

CS 277: Control and Reinforcement Learning Winter 2024 Lecture 15: Bounded RL

Roy Fox

Department of Computer Science School of Information and Computer Sciences University of California, Irvine

Logistics

assignments

Quiz 7 due next Monday

Exercise 4 + Quiz 8 will be due Week 10

Exercise 5 will be due Week 11

Today's lecture

Bounded RL

Control as inference

Bounded RL methods

Bounded optimality

• Bounded optimizer = trades off value and divergence from prior $\pi_0(a \mid s)$

$$\max_{\pi} \mathbb{E}_{(s,a) \sim p_{\pi}}[r(s,a)] - \tau \mathbb{D}[\pi || \pi_0] = \max_{\pi} \mathbb{E}_{(s,a) \sim p_{\pi}} \left[\beta r(s,a) - \log \frac{\pi(a|s)}{\pi_0(a|s)} \right]$$

- $\beta = \frac{1}{\tau}$ is the tradeoff coefficient between value and relative entropy
 - Similar to the inverse-temperature in statistical physics
 - As $\beta \to 0$, the agent will fall back to the prior $\pi \to \pi_0$
 - As $\beta \to \infty$, the agent will be a perfect value optimizer $\pi \to \pi^*$
- We'll see reasons to have finite β

Simplifying assumption

- MaxEnt IRL was approximate because it violated dynamical constraints
 - $p_{\pi}(\xi) \propto \pi_0(\xi) \exp(R(\xi))$, regardless of trajectory feasibility
- For simplicity, let's start with the same for RL
 - Suppose the environment is fully controllable $s_{t+1} = a_t$
 - Bellman equation:

$$V_{\beta}^{*}(s) = \max_{\pi} \mathbb{E}_{(s'|s) \sim \pi} \left[r(s) - \frac{1}{\beta} \log \frac{\pi(s'|s)}{\pi_{0}(s'|s)} + \gamma V_{\beta}^{*}(s') \right]$$

$$= r(s) - \frac{1}{\beta} \min_{\pi} \mathbb{D} \left[\pi \left\| \frac{\pi_{0}(s'|s) \exp(\beta \gamma V_{\beta}^{*}(s'))}{Z_{\beta}'(s)} \right\| + \frac{1}{\beta} \log Z_{\beta}'(s) \right\}$$

Linearly-Solvable MDPs (LMDPs)

• Optimal policy for
$$V_{\beta}(s) = r(s) - \frac{1}{\beta} \min_{\pi} \mathbb{D} \left[\pi \left\| \frac{\pi_0(s'|s) \exp(\beta \gamma V_{\beta}(s'))}{Z_{\beta}'(s)} \right\| + \frac{1}{\beta} \log Z_{\beta}'(s) \right]$$

- Soft-greedy policy: $\pi_{\beta}(s'|s) \propto \pi_0(s'|s) \exp(\beta \gamma V_{\beta}(s'))$
- Value recursion: $V_{\beta}(s) = r(s) + \frac{1}{\beta} \log Z_{\beta}'(s) = r(s) + \frac{1}{\beta} \log \mathbb{E}_{(s'|s) \sim \pi_0}[\exp(\beta \gamma V_{\beta}(s'))]$

$$Z_{\beta}(s) = \exp(\beta V_{\beta}(s)) = \exp(\beta r(s)) Z_{\beta}'(s) = \exp(\beta r(s)) \mathbb{E}_{(s'|s) \sim \pi_0} [Z_{\beta}'(s')]$$

- In the undiscounted case $\gamma=1$, with $D={\rm diag}(\exp\beta r)$: $z=D\dot{P}_0z$
- We can solve for z, and therefore π , by finding a right-eigenvector of DP_0

Z-learning

$$Z(s) = \exp(\beta r(s)) \mathbb{E}_{(s'|s) \sim \pi_0} [Z^{\gamma}(s')]$$

- We can do the same model-free:
 - Given experience (s, r, s') sampled by the prior policy π_0
 - Update $Z(s) \to \exp(\beta r) Z^{\gamma}(s')$
- Full-controllability condition ($s_{t+1} = a_t$) can be relaxed to allow $\pi_0(s' \mid s) = 0$
 - But we still allow any transition distribution $\pi(s'|s)$ over the remaining support
 - Later: the general case, $p(s'|s) = \sum_{a} \pi(a|s)p(s'|s,a)$

