
CS 277 (W26): Control and Reinforcement Learning
Exercise 2
Due date: Monday, February 2, 2026 (Pacific Time)
Roy Fox
https://royf.org/crs/CS277/W26

In the following questions, a formal proof is not needed (unless specified otherwise). Instead, briefly
explain the reasoning behind your answers informally.

Part 1 Relation between BC and PG (15 points)
Question 1.1 (5 points) Suppose that we want to imitate an unknown expert 𝜋∗, but we only have
access to a dataset D of demonstrations provided by a known non-expert policy 𝜋0. Suppose that the
exploration policy 𝜋0 supports the actions of 𝜋∗; i.e., 𝜋0(𝑎 |𝑠) > 0 for any (𝑠, 𝑎) with 𝜋∗(𝑎 |𝑠) > 0.
Suppose that a supervisor provides importance weights 𝜌(𝜉) = 𝑝𝜋∗ (𝜉)

𝑝𝜋0 (𝜉)
for each 𝜉 ∈ D.

We would like to use Behavior Cloning (BC) with a Negative Log-Likelihood (NLL) loss to train a
policy 𝜋𝜃 (𝑎 |𝑠) on data 𝜉 ∼ D to imitate the expert 𝜋∗. What is the loss LBC

𝜃
(𝜉) on which we should

descend?

Question 1.2 (5 points) Compare the answer to the previous question with the REINFORCE
algorithm. How are these algorithms similar? How are they different?

Question 1.3 (5 points) Suppose that, instead of the importance weights 𝜌(𝜉), a supervisor
labels each trajectory 𝜉 with its return 𝑅(𝜉). Let 𝐽𝜃 = E𝜉∼𝑝𝜃

[𝑅(𝜉)] be the RL objective for policy
𝜋𝜃 . Write a loss LPG

𝜃
(𝜉) whose gradient with respect to 𝜃, on data 𝜉 ∼ D, is an unbiased estimate

of ∇𝜃 𝐽𝜃 . Note that only 𝜋𝜃 , 𝜋0, 𝜉, and 𝑅(𝜉) are available.

Part 2 Advantage estimators (35 points)
You are playing an infinite sequence of Rock–Paper–Scissors rounds. After each round, you get a
reward of 1, 0, or -1, respectively if you win, tie, or lose. Your opponent is a simple bot: it always
tries to beat your previous action (e.g. to play Paper if you previously played Rock) with probability
40%, but selects the other two actions with probability 30% each; initially, it plays as if you’ve just
played Paper, i.e. its most likely action is Scissors. Knowing this, you play optimally: Rock, then
Scissors (to counter the most-likely Paper), then Paper (to counter Rock), and repeat.

Question 2.1 (5 points) What are the states of this system?

Question 2.2 (5 points) For each state 𝑠 and action 𝑎, what is the distribution of the reward 𝑟

when taking action 𝑎 in state 𝑠? What is its expectation and variance?

https://royf.org/crs/CS277/W26

Question 2.3 (5 points) With discount factor 𝛾 = 0.95, what is the value 𝑉∗(𝑠) of the optimal
policy in each state 𝑠?

Question 2.4 (5 points) What is the advantage 𝐴∗(𝑠, 𝑎) = 𝑄∗(𝑠, 𝑎) −𝑉∗(𝑠) of the optimal policy
in each state 𝑠 and action 𝑎?

Question 2.5 (5 points) Suppose that you estimate (perhaps incorrectly) that your expected
future discounted return is 𝑉 (𝑠) = 1 for each state 𝑠 (there is no variance in this estimate). You use
that estimate in a Monte-Carlo advantage estimator

𝐴MC(𝑠0, 𝑎0) =
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡 −𝑉 (𝑠0),

with on-policy experience 𝜉 = 𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, 𝑠2, Recall that the bias is defined as the
difference between the expected estimate and the true advantage. What are the bias and variance of
this estimator?

Question 2.6 (5 points) Consider the 𝑛-step advantage estimator

𝐴𝑛 (𝑠0, 𝑎0) =
𝑛−1∑︁
𝑡=0

𝛾𝑡𝑟𝑡 + 𝛾𝑛𝑉 (𝑠𝑛) −𝑉 (𝑠0),

with 𝑛 ≥ 1, and again with on-policy experience. What are the bias and variance of this estimator,
as a function of 𝑛?

Question 2.7 (5 points) Consider the GAE(𝜆) advantage estimator

𝐴𝜆 (𝑠0, 𝑎0) = (1 − 𝜆)
∞∑︁
𝑛=1

𝜆𝑛−1𝐴𝑛 (𝑠0, 𝑎0) =
∞∑︁
𝑡=0

(𝜆𝛾)𝑡𝐴1(𝑠𝑡 , 𝑎𝑡),

with 𝜆 ∈ [0, 1] and on-policy experience. What are the bias and variance of this estimator, as a
function of 𝜆?

