

CS 277: Control and Reinforcement Learning Winter 2024

Lecture 10: Model-Based Methods

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

- Quiz 5 due next Monday
- Exercise 3 to be published soon, due following Monday

Today's lecture

Model-based learning

Model-free learning with a model

Model-predictive control

Learning vs. planning

- Model = dynamics + reward function
 - Planning = finding a good policy with access to a model
- Learning = improving performance using data
 - Are rollouts from the model considered "data"?
 - If yes, planning can involve learning
- Model-based learning = methods that explicitly learn the model
 - Unlike planning, access to a model is not given; it is learned
 - Usually, focus on dynamics p, because reward function r is simulated

Model-based learning

- Is a learning algorithm \mathscr{A} model-based?
- In tabular representation just count parameters:
 - ► Model-free = $O(|\mathcal{S}| \cdot |\mathcal{A}|)$ (to represent $\pi(a|s)$ or Q(s,a))
 - Model-based = $\Omega(|\mathcal{S}|^2 \cdot |\mathcal{A}|)$ (to represent p(s'|s,a))
- Not always clear-cut:
 - If intermediate features of DQN $Q_{\theta}(s, a)$ are informative of s', is this model-free?
- Not to be confused with ML terminology calling anything learned a "model"

Model-based learning: benefits

- Dynamics p has "more parameters" than $\pi \Rightarrow$ harder to learn? not always
 - p can have simpler form and generalize better to unseen states and actions and
 - p can be learned locally; π or Q encode global knowledge (long-term planning)
- Model-based methods produce transferable knowledge
 - Useful if MDP changes only slightly / partially (non-stationary environment)
 - E.g. only the task changes, i.e. r changes but not p
 - Can generalize across environment changes, e.g. friction or arm length
 - Can help transfer learning in an inaccurate simulator to the real world (sim2real)

How to learn a model

- Interact with environment to get trajectory data
 - Deterministic continuous dynamics / reward: minimize MSE loss

$$\mathcal{L}_{\phi}(s, a, r, s') = \|s' - f_{\phi}(s, a)\|_{2}^{2} + (r - r_{\phi}(s, a))^{2}$$

Stochastic dynamics: minimize NLL loss

$$\mathcal{L}_{\phi}(s, a, s') = -\log p_{\phi}(s'|s, a)$$

- Data can be off-policy ⇒ unbiased estimate, but with covariate shift
 - Random policy is often used
- Another possibility discussed later

How to use a learned model

- Recall how planning benefitted from access to a model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

How to use a learned model

- Recall how planning benefitted from access to a model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

Policy Gradient through the model

Model is often learned with SGD ⇒ must be differentiable

$$\hat{J}_{\theta} = \sum_{t} \gamma^{t} \hat{c}(x_{t}, u_{t}) = \sum_{t} \gamma^{t} \hat{c}(\hat{f}(\cdots \hat{f}(x_{0}, \pi_{\theta}(x_{0})) \cdots, \pi_{\theta}(x_{t-1})), \pi_{\theta}(x_{t}))$$

- Just do Policy Gradient over $\hat{J}_{ heta}$?
 - Chain rule ⇒ back-propagation through time (BPTT)
- $\nabla_{\theta}\hat{J}_{\theta}$ can be bad approximation of $\nabla_{\theta}J_{\theta}$; also, \hat{J}_{θ} is ill-conditioned for SGD:
 - Perturbing one action individually may change \(\hat{J}_{\theta} \) unreasonably little / much
 - Vanishing / exploding gradients
 - Second-order methods can help, but Hessian is even nastier for the same reason

PG with a model

Luckily, we have the Policy Gradient Theorem

$$\nabla_{\theta} \hat{J}_{\theta} = \mathbb{E}_{\xi \sim p_{\theta}} \left[\sum_{t} \gamma^{t} \hat{Q}_{\bar{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \right]$$

- Idea: use the model as a fast simulator just to estimate $\hat{Q}_{ar{ heta}}(s_t,a_t)$
 - E.g., by MC or TD
 - Avoids complications of gradients through the model
 - Only backprop through single-step $\log \pi_{\theta}(a_t \mid s_t)$
 - Only the policy evaluation / critic is model-based

Recap

- A fast simulator is good for any RL algorithm, particularly MC
 - MCTS explores optimally in the discrete deterministic case
- An arbitrary-reset simulator has surprisingly little use
 - Notable exception: domain randomization
- An analytic model may allow direct optimization, or very fast simulation
- We can plan in a differentiable model by iterative linearization (iLQR)

Today's lecture

Model-based learning

Model-free learning with a model

Model-predictive control

How to use a learned model

- Ways to use a learned model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

Model-free RL with a model

• General scheme for using a model for model-free RL:

```
Algorithm Model-free RL with a model
                         interaction with environment (random policy)
   Collect data
  Train model \hat{p}, \hat{r}—supervised learning
   repeat
                                                       seeded by initial interaction
                                                       may interact more as learner improves
       Sample s from the replay buffer
       Sample (a|s) \sim \pi_{\theta}

    use model as simulator

       Simulate r = \hat{r}(s, a) and (s'|s, a) \sim \hat{p}
       Perform model-free RL with (s, a, r, s')
```

• Benefit: get diverse off-policy s, and fresh on-policy a

Model-free RL with a model

• On-policy actions \Rightarrow allows n-step estimation without bias:

Algorithm Multi-step RL with a model

Collect data

Train model \hat{p}, \hat{r}

repeat

Sample s from the replay buffer

Roll out the learner's policy for *n* steps in the simulator Perform *n*-step model-free RL

•
$$\hat{r}(s_t, a_t) + \gamma \hat{r}(\hat{s}_{t+1}, a_{t+1}) + \dots + \gamma^{n-1} \hat{r}(\hat{s}_{t+n-1}, a_{t+n-1})$$
 is unbiased

Except for model inaccuracy

Dyna

Algorithm Dyna

Collect data

Train model \hat{p}, \hat{r}

repeat

Sample (s, a) from the replay buffer

$$Q(s,a) \to \hat{r}(s,a) + \gamma \mathbb{E}_{(s'|s,a)\sim \hat{p}}[\max_{a'} Q(s',a')]$$

use model as simulator to estimate

- Another idea: also mix in samples generated from learner interactions
 - Benefit: keep training the model to be good for states that learner sees
 - With function approximation: feed the replay buffer and reduce covariate shift

Wait... Model-free RL... with a model?