Today's lecture

Bounded RL

Control as inference

Bounded RL methods

Duality between value and log prob

- We've seen many cases where log-probs play the role of reward / value
 - Or values the role of logits (unnormalized log-probs)
- Examples:
 - ► In LQG, $\log p(x \mid \hat{x}) = -\frac{1}{2}x^{\mathsf{T}}\Sigma x + \text{const}$; costs / values are quadratic
 - In value-based algorithms, good exploration policy: $\pi(a \mid s) = \operatorname{softmax} \beta Q(s, a)$
 - Imitation Learning can be viewed as RL with $r(s, a) = \log p^*(a \mid s)$

Full-controllability duality

- Bounded control in LMDP: $Z(s) = \exp(\beta r(s)) \mathbb{E}_{(s'|s) \sim \pi_0} [Z^{\gamma}(s')]$
- Backward filtering in a partially observable system with dynamics $\pi_0(s' \mid s)$

$$p(o_{\geq t} | s_t) = p(o_t | s_t) \mathbb{E}_{(s_{t+1}|s_t) \sim \pi_0} [p(o_{\geq t+1} | s_{t+1})]$$

- $p(s_t | o_{\geq t}) \propto p(s_t) p(o_{\geq t} | s_t)$ $\pi_0 \qquad \pi_0 \qquad s_{t+1} \qquad b$ $o_{t-1} \qquad o_t$
- Equivalent if $Z(s) = p(o_{>t} | s_t)$ and $\exp(\beta r(s)) = p(o | s)$
 - ► Intuition: find states that give good reward ⇔ high likelihood of observations
- Exact equivalence only in the fully-controllable case
 - Partially controllable case takes more nuanced analysis

Bounded RL

- Back to the general case: $\max_{\pi} \mathbb{E}_{(s,a) \sim p_{\pi}} [\beta r(s,a)] \mathbb{D}[\pi \| \pi_0]$
- Define an entropy-regularized Bellman optimality operator

$$\mathcal{T}[V](s) = \max_{\pi} \mathbb{E}_{(a|s) \sim \pi} \left[r(s, a) - \frac{1}{\beta} \log \frac{\pi(a|s)}{\pi_0(a|s)} + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')] \right]$$

- As in the unbounded case ($\beta \to \infty$), this operator is contracting
- Soft-optimal policy:

$$\pi(a \mid s) \propto \pi_0(a \mid s) \exp \beta(r(s, a) + \gamma \mathbb{E}_{(s'\mid s, a) \sim p}[V(s')]) = \pi_0(a \mid s) \exp \beta Q(s, a)$$

• Soft-optimal value recursion: $V(s) = \frac{1}{\beta} \log Z(s) = \frac{1}{\beta} \log \mathbb{E}_{(a|s) \sim \pi_0} [\exp \beta Q(s,a)]$

Value-RelEnt curve

Exact and approximate inference

- . Suppose we want to max log-likelihood of a dataset max $\mathbb{E}_{x\sim D}[\log p_{\theta}(x)]$
 - And easier to compute with latent intermediate variable $p_{\theta}(z)p_{\theta}(x\,|\,z)$

- Expectation–Gradient (EG): $\nabla_{\theta} \log p_{\theta}(x) = \mathbb{E}_{(z|x) \sim p_{\theta}} [\nabla_{\theta} \log p_{\theta}(z,x)]$
- But what if sampling from the exact posterior $p_{\theta}(z \mid x)$ is also hard?
- Let's do importance sampling from any approximate posterior $q_{\phi}(z \mid x)$

$$\log p_{\theta}(x) = \log \mathbb{E}_{(z|x) \sim q_{\phi}} \left[\frac{p_{\theta}(z)}{q_{\phi}(z|x)} p_{\theta}(x|z) \right] \geq \mathbb{E}_{(z|x) \sim q_{\phi}} \left[\log \frac{p_{\theta}(z)p_{\theta}(x|z)}{q_{\phi}(z|x)} \right]$$

Variational Inference (VI): Evidence Lower Bound (ELBO)

