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Today's lecture

Course logistics

Why is RL interesting?
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RL € control learning € ML

* Reinforcement Learning = learning from reinforcement (rewards)
> But it came to encompass many settings of learning to control

> Distinguished by data-driven sequential decision making

 Many consider RL a separate ML paradigm, but it can involve:

> Supervised learning

Supervised Unsupervised
Learning Learning

> Unsupervised learning

> Active learning

Reinforcement
Learning

> Online learning
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What Is machine learning

e Can we build “intelligent” machines? Intelligence = good decision making

e |_earning = taking in information to “know” more than you did before
 Machine learning = use data to make better decisions than before [Mitchell 1997]
ML can help when other Al methods falil:

Face recognition

> EXxperts are scarce

Medical diagnosis

i
*

[Taigman et al., 2014; Shen et al., 2018]

» Rules / logic are hard to specify

» Search space is too large

DIAGNOSTICS

» Models are unknown / hard to specify
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The ML stack

math

 Math: probability theory, (linear) algebra, computational learning theory
o Algorithms: ML algorithms, optimization, data structures
o Software: ML frameworks, databases, evaluation, deployment

 Hardware: cloud computing, distributed systems, cyber-physical systems
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ML success stories

Image generation
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Figure 1: The Transformer - model architecture.

Language generation

¥~ Decoder

Protein folding
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What is control learning (CL)?

e Intelligence appears in interaction with a complex system, not in isolation

> An agent interacting with an _
environment

e Control = sequential decision making
> Sense environment state §

» Take action a
> Repeat -

e Success can be measured by matching good actions — imitation learning (IL)

>~ Or by accumulating high rewards r(s, a) — reinforcement learning (RL)

Roy Fox | CS 277 | Winter 2026 | Lecture 1: Introduction



Control preference elicitation

Explicit Implicit
Programming Imitation Learning
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e~ &-o5-E
Instruction Following Reinforcement Learning
" " xxr—xm / “é xxr—xm
" BB AT ohsE

Roy Fox | CS 277 | Winter 2026 | Lecture 1: Introduction



RL success stories

Spatial navigation

Auxiliary Tasks

ﬁ DeepMind

Live Play

Pixel Control

Generator fine-tuning

Step 1 Supervised Fine-Tuning Step 2 Training a Reward Model Step 3 Optimize Policy
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RL i1s ML... but special

* |n RL, unlike supervised, no ground truth, only feedback (online learning)

 Exploration = the learner collects data by interaction
> The agent decides on which states to train (active learning) — and test!

» (Cannot avoid some train—test mismatch

e Sequential decision making need to be coordinated I

2

> Optimization space is teeming with local optima

* A good policy may require memaory

> Agent state is latent =& combine control and inference
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Today's lecture

What is reinforcement learning?

Why is RL interesting?
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Course logistics: general

o Course website: https://royf.org/crs/CS277/\W26

» Schedule; recordings; exercises; resources

 Forum: https://edstem.org/us/courses/90858

» Announcements; discussions

e Office hours: in-person or on zoom

> Welcome to schedule 15-min slots; individually or with classmates

e [TA: Kyungmin Kim

> Office hours: https://calendar.app.google/QQsrudxq9PF1CGcT6
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https://royf.org/crs/CS277/W26
https://edstem.org/us/courses/90858
https://calendar.app.google/1E1gUJD3Hp7cnasZ8
https://calendar.app.google/4hBNwFgmcf3jbvKL6
https://calendar.app.google/QQsruJxq9PF1CGcT6

Course logistics: lectures and discussions

e | ectures

> When: Tuesdays and Thursdays, 5-6:20pm

» Where: ICS 180

> Recorded when possible, uploaded to the course website
» Attendance iIs optional but recommended

e Class discussions
> Reviewing quizzes and exercises following deadline

» Recaps, deep dives, freeform discussions
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https://classrooms.uci.edu/classrooms/ics/ics-180/

Course logistics: quizzes and exercises

e Quizzes
> Weekly, about that week's topics; deadlines the following Monday
> Discussed the following Tuesday in class
e EXercises
> Roughly every other week; deadlines typically Friday
> Understand RL concepts; apply RL techniques in Python

> Discussed the following Thursday in class

e Submission: https://www.gradescope.com/courses/1210041
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https://www.gradescope.com/courses/1210041

Grading policy: exercises

e Show your math, code, and results

 Encouraged to discuss with me or classmates

> But solve yourself

e 4 best of 5 exercises count for 20% each

5% bonus for scoring at least 50% on all 5

 Late submission: 5 grace days total
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Grading policy: quizzes

 Review the week's topics, think about them a bit

* Aiming for 9 quizzes at 2% each = 18%
> Half the score for submitting a complete quiz

> Half the score for doing better than random guess

e No late submission
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Grading policy: participation

* Class, office hours, or forum participation: 2%
> Ask questions if you have any
> Answer quiz or forum questions if you can
> Share thoughtful comments
> Post relevant useful links

> Be on-topic (excluding administrative)

e Course evaluations: 2% bonus
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What will it take to do well?

> |I'm here to help, but solid background expected

* You'll need to code well in Python

e Some ideas are challenging — ask early what you don't fully understand
> There'll be a lot going on, and nobody understands everything immediately

> |If you walk away with a good general understanding of the basics — that’s a win!

* Help your friends and get help — from me too — but never cheat!
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Today's lecture

What is reinforcement learning?

Course logistics
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Why is RL powerful?
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 Many (all?) problems can be formulated as control

> But consider: is it sequential? multi-agent? a more specific structure?

e Active + online = very little supervision

> Even incidental, like in evolution! Supervisor can be “surprised”

 More general CL: incorporate stronger supervision

> Supervisor burden is a tradeoff between data amount < informativeness
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Control preference elicitation

Explicit Implicit
Programming Imitation Learning
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How Is RL different?

online learning

/
Provided correct output Provided feedback
IL from demonstrations Offline RL
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active learning
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What would “solving” RL look like?

modularity?

T

Foundation model Continual learning
* Foundation model? » Continual learning?

> Large model > Flexible model

> Huge amount of data > Ad-hoc (“on-task”) data

> Centrally trained > Distributed learning

> Fine-tuned, built into pipelines > Mixed supervision, shared learning

The last ML frontier?
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Why is RL hard?

e |t's all about the data: amount and informativeness

Provided correct output Provided feedback
IL from demonstrations Offline RL
Teacher .
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IL from corrections
Learner
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hard to give exploration weak signal, exploration
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Logistics

 See website for schedule, recordings, resources, etc.

e Quiz 1 due next Monday

_ e Follow announcements and discussions on ed

 Exercise 1 to be published soon, due next Friday
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