U CI University of
California, Irvine

CS 277: Control and

Reinforcement Learning
Winter 2024

Lecture 10: Model-Based Methods

i
Roy Fox =N
. %\/\/ILL PREss &
Department of Computer Science LEVER |
School of Information and Computer Sciences FoFOcio b
University of California, Irvine !
e S

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Logistics

_ e Quiz 5 due next Monday

* EXercise 3 to be published soon, due following Monday

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Today's lecture

Model-free learning with a model

Model-predictive control

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Learning vs. planning

 Model = dynamics + reward function
> Planning = finding a good policy with access to a model
e |_earning = iImproving performance using data

» Are rollouts from the model considered “data”?

- If yes, planning can involve learning
 Model-based learning = methods that explicitly learn the model

> Unlike planning, access to a model is not given; it is learned

> Usually, focus on dynamics p, because reward function 7 is simulated

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Model-based learning

e |s alearning algorithm & model-based?

e |n tabular representation — just count parameters:
» Model-free = O(| & | - | |) (to represent z(a | s) or O(s, a))
» Model-based = Q(| & |2 - | & |) (to represent p(s’| s, a))
* Not always clear-cut:
~ If intermediate features of DQN Qy(s, a) are informative of s’, is this model-free?

* Not to be confused with ML terminology calling anything learned a “model”

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Model-based learning: benefits

* Dynamics p has “more parameters” than & = harder to learn? not always

> p can have simpler form and generalize better to unseen states and actions and

> p can be learned locally; 7 or O encode global knowledge (long-term planning)
 Model-based methods produce transferable knowledge
> Useful it MDP changes only slightly / partially (hon-stationary environment)

- E.g. only the task changes, i.e. r changes but not p

- (Can generalize across environment changes, e.g. friction or arm length

- Can help transfer learning in an inaccurate simulator to the real world (simZ2real)

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

How to learn a model

* |nteract with environment to get trajectory data

> Deterministic continuous dynamics / reward: minimize MSE loss
L y(s,a,1,5") = |Is" = f,(s, @)|5 + (r — ry(s,a))”
> Stochastic dynamics: minimize NLL loss
Z y(s,a,8") = — 10gp¢(s’\ S, Q)
 Data can be off-policy = unbiased estimate, but with covariate shift

> Random policy is often used

* Another possiblility discussed later

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

How to use a learned model

* Recall how planning benefitted from access to a model:
> As a fast simulator
> As an arbitrary-reset simulator

» As a differentiable model

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

How to use a learned model

* Recall how planning benefitted from access to a model:

» As a fast simulator

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Policy Gradient through the model

e Model is often learned with SGD = must be differentiable

Jo=) V'eC.u) =) v'e(f(-fxp. myxp)) -+, my(x,_). mp(x)

 Just do Policy Gradient over JAQ?

> Chain rule = back-propagation through time (BPTT)

. VQJA@ can be bad approximation of V ,J,; also, j@ is ill-conditioned for SGD:

» Perturbing one action individually may change fg unreasonably little / much
- Vanishing / exploding gradients

» Second-order methods can help, but Hessian is even nastier — for the same reason

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

PG with a model

e Luckily, we have the Policy Gradient Theorem

V,J,=E o, Z ' 0y(s,, a) Vlog m(a,|s,)
[

» |dea: use the model as a fast simulator just to estimate Qg(st, a,)
> E.g., by MC or TD
> Avoids complications of gradients through the model
- Only backprop through single-step log my(a, | s,)

> Only the policy evaluation / critic is model-based

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Recap

o A fast simulator is good for any RL algorithm, particularly MC

» MCTS explores optimally in the discrete deterministic case

 An arbitrary-reset simulator has surprisingly little use

> Notable exception: domain randomization
 An analytic model may allow direct optimization, or very fast simulation

 We can plan in a differentiable model by iterative linearization (ILQR)

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Today's lecture

Model-based learning

Model-predictive control

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

How to use a learned model

 Ways to use a learned model:

> As an arbitrary-reset simulator

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Model-free RL with a model

 General scheme for using a model for model-free RL:

Algorithm Model-free RL with a model

COHG ct dat q — interaction with environment (random policy)

— supervised learning

Train model p, 7«

l’epeat seeded by initial interaction
may interact more as learner improves

Sample s from the replay bufler
Sample (a|s) ~ g

Simulate r = 7(s,a) and (s’|s,a) ~ p+
Perform model-free RL with (s, a, r, s’)

_ use model as simulator

 Benefit: get diverse off-policy s, and fresh on-policy a

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Model-free RL with a model

 On-policy actions = allows rn-step estimation without bias:
Algorithm Multi-step RL with a model

Collect data

Train model p, 7

repeat
Sample s tfrom the replay bufler
Roll out the learner’s policy for n steps 1n the simulator
Perform n-step model-free RL

n—lf

o F(S,,a) +yr(S,,1,0,,.0)+ -+ Y (S, ,—1> Grypy_y) IS Unbiased

> EXxcept for model inaccuracy

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Dyna

Algorithm Dyna

Collect data
Train model p, 7
repeat
Sample (s, a) from the replay buffer

Q(Sa Cl) — i/'\(Sa Cl) T y IE(S"S,CZ)N[?\ [maxa’ Q(Sl, Cl,)]

=<

use model as simulator to estimate

* Another idea: also mix in samples generated from learner interactions
> Benefit: keep training the model to be good for states that learner sees

> With function approximation: feed the replay buffer and reduce covariate shift

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Wait... Model-free RL... with a model?

