

CS 277: Control and Reinforcement Learning

Winter 2026

Lecture 10: Stochastic Optimal Control

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Logistics

assignments

- Quiz 5 due **next Monday**
- Exercise 3 to be published soon, due **next Friday**

videos

- Lecture 7 addendum on exploration in RL coming soon

Today's lecture

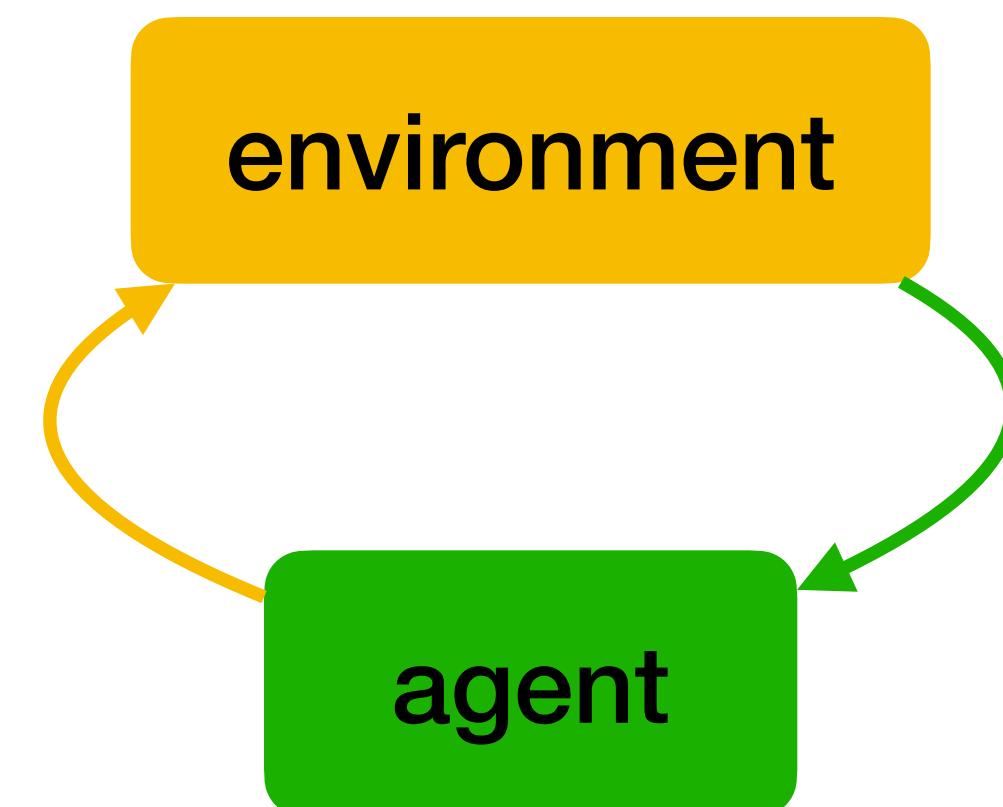
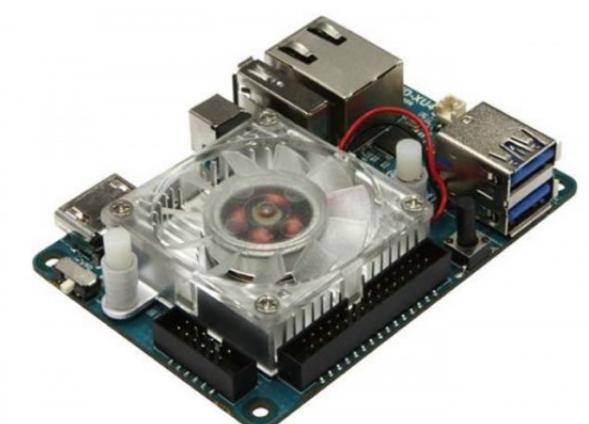
LQR with process noise

