UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2024

Lecture 15: Bounded RL

s
| o/ .
= &u,,_."‘/‘ "}\
WiLL PREss &
| EVER
FOR)

Roy Fox -
Department of Computer Science %
School of Information and Computer Sciences —
University of California, Irvine Rt D

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Logistics

e Quiz 7 due next Monday

_ e Exercise 4 + Quiz 8 will be due Week 10

e Exercise 5 will be due Week 11

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Today's lecture

Control as inference

Bounded RL methods

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Bounded optimality

» Bounded optimizer = trades off value and divergence from prior my(a | 5)

n(als)

Max £ o), 105, @] = 1D1zlizol = max)., | fris, a) =log 220

e = % IS the tradeoff coefficient between value and relative entropy

> Similar to the inverse-temperature in statistical physics

> As [— 0, the agent will fall back to the prior & —
>~ As fj — o0, the agent will be a perfect value optimizer &1 — 7*

» We'll see reasons to have finite

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Simplifying assumption

 MaxEnt IRL was approximate because It violated dynamical constraints
» p(&) x m(&)exp(R(E)), regardless of trajectory feasibility

* For simplicity, let's start with the same for RL

> Suppose the environment is fully controllable s, = a,

> Bellman equation:

7(s’|s)

mo(s'| 5)

V;(S) max k1., r(s)—%log +}’V,ZI< (S’)]

U

L 7o(s [)exp(BrViEGs) | |
r(s)—; m;n) | 7S E— +ElogZﬁ(s)

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Linearly-Solvable MDPs (LMDPs)

7o(5" |)exp(BrV(s)
Zj(s)

Optimal policy for V(s) = r(s)—% min D [71'] +% log Zé(s):

~ Soft-greedy policy: 7y(s'| s) o mo(s'| s)exp(ByVi(s"))

Value recursion: Vﬁ(s) = r(s)+% log Zb(s) — r(s)+% log = (s S)Nﬂo[ﬁXP(ﬁV Vﬂ(S)]

Z,(s) = exp(BV(s)) = exp(Br(s)Zj(s) = exp(Br(s)E 51y [Z1(s")]

N

In the undiscounted case y = 1, with D = diag(exp fr): z = DPz

We can solve for z, and therefore x, by finding a right-eigenvector of DP,,

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Z-learning

Z(s) = exp(pr(s)) "(S'\S)NﬂO[Zy(S)]

 We can do the same model-free:
~ Given experience (s, r, s') sampled by the prior policy
> Update Z(s) — exp(fr)Z7(s’)

» Full-controllability condition (s,, ; = a,) can be relaxed to allow 7y(s’|s) = 0
> But we still allow any transition distribution 7z(s’| s) over the remaining support

Later: the general case, p(s’|s) = Z n(al|s)p(s’|s, a)

>

a

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Today's lecture

Bounded RL

Bounded RL methods

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Duality between value and log prob

* \We've seen many cases where log-probs play the role of reward / value

> Or values the role of logits (unnormalized log-probs)

 Examples:

1

» In LQG, logp(x|X) = —ExTZx + const; costs / values are quadratic

., In value-based algorithms, good exploration policy: z(a|s) = softmax SQ(s, a)
a

> |Imitation Learning can be viewed as RL with r(s, a) = log p*(a| s)

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Full-controllability duality

. Bounded control in LMDP: Z(s) = exp(Sr(s))E S)N,TO[ZV(S’)]

» Backward filtering in a partially observable system with dynamics 7y(s’| s)

p(s,| Ozt) X p(Sz)p(OZt | 5,)

p(ozt | St) — p(Ot | St) _(St+1|st)~ﬂ0[p(02t+1 | St+1)] —
» Equivalent if Z(s) = p(0s,|s,) and exp(fr(s)) = p(o]|s) \. \.