• Two ways of decomposing $p_{\theta}(z, x)$:

$$\begin{split} \log p_{\theta}(x) & \geq - \mathbb{D}[q_{\phi}(z \,|\, x) || p_{\theta}(z, x)] \quad \text{objective} \\ p_{\theta}(z, x) &= p_{\theta}(x) p_{\theta}(z \,|\, x) \\ &= \log p_{\theta}(x) + \mathbb{E}_{(z \mid x) \sim q_{\phi}} \left[\log \frac{p_{\theta}(z \mid x)}{q_{\phi}(z \mid x)} \right] \quad \text{bounding gap between objective and proxy} \\ p_{\theta}(z, x) &= p_{\theta}(z) p_{\theta}(x \mid z) \\ &= \mathbb{E}_{(z \mid x) \sim q_{\phi}} \left[\log \frac{p_{\theta}(z)}{q_{\phi}(z \mid x)} + \log p_{\theta}(x \mid z) \right] \quad \text{what we actually compute} \end{split}$$

- Bounding gap: $\mathbb{D}[q_{\phi}(z|x)||p_{\theta}(z|x)] \ge 0$
 - The smaller the gap, the better the guide $q_{\phi}(z\,|\,x)$ approximates $p_{\theta}(z\,|\,x)$
- Bound (RHS) can be computed efficiently as a proxy for our objective

Control as inference

• Consider soft "success" indicators (assuming $r \leq 0$)

$$p(v_t = 1 \mid s_t, a_t) = \exp \beta r(s_t, a_t)$$

• What is the log-probability that an entire trajectory ξ "succeeds"?

$$\log p(\mathcal{V} | \xi) = \sum_{t} \log p(v_t = 1 | s_t, a_t) = \beta \sum_{t} r(s_t, a_t) = \beta R(\xi)$$

What is the posterior distribution over trajectories, given success?

$$p(\xi \mid \mathcal{V}) = \frac{p_0(\xi)p(\mathcal{V} \mid \xi)}{p_0(\mathcal{V})} = \frac{p_0(\xi)\exp\beta R(\xi)}{Z}$$

But this distribution is not realizable, due to dynamical constraints

Pseudo-observations

General duality between VI and bounded RL

- In VI, take $x=\mathcal{V}$, $z=\xi$, and $p_{\theta}(\xi)=p_0(\xi)$ (fix generator to prior)
- Optimize the ELBO with a realizable guide distribution $q_\phi(\xi \mid \mathcal{V}) = p_{\pi_\phi}(\xi)$
- The ELBO becomes:

$$\mathbb{E}_{(\xi|\mathcal{V})\sim q_{\phi}}\left[\log p_{0}(\mathcal{V}|\xi) + \log\frac{p_{0}(\xi)}{q_{\phi}(\xi|\mathcal{V})}\right] = \mathbb{E}_{\xi\sim p_{\pi_{\phi}}}\left[\beta R(\xi) - \log\frac{p_{\pi_{\phi}}(\xi)}{p_{0}(\xi)}\right]$$

$$= \mathbb{E}_{(s,a)\sim p_{\pi_{\phi}}}\left[\beta r(s,a) - \log\frac{\pi_{\phi}(a|s)}{\pi_{0}(a|s)}\right]$$

Equivalent to the bounded RL problem! (a.k.a.: MaxEnt RL, energy-based RL)

Today's lecture

Bounded RL

Control as inference

Bounded RL methods

Soft Q-Learning (SQL)

MaxEnt Bellman operator:

$$\mathcal{F}[Q](s,a) = r(s,a) + \gamma \mathbb{E}_{(s'|s,a)\sim p} \max_{\pi} \left[-\frac{1}{\beta} \log \frac{\pi(a'|s')}{\pi_0(a'|s')} + Q(s',a') \right]$$

- Maximum achieved for soft-optimal policy, soft-optimal value recursion
- With tabular parametrization: $Q(s,a) \to r + \frac{\gamma}{\beta} \log \mathbb{E}_{(a'|s') \sim \pi_0} [\exp \beta Q(s',a')]$
- With differentiable parametrization:

$$L_{\theta}(s, a, r, s') = (r + \frac{\gamma}{\beta} \log \mathbb{E}_{(a'|s') \sim \pi_0} [\exp \beta Q_{\bar{\theta}}(s', a')] - Q_{\theta}(s, a))^2$$

• As $\beta \to \infty$, this becomes (Deep) Q-Learning

Soft Actor-Critic (SAC)

• Optimally:
$$\pi(a \mid s) = \frac{\pi_0(a \mid s) \exp \beta Q(s, a)}{\exp \beta V(s)}$$
 $V(s) = Q(s, a) - \frac{1}{\beta} \log \frac{\pi(a \mid s)}{\pi_0(a \mid s)}$