Linear-Quadratic Estimator

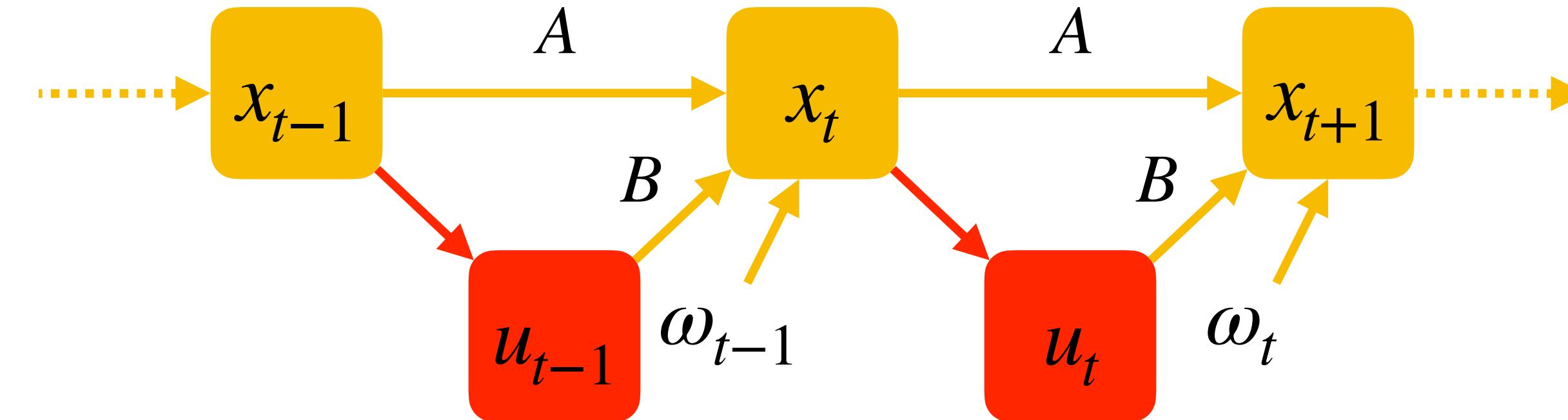
Linear-Quadratic-Gaussian control

Reminder: Linear Quadratic Regulator (LQR)

- Linear Quadratic Regulation (LQR) optimization problem:
 - ▶ Given LTI dynamics + quadratic cost (A, B, Q, R)
 - ▶ Find the control function $u_t = \pi(x_t)$
 - ▶ That minimizes $J^\pi = \sum_{t=0}^{T-1} c(x_t, u_t) = \frac{1}{2} \sum_{t=0}^{T-1} (x_t^\top Q x_t + u_t^\top R u_t)$
 - ▶ Such that $x_{t+1} = Ax_t + Bu_t$ for all t



Stochastic control



- Simplest stochastic dynamics – **Gaussian**: $p(x_{t+1} | x_t, u_t) = \mathcal{N}(x_{t+1}; Ax_t + Bu_t, \Sigma_\omega)$

$$x_{t+1} = Ax_t + Bu_t + \omega_t \quad \omega_t \sim \mathcal{N}(0, \Sigma_\omega) \quad \Sigma_\omega \in \mathbb{R}^{n \times n}$$

- ▶ **Markov property**: all ω_t are i.i.d for all t
- Why is there **process noise**?
 - ▶ Part of the state we **don't model**; Gaussian = **maximum entropy** given a fixed Σ_ω
- In continuous time = **Langevin / Fokker–Plank equations**; Bu_t = **external force**

Stochastic optimal control

- Minimize **expected cost-to-go**

$$V_t^\pi(x_t) = \frac{1}{2}x_t^\top Q x_t + \frac{1}{2}u_t^\top R u_t + \mathbb{E}[V_{t+1}^\pi(x_{t+1}) \mid x_t, u_t = \pi(x_t)]$$

- **Bellman equation:**

$$V_t(x_t) = \min_{u_t} \frac{1}{2}x_t^\top Q x_t + \frac{1}{2}u_t^\top R u_t + \mathbb{E}_{(x_{t+1}|x_t, u_t) \sim \mathcal{N}(Ax_t + Bu_t, \Sigma_\omega)}[V_{t+1}(x_{t+1})]$$

- The cost-to-go is still quadratic, but with a **free term**

- $x_t = 0$ is no longer **absorbing** $\Rightarrow V_t(0) \neq 0$

$$V_t(x_t) = \frac{1}{2}x_t^\top S_t x_t + V_t(0)$$

Solving the Bellman recursion

- Good to know: expectation of **quadratic** under **Gaussian** is $\mathbb{E}_{x \sim \mathcal{N}(\mu_x, \Sigma_x)}[x^\top S x] = \mu_x^\top S \mu_x + \text{tr}(S \Sigma_x)$

$$\begin{aligned}
 V_t(x_t) &= \min_{u_t} \mathbb{E}_{(x_{t+1}|x_t, u_t) \sim \mathcal{N}(Ax_t + Bu_t, \Sigma_\omega)} \left[\frac{1}{2} x_t^\top Q x_t + \frac{1}{2} u_t^\top R u_t + \underbrace{\frac{1}{2} x_{t+1}^\top S_{t+1} x_{t+1}}_{V_{t+1}(0)} \right] \\
 &= \min_{u_t} \left(\frac{1}{2} x_t^\top Q x_t + \frac{1}{2} u_t^\top R u_t + \overbrace{\frac{1}{2} (Ax_t + Bu_t)^\top S_{t+1} (Ax_t + Bu_t)} + \frac{1}{2} \text{tr}(S_{t+1} \Sigma_\omega) + V_{t+1}(0) \right)
 \end{aligned}$$

new term, constant in u_t

- Linear control:** $u_t^* = L_t x_t$ with same **feedback gain**: $L_t = - (R + B^\top S_{t+1} B)^{-1} B^\top S_{t+1} A$
- Same **Riccati equation** for cost-to-go Hessian: $S_t = Q + A^\top (S_{t+1} - S_{t+1} B (R + B^\top S_{t+1} B)^{-1} B^\top S_{t+1}) A$