> Intuition: find states that give good reward < high likelihood of observations

 Exact equivalence only in the fully-controllable case

» Partially controllable case takes more nuanced analysis

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Bounded RL

Back to the general case: max —(S,a)Npﬂ[ﬁr(s, a)] — D|x||m]

U

Define an entropy-regularized Bellman optimality operator

n(als)

TY

TIVIG) = max E gy, [1(s,0) — & og

- mo(a | s)

m (S'\S,a)Np[V(S /)]]

> As in the unbounded case (f — ©0), this operator is contracting

Soft-optimal policy:

n(als) « mylals)exp p(r(s,a) + }’"(S'\S,a)Np[V(S,)]) = my(a | s)exp pO(s, a)

1 1

log

Soft-optimal value recursion: V(s) = 5 log Z(s) = ;

_(a\S)NJZO[eXp ﬁQ(Sa CZ)]

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Value—-RelEnt curve

: ' : ' : N[N (A ™A N
N N (A N N oA A
S ¥ N A A= N A
&« € ™A N &~ N2~ A
\" LN
| <| N[1
< <| <
t<\><t'¢v—-/"‘”\’ € ¢« < x| x| x| | viv N
(..(.(.(.4.4.4/VV¢\I ¢ e e e el el el Ll vl v v |N
Zl 2| 2l 2 2 Z[/T /v viv N 2| 2| <l 2| 2| 2| 2| v v N

Expected value, V.

EEEEEE

Control information, /.. (bits)

[Rubin et al., 2012}

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Exact and approximate inference

. Suppose we want to max log-likelihood of a dataset max [, ,llog py(x)]
0

> And easier to compute with latent intermediate variable p,(2)py(x|2z) y ¥ -

-4 -3 -2 -1 o 1 2 3 4

» Expectation-Gradient (EG): Vglog py(x) = E),y [Vlog py(z, X)]

» But what if sampling from the exact posterior py(z | x) is also hard?

e Let's do importance sampling from any approximate posterior q¢(z | x)
» Dlg,(z | X)||pg(z, x)]

Jensen
Po(2) e Po(2)pe(x|2)
log py(x) = log ~(z]x)~q [4010 pex|2)| = = (z]x)~qy log W]

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Variational Inference (VI): Evidence Lower Bound (ELBO)

 Two ways of decomposing py(z, X):

log py(x) = —])[ng(Z‘X)HPQ(Z, X)| objective

bounding gap
(Z,X) = py(X)ps(z] X) / between objective and proxy
Po Po\X)Pog ~ Py(z] x)] —

— log Pg(x) T _(Z\X)N% log qp(2]x)

(z,%) = py(Dps(x|2) what we actually compute
p@) p@ p@ \ :|/

Py(2)
q4(2 | x)

—(z]x)~q, log +1log Pe(x | 2)

» Bounding gap: D[g,(z|0)||pg(z|x)] = O
» The smaller the gap, the better the guide g,(z | X) approximates py(z | x)

 Bound (RHS) can be computed efficiently as a proxy for our objective

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Control as inference

» Consider soft “success” indicators (assuming r < 0)

p(vt = 1 ‘Sta Clt) = CXP ,BV(St, Clt)

» What is the log-probability that an entire trajectory & “succeeds”?

log p(7'1&) =) logp(v, = 1|s,a) = B) r(s,a) = BR(E)

 What is the posterior distribution over trajectories, given success?

PP NE po(©exp RE)
pE|7) = = -

> But this distribution is not realizable, due to dynamical constraints

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Pseudo-observations

p(v, = 1[s,a,) = exp pr,

General duality between VI and bounded RL

 InVI, take x = 7/, z = &, and py(&) = py(<) (fix generator to prior)

. Optimize the ELBO with a realizable guide distribution g,(5|7") = p%(f)

e The ELBO becomes:

Po(&)
= (|7)~gy log po(7| &) + log —]

p%(é)
C]gb(f | 7)

~E~pr, [ﬂ k(&) —log 75

my(al s)

.(als)
_(s,a)NP% [ﬂr(S, Cl) — IOg ¢]

> Equivalent to the bounded RL problem! (a.k.a.: MaxEnt RL, energy-based RL)

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Today's lecture

Bounded RL

Control as inference

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Soft Q-Learning (SQL)

MaxEnt Bellman operator:

_l (a’|s’)

p

log

T 10Q](s, @) = (s, a) + yE g5, 4)~, MaX [+ (s, a’)]

- mo(a’| s’)
Maximum achieved for soft-optimal policy, soft-optimal value recursion

% log _(a'\S')NﬂO[@(P pO(s’,a’)l

With tabular parametrization: O(s, a) — r+

With differentiable parametrization:

LH(Sa a,r, S,) — (7“"% lOg _(a"s’)wyzo[exp ﬁQé(S,a al)] T QH(Sa a))z

> As [/ — 00, this becomes (Deep) Q-Learning

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Soft Actor—Critic (SAC)

my(a | s)exp pQO(s, a)
exp pV(s)

n(als)

mo(al s)

. Optimally: 7(a | s) = V(s) = O, a)—%log

» |In continuous action spaces, we can't explicitly softmax Q(s, a) over a

 \We can train a critic off-policy

71'(9(61 , \)

:) — Q¢(S, a)>2

)
ry(a’| s’)

L¢(s, a,r,s’,a’) = (r + v (qu(s’, a’)—% log

 And a soft-greedy actor = imitate the critic

Ly(s) = _(a\s)fv]tg[log ola|s) —log my(als) — pOy(s,a)l

. Can optimize ff = L to match a target entropy L (s,a) = — tlogmy(a|s) — tH

T

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Why use a finite)

 Model suboptimal agents / teachers

* Robustness to model misspecification / avoid overfitting

« With uncertainty in O, eliminate bias due to winner's curse

. For # = oo: positive bias E[max OQ(a)] > max

a

, For — 0: negative bias [E|

= [O@]] =

A

aNﬂO[

—[Q(a)]

-[Q(a)]] £ max

>~ Somewhere in between there must be an unbiased [

 Robustness to non-stationary environment, multi-agent, etc.

—[Q(a)]

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Robustness to model uncertainty

Expected value, V.

-100

-200

-300

15 30 45 60

Control information, /.. (bits)

rale

balte

X

ek bialralte

balte
X
brakialte

beairales

X

baialee

P

XD

XD

e D3 DY

xel DDl

XD DY

X

babie

X
baiialee
X

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Recap

» We can model bounded rationality with KL cost to diverge from prior 7,

e Equivalent to a form of variational inference

e Can be optimized with Soft Q-Learning (SQL)

> In continuous action spaces, Soft Actor—Critic (SAC)

» Value-entropy trade-off coefficient // shouldn't be annealed too fast

» Schedule with a target entropy or by other principles

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Today's lecture

Bounded RL

Control as inference

Bounded RL methods

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Abstractions in learning

: : : features
 Abstraction = succinct representation inputwoutput
N

N

» Captures high-level features, ignores low-level N - -7

> (Can be programmed or learned

> Can improve sample efficiency, generalization, transfer
e |nput abstraction (in RL: state abstraction)
> Allow downstream processing to ignore irrelevant input variation

 Qutput abstraction (in RL: action abstraction)

> Allow upstream processing to ignore extraneous output details

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Abstractions In sequential decision making

e Spatial abstraction: each decision has state / action abstraction
> Easier to decide based on high-level state features (e.g. objects, not pixels)

> Easier to make big decisions first, fill in the detalls later

 [emporal abstraction: abstractions can be remembered .
> No need to identify objects from scratch in every frame { s { s
- High-level features can ignore fast-changing, short-term aspects "‘_""

> No need to make the big decisions again in every step

- Focus on long-term planning, shorten the effective horizon

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Options framework
o Option = persistant action abstraction [] h []
s\—> a

» High-level policy = select the active option h € # S o -

~ Low-level option = “fills in the details”, select action 7, (a | s) every step

» When to switch the active option /7?

> |dea: option has some subgoal = postcondition it tries to satisfy

> Option can detect when the subgoal is reached (or failed to be reached)

- As part of deciding what action to take otherwise

» —> the option terminates = the high-level policy selects new option

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Four-room example

one of the 8 options:

4 stochastic
HALLWAYS — primitive actions
up
. Fail 33%
Ieft—'— Mght of the time
/ 0 \\ Gl down
/NN
/ \\‘\ G, 8 multi-step options
/ o, (to each room's 2 hallways)
——

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

Options framework: definition

» Option: tuple <Zp,, 7n, Bn)
> The option can only be called in its initiation set s € Z;,

> It then takes actions according to policy Wh(a\s)

> After each step, the policy terminates with probability ﬁh(s)
» Equivalently, define policy over extended action set 7, : S — A(A U {L})
- Initiation set can be folded into option-selection meta-policy 7, : S — A(H)

» Together, 7, and {m, },c3 form the agent policy

Roy Fox | CS 277 | Winter 2024 | Lecture 15: Bounded RL

