

CS 277: Control and Reinforcement Learning Winter 2024

Lecture 12: Partial Observability

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

- Exercise 3 due next Monday
- Quiz 6 to be published soon, due next Wednesday

Today's lecture

Partially Observable MDPs

Belief-state MDPs

RNNs

What does the policy depend on?

- Minimally: nothing
 - ▶ Just an open-loop sequence of actions a_0, a_1, \dots
 - Except, even this depends on a clock $a_t = \pi(t)$
- Typically: the current state $\pi(a_t | s_t)$
- What if the state is not fully observable to the agent's sensors?
 - Completely unobservable → forced open loop
 - ► Partially observable $\rightarrow \pi(a_t | o_t)$?

Partially Observable Markov Decision Process (POMDP)

• States \mathcal{S}

Actions A

- Observations ©
- Transitions $p(s_{t+1} | s_t, a_t)$
- Emissions (observation model) $p(o_t | s_t)$
- Rewards $r(s_t, a_t)$

T-maze domain

Observation: current cell

Observe cue at start

Decision at T-junction — cue no longer observable

Memory is needed

What does the policy depend on? (revisited)

- Maximally: the entire observable history $\pi(a_t | h_t = (o_0, o_1, \dots, o_t))$
 - Should we remember past actions?
 - In a stochastic policy $\pi(a_t | h_t)$, yes: $h_t = (o_0, a_0, o_1, a_1, \dots, o_t)$
 - In a deterministic policy $\pi: h_t \mapsto a_t$, we could regenerate a_{t-1} from h_{t-1} (more compute)
- Problem: we can't have unbounded memory that grows with t
- Solution 1: keep a window of k last observations $\pi(a_t | o_{t-k+1}, ..., o_t)$ (frame stacking)
- Solution 2: keep a statistic $m_t = \pi(h_t)$ or $\pi(m_t \mid h_t)$ of the observable history, use $\pi(a_t \mid m_t)$
 - Memory must allow sequential updates: $m_t = f(m_{t-1}, o_t)$ or $m_t = f(m_{t-1}, a_{t-1}, o_t)$

Agent-environment interaction

- Agent policy: $\pi(m_t, a_t | m_{t-1}, o_t) = \pi(m_t | m_{t-1}, o_t) \pi(a_t | m_t)$
- For simplicity, no edge $a_{t-1} \rightarrow m_t$
 - Can make a_{t-1} explicitly observable in o_t , or explicitly remembered in m_{t-1}

So what is memory?

- There's no Markov property in the observable process alone
 - All past observations may be informative of future actions

- Filter the observable past to provide more information about the hidden state
- No less important: plan for the future
- Previously, we needed to trade off short-term with long-term rewards
 - Now we also need to trade off with information-gathering = active perception
- In multi-agent: state of the world is incomplete without other agent's memory
 - Theory of mind

Tiger domain

2 states: which door leads to a tiger (-100 reward) and which to \$\$\$ (+10)

• You can stop and listen:
$$p(o_t = s_t | s_t) = 0.8$$

$$p(s_0 = s_{\mathsf{left}}) = 0.5$$

$$p(s_1 = s_{left}) = 0.2$$

$$p(s_2 = s_{left}) = 0.5$$

$$p(s_3 = s_{left}) = 0.2$$

$$p(s_4 = s_{\text{left}}) = \frac{0.04}{0.04 + 0.64} \approx 0.06 \quad \mathbb{E}[r(s_4, a_{\text{left}})] = -3.5$$

$$p(s_5 = s_{\text{left}}) \approx 0.015$$

$$\mathbb{E}[r(s_0, a_{\mathsf{left}})] = -45$$

$$\mathbb{E}[r(s_1, a_{\mathsf{left}})] = -12$$

$$\mathbb{E}[r(s_2, a_{\mathsf{left}})] = -45$$

$$\mathbb{E}[r(s_3, a_{\mathsf{left}})] = -12$$

$$E[r(s_4, a_{left})] = -3.5$$

$$\mathbb{E}[r(s_4, a_{\text{left}})] = -8.3$$

$$o_1 = o_{right}$$

$$o_2 = o_{\mathsf{left}}$$

$$o_3 = o_{right}$$

$$o_4 = o_{right}$$

$$o_5 = o_{right}$$

Today's lecture

Partially Observable MDPs

Belief-state MDPs

RNNs

Belief

- Belief = distribution over the state b(s)
 - If the agent reaches belief b after history h, that does not imply $s \sim b$
- Bayesian belief $b_h(s) = p(s \mid h)$: a sufficient statistic of h for s
 - For a Bayesian belief: $s \sim b_h$ after history h
- In the linear-Gaussian case: the Kalman filter

- Bayesian belief is Gaussian $p(x_t | h_t = y_{\leq t}) = \mathcal{N}(x_t; \hat{x}_t, \Sigma_t)$
- Covariance can be precomputed $\mathbb{V}(x_t | h_t) = \Sigma_t$ (independent of h_t)
- Mean can be updated linearly: $\hat{x}_t' = A\hat{x}_{t-1} + Bu_{t-1}$ $e_t = y_t C\hat{x}_t'$ $\hat{x}_t = \hat{x}_t' + K_t e_t$

Computing the Bayesian belief

• Predict s_{t+1} from $h_t = (o_0, a_0, o_1, a_1, ..., o_t)$ and a_t :

$$b_t'(s_{t+1} | h_t, a_t) = \sum_{s_t} p(s_t | h_t) p(s_{t+1} | s_t, a_t) = \sum_{s_t} b_t(s_t) p(s_{t+1} | s_t, a_t)$$
total probability over s_t previous belief b_t dynamics needs to be known