- Why be model-free if we have the model?
- Learning to control is inherently model-free
 - Policy gradient is 0 for the $\log p(s'|s,a)$ terms of $\log p_{\theta}(\xi)$
 - Same in Imitation Learning: optimize NLL $\mathcal{L}_{\theta}(s_t, a_t) = -\log \pi_{\theta}(a_t \mid s_t)$
 - As opposed to <u>planning</u>, which requires averaging over futures
- The model still gives benefits
 - It can diversify the experience data, like a replay buffer but more so
 - Indirect benefits: generalization, transfer

Optimal exploration for model learning

- How to explore optimally for learning the model?
- Explicit Explore or Exploit (E3):
 - Maintain set S of sufficiently explored states
 - The model \hat{M} has the empirical transitions and rewards on S
 - Other states collapsed to absorbing state with reward 0 (in \hat{M}) or r_{\max} (in \hat{M}')
- Principle of optimism under uncertainty

Explicit Explore or Exploit (E³)

```
Algorithm E^3
   S \leftarrow \emptyset
   repeat
                                            __ pessimistic model
        \pi \leftarrow optimal plan in \hat{M}^{\leftarrow}
        if Pr(\pi \text{ reaches absorbing state}) < \epsilon \text{ then}
             Terminate
        else
                                                          optimistic model
             Execute optimal plan in \hat{M}'
             if s \notin S reached then
                  Take least tried action
                  if each action tried K times then
                       Empirically estimate \hat{p}(\cdot|s,\cdot), \hat{r}(s,\cdot)
                       Add s to S
```

- When probability to explore is low, optimal policy in \hat{M} is truly near-optimal
- For provable guarantees, ϵ and K can be determined from real number of states
 - Or updated every time the number of visited states is doubled

R-max

- E³ takes different actions when it explores or exploits
 - ▶ needs to know which at start of episode, many steps ahead
- Instead, plan only in optimistic \hat{M}'
 - Implicit explore or exploit: either

```
Algorithm R-MAX

mark all states unknown

repeat

Execute \pi \leftarrow optimal plan in \hat{M}'

Record (s, a, r, s') in unknown states

if n(s) = K then

Empirically estimate \hat{p}(\cdot|s,\cdot), \hat{r}(s,\cdot)

Mark s known
```

Today's lecture

Model-based learning

Model-free learning with a model

Model-predictive control

Issues with approximate models (1)

- In large state / action spaces, we can only approximate the dynamics
- No guarantees outside of training distribution
 - We can't be too far off-policy
- Solution: keep interacting using learner policy and updating the model

Issues with approximate models (2)

- Model inaccuracy accumulates

 - We have to plan far enough ahead to realize the consequences of actions
 - But we don't have to execute those plans far ahead!

```
Algorithm Model-Predictive Control (MPC)

\mathcal{D} \leftarrow \text{collect data}

repeat

\hat{M} \leftarrow \text{train model } \hat{p}, \hat{r} \text{ from } \mathcal{D}

repeat

\pi \leftarrow \text{plan in } \hat{M} \text{ from current state } s \text{ to horizon } H

Take one action a according to \pi

Add empirical (s, a, r, s') to \mathcal{D}
```

How to use a learned model

- Recall how planning benefitted from access to a model:
 - As a fast simulator
 - As an arbitrary-reset simulator
 - As a differentiable model

Local models

- Can we use a learned model for iLQR?
 - ► Idea 1: learn global model, linearize locally ⇒ wasteful
 - Idea 2: directly learn local linearizations:

Algorithm Local Models

Initialize a policy $\pi(u_t|x_t)$

repeat

Roll out π to horizon T for N trajectories

Fit
$$p(x_{t+1}|x_t, u_t)$$

Plan new policy π

How to fit local dynamics

- Idea 1: linear regression
 - Find $(A_t, B_t)_{t=0}^{T-1}$ such that $x_{t+1} \approx A_t x_t + B_t u_t$
 - Do we care about the process noise ω_t ?
 - If we assume it's Gaussian, doesn't affect policy; but could help evaluate the method
- Idea 2: Bayesian linear regression
 - Learn global model, use it as prior for local model
 - More data efficient across time steps and across iterations

How to plan with local models

- Idea 1: as in iLQR, find optimal control sequence \hat{u} and its trajectory \hat{x}
 - Problem: model errors will cause actual trajectory to diverge from \hat{x}
- Idea 2: find \hat{x} by executing the optimal policy directly in the environment
 - Problem: need spread for linear regression, dynamics may be too deterministic
- Idea 3: make control stochastic by injecting Gaussian noise
 - E.g., have $\epsilon_t \sim \mathcal{N}(0, R^{-1})$, shaped by the control cost
 - Optimal for the incurred costs, not for the spread needed for regression

Recap

- Model-based RL schemes:
 - Plan in a learned model
 - Improve model-free RL using a learned model
- Good theory for how to explore optimally for learning a model