Part 3 Model-Free Reinforcement Learning algorithms (50
points)

Note 1: For Q3.1–Q3.3, a GPU is not necessary; each question can be completed within 5 minutes
using CPU resources only. Q3.4 and Q3.5 can benefit from using GPUs. Without a GPU, they may
take about 20 minutes.
Note 2: The following library versions have been tested and are known to work:

torch 2.9.1
gymnasium 1.2.3
stable_baselines3 2.7.1

Question 3.1 Policy Gradient (10 points) Download the code at https://royf.org/crs/
CS277/W26/CS277E2.zip.
In the function update in reinforce.py, write PyTorch code that computes the Policy Gradient
loss. Hint: arithmetic operators work for PyTorch tensors, and PyTorch has built-in NumPy-like
functions, e.g., mean.
In the function compute_returns_V1 in reinforce.py, write NumPy code that computes the
return of the entire trajectory. The return will be the sum of rewards along the trajectory. You can
discount the sum however you’d like, or not at all. Note that we need returns to be a 1-D NumPy
array of the same size as the rewards, i.e., the length of the trajectory. Create a 1-D NumPy array
where every entry equals the trajectory return.
Train the REINFORCE agent with:

python run.py --env CartPole-v1 \
--training-steps 100000 \
--version 1

This will create a directory containing the agent’s checkpoints. Then, evaluate the agent with:

python run.py --eval \
--env CartPole-v1 \
--checkpoint <checkpoint_directory>

Append (1) your evaluation results (a screenshot) and (2) a code listing of the functions update and
compute_returns_V1 (either a screenshot or pasted code).

Question 3.2 Policy Gradient with Future Return (10 points) We can reduce the variance
of the gradient estimator by excluding past rewards from the return at each timestep. Complete
compute_returns_V2 in reinforce.py to sum (with or without discounting, but be consistent
with what you did before) only future rewards in each step. Hint: the function numpy.cumsum can
come in handy, but be careful how you use it.
Train the agent again using the new version of returns and evaluate as before:

python run.py --env CartPole-v1 \
--training-steps 100000 \
--version 2

Append (1) your evaluation results and (2) a code listing of the function compute_returns_V2.

Question 3.3 Policy Gradient with Normalized Future Return (10 points) We can stabi-
lize training by normalizing the returns in each episode. Complete compute_returns_V3 in
reinforce.py to normalize the returns obtained in the previous question. Then train the agent
again and evaluate as before.

python run.py --env CartPole-v1 \
--training-steps 100000 \
--version 3

Append (1) your evaluation results and (2) a code listing of the function compute_returns_V3.

https://royf.org/crs/CS277/W26/CS277E2.zip
https://royf.org/crs/CS277/W26/CS277E2.zip
https://pytorch.org/docs/stable/generated/torch.mean.html

Question 3.4 DQN (5 points) Run dqn.py using the following command and view the results.
You may first need to run: pip install swig gymnasium[box2d] stable_baselines3.

python dqn.py --env LunarLander-v3 \
--training-steps 1000000

Evaluate the agent with:

python dqn.py --env LunarLander-v3 \
--eval \
--checkpoint <checkpoint_directory>

If running locally, you can pass ––human to visually render the rollouts to see how the trained agent
performs in the simulator. You can also download the trained agent checkpoint and evaluate locally.
replay_data.dones (plural of ‘done‘) is a vector of booleans that, for each time step, indicates
whether the next state (reached at the end of the step) terminated the episode.
Explain the role of dones in line 39 of dqn.py.

Question 3.5 Double DQN (10 points) As we will see in a later class, the Q-learning target
tends to overestimate the Q-value. Several methods have been proposed to mitigate this, including
Double Q-learning and its function-approximation counterpart, Double DQN.
Complete the function train such that, if self.double_dqn is True, the loss is the Double DQN
loss:

L𝜃 (𝑠, 𝑎, 𝑟, 𝑠′) = (𝑟 + 𝛾𝑄𝜃 (𝑠′, arg max
𝑎′

𝑄𝜃 (𝑠′, 𝑎′)) −𝑄𝜃 (𝑠, 𝑎))2,

where 𝜃 are the parameters of the target network.
Train the agent with:

python dqn.py --env LunarLander-v3 \
--training-steps 1000000 \
--double-dqn

and evaluate as in the previous question.
Append a code listing of the function train.

Question 3.6 Visualize results (5 points) We can use TensorBoard to visualize the training
results of stable_baselines3.
Run a TensorBoard web server:

tensorboard \
--host=$(hostname) \
--logdir <The parent directory of the DQN results folder>

Take note of the URL at which TensorBoard is serving (likely http://<hpc-hostname>:6006/).
Use port forwarding and open a browser at http://localhost:6006/ on your local machine.
Familiarize yourself with the TensorBoard interface.

http://<hpc-hostname>:6006/
http://localhost:6006/

You should be able to see all the stable_baselines3 runs on the bottom-left, with a color legend.
If you happened to execute more runs than the ones detailed in previous questions, uncheck all the
other runs.
Find the plot tagged rollout/ep_rew_mean. You can find it manually, or use the “Filter tags” box
at the top. Enlarge the plot using the leftmost of the three buttons at the bottom.
On the left, you’ll find some useful options. Uncheck “Ignore outliers in chart scaling” and note the
effect on the plot. Check “Show data download links”, download the plot, and append it to your
PDF.

Question 3.7 Extra fun For extra fun, repeat the above experiments with other (discrete action
space) environments from Gymnasium (https://gymnasium.farama.org/index.html), such
as Acrobot-v1. This is completely optional and meant for curiosity and learning—there is no extra
credit.

https://gymnasium.farama.org/index.html

	Relation between BC and PG (15 points)
	Advantage estimators (35 points)
	Model-Free Reinforcement Learning algorithms (50 points)