• Update belief of s_t after seeing $h_t = (h_{t-1}, a_{t-1}, o_t)$:

$$b_t(s_t|h_t) = \frac{p(s_t|h_{t-1},a_{t-1})p(o_t|s_t)}{p(o_t|h_{t-1},a_{t-1})} = \frac{b'_{t-1}(s_t)p(o_t|s_t)}{\sum_{\bar{s}_t}b'_{t-1}(\bar{s}_t)p(o_t|\bar{s}_t)} = \frac{b'_{t-1}(s_t)p(o_t|s_t)}{\sum_{\bar{s}_t}b'_{t-1}(\bar{s}_t)p(o_t|\bar{s}_t)}$$
Bayes' rule on o_t $o_t - s_t - (h_{t-1},a_{t-1})$ normalizer

- A deterministic, model-based update:
 - ► $b_{t-1}(s_{t-1})$ → use a_{t-1} to predict $b'_{t-1}(s_t)$ → use o_t to update $b_t(s_t)$

Belief-state MDP

- In the linear-quadratic-Gaussian case: certainty equivalence
 - Plan using \hat{x}_t as if it was x_t
- More generally (though vastly less useful): belief-state MDP

States:
$$\Delta(\mathcal{S})$$
 Actions: \mathcal{A} Rewards: $r(b_t, a_t) = \sum_{s_t} b_t(s_t) r(s_t, a_t)$

• Transitions: each possible observation o_{t+1} contributes its probability

$$p(o_{t+1} | b_t, a_t) = \sum_{S_t, S_{t+1}} b_t(s_t) p(s_{t+1} | s_t, a_t) p(o_{t+1} | s_{t+1})$$

to the total probability that the belief that follows (b_t, a_t, o_{t+1}) is the Bayesian belief

$$b_{t+1}(s_{t+1}) = p(s_{t+1} | b_t, a_t, o_{t+1}) = \frac{\sum_{s_t} b_t(s_t) p(s_{t+1} | s_t, a_t) p(o_{t+1} | s_{t+1})}{p(o_{t+1} | b_t, a_t)}$$

Learning to use memory is hard

- Belief space $b(s_t)$ is continuous and high-dimensional (dimension $|\mathcal{S}|$)
 - Curse of dimensionality
 - Beliefs are naturally multi-modal how do we even represent them?
- The number of reachable beliefs may grow exponentially in t (one per h_t)
 - Curse of history
- Belief-value function can be very complex, hard to approximate
- There may not be optimal stationary deterministic policy ⇒ instability

Stationary deterministic policy counterexample

- Assume no observability
- Stationary deterministic policies gets no reward
- Non-stationary policy: \(\daggerightarrow\), \(\daggerightarrow\); expected return: +1
 - But non-stationary = observability of a clock t

• Stationary stochastic policy: \$\diamond\$ / 1 with equal prob.; expected return: +0.25

 Open problem: Bellman optimality is inherently stationary and deterministic no dependence on t

maximum achieved for some action

$$V(s) = \max_{a} r(s, a) + \gamma \mathbb{E}_{(s'|s,a)\sim p}[V(s')]$$

Today's lecture

Partially Observable MDPs

Belief-state MDPs

RNNs

Filtering with function approximation

- Instead of Bayesian belief: memory update $m_t = f_{\theta}(m_{t-1}, o_t)$ $(a_{t-1} \text{ optional})$
 - Action policy: $\pi_{\theta}(a_t \mid m_t)$
 - Sequential structure = Recurrent Neural Network (RNN)

- Training: back-propagate gradients through the whole sequence
 - Back-propagation through time (BPTT)
- Unfortunately, gradients tend to vanish → 0 / explode → ∞
 - Long term coordination of memory updates + actions is challenging
 - RNN can't use information not remembered, but backup no gradient unless used

RNNs in on-policy methods

- Training RNNs with on-policy methods is straightforward (and backward)
 - Roll out policy: parameters of a_t distribution are determined by $\pi_{\theta}(m_t)$ with

$$m_t = f_{\theta}(\cdots f_{\theta}(f_{\theta}(o_0), o_1), \cdots o_t)$$

- Compute $\nabla_{\theta} \log \pi_{\theta}(a_t \mid m_t)$ with BPTT all the way to initial observation o_0
- Problems: computation graph > RAM; vanishing / exploding grads
 - ► Solutions: stop gradients every *k* steps; use attention
 - Problem: cannot learn longer memory but that's hard anyway

RNNs in off-policy methods

- Problem: RNN states in replay buffer disagree with current RNN params
- Solution 1: use *n*-step rollouts to reduce mismatch effect

$$Q_{\theta}(o_t, m_t, a_t) \to r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n \max_{a'} Q_{\theta}(o_{t+n}, m_{t+n}, a')$$

- Solution 2: "burn in" m_t from even earlier stored steps
 - Same target, but m_t is initialized from $(o_{t-k}, ..., o_{t-1})$
- In practice: RNNs not often used, and rarely for long horizons
 - Stacking k frames every step $(o_{t-k+1}, ..., o_t)$ may help with short-term memory

Deep RL as partial observability

- Memory-based policies fail us in Deep RL, where we need them most:
 - Deep RL is inherently partially observable
- Consider what deeper layers get as input:
 - High-level / action-relevant state features are not Markov!
- Memory management is a huge open problem in Deep RL
 - Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...

Recap and further considerations

- Let policies depend on observable history through memory
- Memory update: Bayesian, approximate, or learned
 - Learning to update memory is one of the biggest open problems in all of ML
- Let policy be stochastic
 - Should memory be stochastic? interesting research question...
- Let policies be non-stationary if possible, otherwise learning may be unstable
 - Time-dependent policies for finite-horizon tasks
 - Periodic policies for periodic tasks