain informally the reasoning behind your answers. In practice questions, include a printout of your code as a page in your PDF, and a screenshot of TensorBoard learning curves (episode_reward_mean, unless specified otherwise) as another page.

Part 1 Properties of linear–Gaussian systems (20 points)

Question 1.1 (7 points) Consider a deterministic uncontrolled LTI system with dynamics $x_{t+1} = Ax_t$, where *A* is an $n \times n$ transition matrix, that is only observable through a noiseless observation $y_t = Cx_t$, where *C* is a $k \times n$ observation matrix. The *observability matrix* of the system (A, C) is

$$O = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}.$$

We say that a state $x \neq 0$ is *unobservable* if, after starting at $x_0 = x$, we have only zero observations, i.e. $y_t = 0$ for all $t \ge 0$. Show that there exists an unobservable state $x \neq 0$ if and only if the rank of O is less than n. Hint: by the rank–nullity theorem, the rank and the dimension of the kernel (ker $O = \{x \mid Ox = 0\}$) sum to the dimension of the domain, in this case n.

Question 1.2 (7 points) A system (A, C) as in the previous question whose observability matrix has full column rank (i.e. rank *n*) is called *fully observable*. Show that a system is fully observable if and only if we can uniquely find what x_0 was at time 0 after seeing enough observations y_0, \ldots, y_{t-1} . Guidance: in one direction, use the fact that any full column-rank matrix *M* has a left inverse $M^{\dagger}M = I$. In the other direction, show that if $x_0 = x$ and $x_0 = x'$ induce the same observation sequence, then there exists an unobservable state.

Question 1.3 (6 points) When *A* itself isn't full-rank, i.e. it maps some states to 0, some information about x_0 may be lost by the dynamics and never become observable. On the other hand, only the current state x_t matters for control and future costs, so we may not actually need that information anyway. Show that, if ker $O \subseteq \ker A^n$, then we can uniquely find x_n from the observations y_0, \ldots, y_{n-1} .¹

¹As an aside, the other direction is also true, but you don't need to show it.

Hint: show that, under the question's assumptions, if $x_0 = x$ and $x_0 = x'$ induce the same y_0, \ldots, y_{n-1} , then they also induce the same x_n .

Part 2 Actor–Critic Policy Gradient (40 points)

In this part you'll implement an Actor–Critic Policy-Gradient algorithm. Download and read the code at https://royf.org/crs/CS277/W24/CS277E3.zip. Each part asks you to complete a code placeholder in file a2c.py.

Question 2.1 (10 points) Complete the placeholders marked as Part 2.1 by writing PyTorch code that calculates the actor loss. The actor loss is a policy-gradient loss with pre-computed advantage estimates (advantages) plus a negative-entropy loss on the actor policy, weighted by entropy_loss_coeff (i.e. a slight push to *maximize* entropy).

Hint: You might want to use Distribution.entropy to compute the entropy.

Question 2.2 (15 points) Complete the placeholders marked as Part 2.2 by writing PyTorch code that calculates the critic loss. The critic loss is a temporal-difference loss, the square error between the pre-computed value targets and the critic values.

In the function update, traj is part of a single trajectory, but in this assignment we will **not** assume that it's the entire episode. The batch contains tuples $(s_t, a_t, r_t, s'_t, \text{done}_t, \log \pi(a_t|s_t))$ for some consecutive steps $t \in \{t_1, \ldots, t_2\}$ in a trajectory.

Useful: (a) Actor.critic, a function that gets an array of observations and returns a same-size tensor of value predictions; (b) dones, a boolean array indicating episode termination in each time step (think: why is this useful here?); and (c) make sure to use detach() on tensors that are supposed to be the target.

Question 2.3 (5 points) Complete the placeholders marked as Part 2.3 by writing PyTorch code that calculates for each step the discounted one-step advantages for the actor's policy gradient. Hint: advantage should detach().

Question 2.4 (10 points) Run your code on the CartPole-v1 environment for 1,000,000 time steps and report the results.

Part 3 Generalized Advantage Estimation (40 points)

Recall the definition of the GAE^2 as

$$A^{\lambda}(s_t, a_t) = \sum_{\Delta t} (\lambda \gamma)^{\Delta t} A(s_{t+\Delta t}, a_{t+\Delta t})$$

²https://arxiv.org/abs/1506.02438

Question 3.1 (10 points) Write down a mathematical expression for the advantage estimate $A^{\lambda}(s_t, a_t)$ using the rewards r_t, r_{t+1}, \ldots and the value estimates $V_{\phi}(s_t), V_{\phi}(s_{t+1}), \ldots$

Question 3.2 (15 points) Complete the placeholders marked as Part 3.2 by using A^{λ} as the advantage estimates.

Question 3.3 (7 points) Run your code on CartPole-v1 with a variety of λ values. To train the agent with GAE use

python run.py --training-steps 1000000\
--env CartPole-v1\
--GAE\
--_lambda <lambda>

Visualize the results in TensorBoard, and attach the resulting plots.

Question 3.4 (8 points) Briefly discuss the results, including:

- What was the best value of λ in your experiments?
- What happens as $\lambda \to 0$?
- What happens as $\lambda \to 1$ in theory? What happens in practice?