- Cost-to-go:** $V_t(x_t) = \frac{1}{2} x_t^\top S_t x_t + \sum_{t'=t+1}^T \frac{1}{2} \text{tr}(S_{t'} \Sigma_\omega)$
 - noise-cost term, due to process noise**

- Infinite horizon case:** $\lim_{T \rightarrow \infty} \frac{1}{T} V_0(x_0) = \lim_{T \rightarrow \infty} \frac{1}{2T} \left(x_0^\top S x_0 + \sum_{t=1}^T \text{tr}(S \Sigma_\omega) \right) = \frac{1}{2} \text{tr}(S \Sigma_\omega)$
 - state independent**

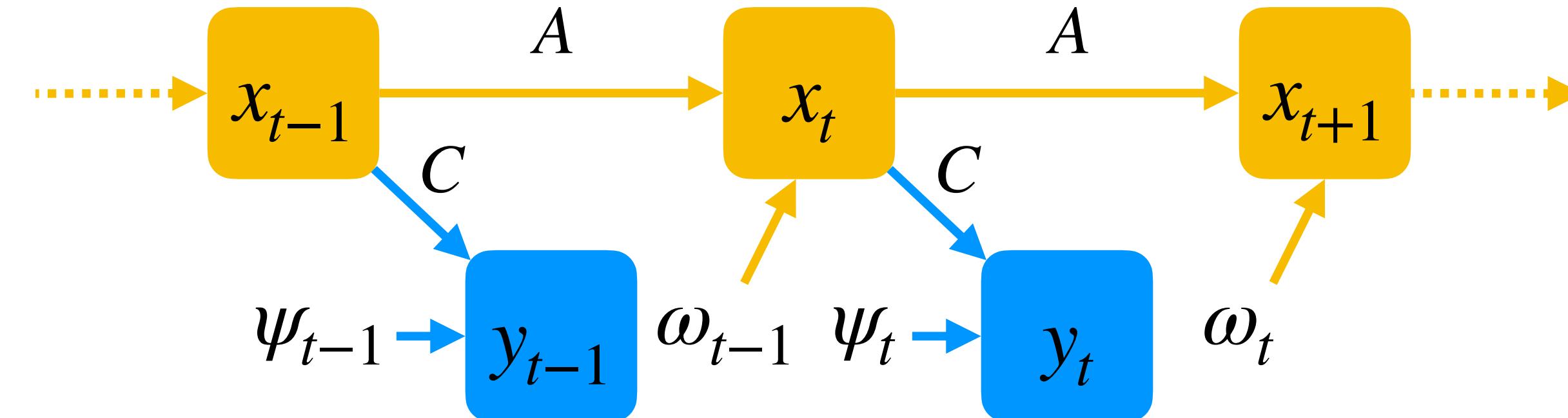
Today's lecture

LQR with process noise

Linear-Quadratic Estimator

Linear-Quadratic-Gaussian control

Partial observability



- What happens when we see just an **observation** $y_t \in \mathbb{R}^k$, not the full state x_t

- ▶ Simplest **observability model** – **Linear–Gaussian**: $p(y_t | x_t) = \mathcal{N}(y_t; Cx_t, \Sigma_\psi)$

$$y_t = Cx_t + \psi_t \quad \psi_t \sim \mathcal{N}(0, \Sigma_\psi) \quad C \in \mathbb{R}^{k \times n}, \Sigma_\psi \in \mathbb{R}^{k \times k}$$

- ▶ **Markov property**: all ω_t and ψ_t are independent, for all t
- Why is there **observation noise**?
 - ▶ **Transient** process noise that doesn't affect future states; only in agent's sensors

Gaussian Processes

- **Jointly Gaussian variables:** $\begin{bmatrix} x \\ y \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \Sigma_{(x,y)} = \begin{bmatrix} \Sigma_x & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_y \end{bmatrix}\right)$
 - ▶ **Conditional** distribution: $(x \mid y) \sim \mathcal{N}(\mu_{x|y}, \Sigma_{x|y})$
$$\mu_{x|y} = \mathbb{E}[x \mid y] = \mu_x + \Sigma_{xy}\Sigma_y^{-1}(y - \mu_y)$$
$$\Sigma_{x|y} = \text{Cov}[x \mid y] = \Sigma_x - \Sigma_{xy}\Sigma_y^{-1}\Sigma_{yx} = \Sigma_{(x,y)}/\Sigma_y$$