 \Why be model-free if we have the model?

* Learning to control is inherently model-free

» Policy gradient is 0 for the log p(s’| s, a) terms of log p,(&)
> Same in Imitation Learning: optimize NLL £ (s,,a,) = — log x(a, | s,)

> As opposed to planning, which requires averaging over futures

 The model still gives benefits

> It can diversify the experience data, like a replay buffer but more so

> Indirect benefits: generalization, transfer

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

r

-

world

- il <
- ~
- -~
- S n
-” ~

J

-

.

learner

Optimal exploration for model learning

 How to explore optimally for learning the model?
e Explicit Explore or Exploit (ES):
» Maintain set S of sufficiently explored states

» The model M has the empirical transitions and rewards on

N\

> Other states collapsed to absorbing state with reward 0 (in M) or r, ..,

(in Z\Aﬂ

* Principle of optimism under uncertainty

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Explicit Explore or Exploit (E3)

Algorithm E’

S — 0
repeat
m « optimal plan in M
if Pr(m reaches absorbing state) < € then
Terminate

— pessimistic model

else optimisti
R ptimistic model
Execute optimal plan in M’ —

if s ¢ S reached then
Take least tried action
if each action tried K times then
Empirically estimate p(-|s, -), 7(s, -)
Add sto §

 When probabillity to explore is low, optimal policy In M is truly near-optimal

* For provable guarantees, € and K can be determined from real number of states

> Or updated every time the number of visited states is doubled

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

R-max

* E3 takes different actions when it explores or exploits

> = needs to know which at start of episode, many steps ahead

 Instead, plan only in optimistic M’

> Implicit explore or exploit: either

Algorithm R-max

mark all states unknown
repeat
Execute 7 « optimal plan in M’
Record (s, a, r, s”) in unknown states
if n(s) = K then
Empirically estimate p(-|s, -), 7(s, -)
Mark s known

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Today's lecture

Model-based learning

Model-free learning with a model

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Issues with approximate models (1)

* |n large state / action spaces, we can only approximate the dynamics

 No guarantees outside of training distribution
> We can't be too far off-policy

o Solution: keep interacting using learner policy and updating the model

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Issues with approximate models (2)

 Model inaccuracy accumulates

- It [py(s'ls,a) — p(s’|s,a) |, < ethen |py(s,) — p(s) |, < et
> We have to plan far enough ahead to realize the consequences of actions

> But we don't have to execute those plans far ahead!

Algorithm Model-Predictive Control (MPC)

P « collect data
repeat
M « train model p, 7 from D
repeat
m « plan in M from current state s to horizon H
Take one action a according to
Add empirical (s, a,r,s") to D

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

How to use a learned model

* Recall how planning benefitted from access to a model:

» As a differentiable model

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Local models

e Can we use a learned model for iLQR?

> |ldea 1: learn global model, linearize locally = wasteful

> |ldea 2: directly learn local linearizations:

Algorithm Local Models

Initialize a policy 7 (u;|x;)
repeat
Roll out 7 to horizon T for N trajectories

Fit p(x/41|x;, ur)
Plan new policy n

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

How to fit local dynamics

* |dea 1: linear regression
> Find (A4, B, th_Ol such that x,, | &% Ax; + Bu,

>~ Do we care about the process noise w,?
- |f we assume it's Gaussian, doesn't affect policy; but could help evaluate the method
* |dea 2: Bayesian linear regression

> Learn global model, use it as prior for local model

> More data efficient across time steps and across iterations

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

How to plan with local models

 |dea 1: as in iLQR, find optimal control sequence it and its trajectory X

>~ Problem: model errors will cause actual trajectory to diverge from X

 |dea 2: find X by executing the optimal policy directly in the environment
> Problem: need spread for linear regression, dynamics may be too deterministic
* |dea 3: make control stochastic by injecting Gaussian noise

> E.g., have ¢, ~ /V((),R_l), shaped by the control cost

- Optimal for the incurred costs, not for the spread needed for regression

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

Recap

e Model-based RL schemes:
» Plan in a learned model

> Improve model-free RL using a learned model

 Good theory for how to explore optimally for learning a model

Roy Fox | CS 277 | Winter 2024 | Lecture 10: Model-Based Methods