- In continuous action spaces, we can't explicitly softmax Q(s, a) over a
- We can train a critic off-policy

$$L_{\phi}(s, a, r, s', a') = \left(r + \gamma \left(Q_{\bar{\phi}}(s', a') - \frac{1}{\beta} \log \frac{\pi_{\theta}(a'|s')}{\pi_{0}(a'|s')}\right) - Q_{\phi}(s, a)\right)^{2}$$

And a soft-greedy actor = imitate the critic

$$L_{\theta}(s) = \mathbb{E}_{(a|s) \sim \pi_{\theta}}[\log \pi_{\theta}(a|s) - \log \pi_{0}(a|s) - \beta Q_{\phi}(s,a)]$$

• Can optimize $\beta = \frac{1}{\tau}$ to match a target entropy $L_{\tau}(s,a) = -\tau \log \pi_{\theta}(a \mid s) - \tau H$

Why use a finite β

- Model suboptimal agents / teachers
- Robustness to model misspecification / avoid overfitting
- With uncertainty in Q, eliminate bias due to winner's curse
 - For $\beta \to \infty$: positive bias $\mathbb{E}[\max_a Q(a)] \ge \max_a \mathbb{E}[Q(a)]$
 - $\text{For }\beta\to 0\text{: negative bias }\mathbb{E}[\mathbb{E}_{a\sim\pi_0}[Q(a)]]=\mathbb{E}_{a\sim\pi_0}[\mathbb{E}[Q(a)]]\leq \max_{a}\mathbb{E}[Q(a)]$
 - Somewhere in between there must be an unbiased β
- Robustness to non-stationary environment, multi-agent, etc.

Robustness to model uncertainty

Recap

- We can model bounded rationality with KL cost to diverge from prior π_0
- Equivalent to a form of variational inference
- Can be optimized with Soft Q-Learning (SQL)
 - In continuous action spaces, Soft Actor-Critic (SAC)
- Value-entropy trade-off coefficient β shouldn't be annealed too fast
 - Schedule with a target entropy or by other principles

Today's lecture

Bounded RL

Control as inference

Bounded RL methods

Abstractions

Abstractions in learning

Abstraction = succinct representation

- Captures high-level features, ignores low-level
- Can be programmed or learned
- Can improve sample efficiency, generalization, transfer
- Input abstraction (in RL: state abstraction)
 - Allow downstream processing to ignore irrelevant input variation
- Output abstraction (in RL: action abstraction)
 - Allow upstream processing to ignore extraneous output details

Abstractions in sequential decision making

- Spatial abstraction: each decision has state / action abstraction
 - Easier to decide based on high-level state features (e.g. objects, not pixels)
 - Easier to make big decisions first, fill in the details later
- Temporal abstraction: abstractions can be remembered
 - No need to identify objects from scratch in every frame
 - High-level features can ignore fast-changing, short-term aspects
 - No need to make the big decisions again in every step
 - Focus on long-term planning, shorten the effective horizon

Options framework

Option = persistant action abstraction

- High-level policy = select the active option $h \in \mathcal{H}$
- ▶ Low-level option = "fills in the details", select action $\pi_h(a \mid s)$ every step
- When to switch the active option h?
 - Idea: option has some subgoal = postcondition it tries to satisfy
 - Option can detect when the subgoal is reached (or failed to be reached)
 - As part of deciding what action to take otherwise
 - ► ⇒ the option terminates ⇒ the high-level policy selects new option

Four-room example

4 stochastic primitive actions

8 multi-step options (to each room's 2 hallways)

one of the 8 options:

Options framework: definition

- Option: tuple $\langle \mathcal{I}_h, \pi_h, \beta_h \rangle$
 - The option can only be called in its initiation set $\,s\in\mathcal{I}_h\,$
 - It then takes actions according to policy $\pi_h(a|s)$
 - After each step, the policy terminates with probability $\beta_h(s)$
- Equivalently, define policy over extended action set $\pi_h: \mathcal{S} \to \Delta(\mathcal{A} \cup \{\bot\})$
- Initiation set can be folded into option-selection meta-policy $\pi_{\perp}:~\mathcal{S} \to \Delta(\mathcal{H})$
- Together, π_{\perp} and $\{\pi_h\}_{h\in\mathcal{H}}$ form the agent policy