
CS 277 (W24): Control and Reinforcement Learning
Exercise 3
Due date: Tuesday, February 20, 2024 (Pacific Time)
Roy Fox
https://royf.org/crs/CS277/W24

Instructions: In theory questions, a formal proof is not needed (unless specified otherwise);
instead, briefly explain informally the reasoning behind your answers. In practice questions, include
a printout of your code as a page in your PDF, and a screenshot of TensorBoard learning curves
(episode_reward_mean, unless specified otherwise) as another page.

Part 1 Properties of linear–Gaussian systems (20 points)
Question 1.1 (7 points) Consider a deterministic uncontrolled LTI system with dynamics
𝑥𝑡+1 = 𝐴𝑥𝑡 , where 𝐴 is an 𝑛 × 𝑛 transition matrix, that is only observable through a noiseless
observation 𝑦𝑡 = 𝐶𝑥𝑡 , where 𝐶 is a 𝑘 × 𝑛 observation matrix. The observability matrix of the system
(𝐴,𝐶) is

O =


𝐶

𝐶𝐴...
𝐶𝐴𝑛−1

 .
We say that a state 𝑥 ≠ 0 is unobservable if, after starting at 𝑥0 = 𝑥, we have only zero observations,
i.e. 𝑦𝑡 = 0 for all 𝑡 ≥ 0. Show that there exists an unobservable state 𝑥 ≠ 0 if and only if the rank
of O is less than 𝑛. Hint: by the rank–nullity theorem, the rank and the dimension of the kernel
(kerO = {𝑥 | O𝑥 = 0}) sum to the dimension of the domain, in this case 𝑛.

Question 1.2 (7 points) A system (𝐴,𝐶) as in the previous question whose observability matrix
has full column rank (i.e. rank 𝑛) is called fully observable. Show that a system is fully observable if
and only if we can uniquely find what 𝑥0 was at time 0 after seeing enough observations 𝑦0, . . . , 𝑦𝑡−1.
Guidance: in one direction, use the fact that any full column-rank matrix 𝑀 has a left inverse
𝑀†𝑀 = 𝐼. In the other direction, show that if 𝑥0 = 𝑥 and 𝑥0 = 𝑥′ induce the same observation
sequence, then there exists an unobservable state.

Question 1.3 (6 points) When 𝐴 itself isn’t full-rank, i.e. it maps some states to 0, some
information about 𝑥0 may be lost by the dynamics and never become observable. On the other
hand, only the current state 𝑥𝑡 matters for control and future costs, so we may not actually need
that information anyway. Show that, if kerO ⊆ ker 𝐴𝑛, then we can uniquely find 𝑥𝑛 from the
observations 𝑦0, . . . , 𝑦𝑛−1.1

1As an aside, the other direction is also true, but you don’t need to show it.

https://royf.org/crs/CS277/W24


Hint: show that, under the question’s assumptions, if 𝑥0 = 𝑥 and 𝑥0 = 𝑥′ induce the same 𝑦0, . . . , 𝑦𝑛−1,
then they also induce the same 𝑥𝑛.

Part 2 Actor–Critic Policy Gradient (40 points)
In this part you’ll implement an Actor–Critic Policy-Gradient algorithm. Download and read the
code at https://royf.org/crs/CS277/W24/CS277E3.zip. Each part asks you to complete a
code placeholder in file a2c.py.

Question 2.1 (10 points) Complete the placeholders marked as Part 2.1 by writing PyTorch
code that calculates the actor loss. The actor loss is a policy-gradient loss with pre-computed
advantage estimates (advantages) plus a negative-entropy loss on the actor policy, weighted by
entropy_loss_coeff (i.e. a slight push to maximize entropy).
Hint: You might want to use Distribution.entropy to compute the entropy.

Question 2.2 (15 points) Complete the placeholders marked as Part 2.2 by writing PyTorch
code that calculates the critic loss. The critic loss is a temporal-difference loss, the square error
between the pre-computed value targets and the critic values.
In the function update, traj is part of a single trajectory, but in this assignment we will not assume
that it’s the entire episode. The batch contains tuples (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠′𝑡 , done𝑡 , log 𝜋(𝑎𝑡 |𝑠𝑡)) for some
consecutive steps 𝑡 ∈ {𝑡1, . . . , 𝑡2} in a trajectory.
Useful: (a) Actor.critic, a function that gets an array of observations and returns a same-size
tensor of value predictions; (b) dones, a boolean array indicating episode termination in each
time step (think: why is this useful here?); and (c) make sure to use detach() on tensors that are
supposed to be the target.

Question 2.3 (5 points) Complete the placeholders marked as Part 2.3 by writing PyTorch
code that calculates for each step the discounted one-step advantages for the actor’s policy gradient.
Hint: advantage should detach().

Question 2.4 (10 points) Run your code on the CartPole-v1 environment for 1,000,000 time
steps and report the results.

python run.py --training-steps 1000000\
--env CartPole-v1

Part 3 Generalized Advantage Estimation (40 points)

Recall the definition of the GAE2 as

𝐴𝜆 (𝑠𝑡 , 𝑎𝑡) =
∑︁
Δ𝑡

(𝜆𝛾)Δ𝑡𝐴(𝑠𝑡+Δ𝑡 , 𝑎𝑡+Δ𝑡).

2https://arxiv.org/abs/1506.02438

https://royf.org/crs/CS277/W24/CS277E3.zip
https://pytorch.org/docs/stable/distributions.html#torch.distributions.distribution.Distribution.entropy
https://arxiv.org/abs/1506.02438


Question 3.1 (10 points) Write down a mathematical expression for the advantage estimate
𝐴𝜆 (𝑠𝑡 , 𝑎𝑡) using the rewards 𝑟𝑡 , 𝑟𝑡+1, . . . and the value estimates 𝑉𝜙 (𝑠𝑡), 𝑉𝜙 (𝑠𝑡+1), . . ..

Question 3.2 (15 points) Complete the placeholders marked as Part 3.2 by using 𝐴𝜆 as the
advantage estimates.

Question 3.3 (7 points) Run your code on CartPole-v1 with a variety of 𝜆 values. To train
the agent with GAE use

python run.py --training-steps 1000000\
--env CartPole-v1\
--GAE\
--_lambda <lambda>

Visualize the results in TensorBoard, and attach the resulting plots.

Question 3.4 (8 points) Briefly discuss the results, including:

• What was the best value of 𝜆 in your experiments?

• What happens as 𝜆 → 0?

• What happens as 𝜆 → 1 in theory? What happens in practice?


	Properties of linear–Gaussian systems (20 points)
	Actor–Critic Policy Gradient (40 points)
	Generalized Advantage Estimation (40 points)