Schur complement

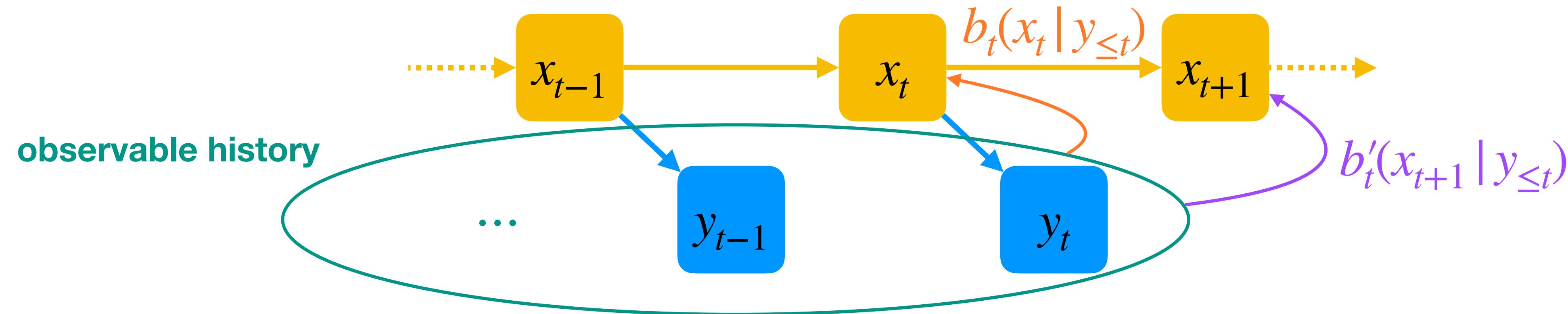
- ▶ **Converse** also true: Gaussian y and $(x \mid y)$, linear $\mu_{x|y} \implies$ jointly Gaussian (x, y)

sufficient
- **Gaussian Process (GP)** $x_0, y_0, u_0, x_1, \dots$: all variables are **(pairwise)** jointly Gaussian

Linear–Quadratic Estimator (LQE)

- **Belief**: our distribution over state x_t given what we know
- Belief given past observations (**observable history**): $b_t(x_t | y_{\leq t})$
- b_t is **sufficient statistic** of $y_{\leq t}$ for x_t = nothing more $y_{\leq t}$ can tell us about x_t
 - ▶ In principle, we can update b_{t+1} only from b_t and y_{t+1} = **filtering**
 - ▶ Probabilistic Graphical Models terminology: **belief propagation**
- **Linear–Quadratic Estimator (LQE)**: belief for our Gaussian Process
 - ▶ Update equations = **Kalman filter**

Belief and prediction



- **Belief** = what the observable history says of **current state**: $b_t(x_t | y_{\leq t})$
- **Prediction** = what the observable history says of **next state**: $b'_t(x_{t+1} | y_{\leq t})$
- In this Gaussian Process, both belief and prediction are **Gaussian**
 - ▶ Can be represented by their means \hat{x}_t , \hat{x}'_{t+1} and covariances Σ_t , Σ'_{t+1}
 - ▶ Computed **recursively forward**

Kalman filter

- Given **belief** $b_t(x_t | y_{\leq t}) = \mathcal{N}(\hat{x}_t, \Sigma_t)$, **predict** x_{t+1} :

$$\hat{x}'_{t+1} = \mathbb{E}[x_{t+1} | y_{\leq t}] = \mathbb{E}[Ax_t + \omega_t | y_{\leq t}] = A\hat{x}_t$$

$$\Sigma'_{t+1} = \text{Cov}[x_{t+1} | y_{\leq t}] = \text{Cov}[Ax_t + \omega_t | y_{\leq t}] = A\Sigma_t A^\top + \Sigma_\omega$$

- Given **prediction** $b'_t(x_t | y_{<t}) = \mathcal{N}(\hat{x}'_t, \Sigma'_t)$, update **belief** of x_t on seeing y_t :

$$\begin{aligned} \hat{x}_t &= \mathbb{E}[x_t | y_{\leq t}] = \mu_{x_t | y_{<t}} + \Sigma_{x_t y_t | y_{<t}} \Sigma_{y_t | y_{<t}}^{-1} (y_t - \mu_{y_t | y_{<t}}) \\ &\quad \text{like conditioning } x_t \text{ on } y_t \quad \text{and doing this given } y_{<t} \\ &= \hat{x}'_t + \Sigma'_t C^\top (C \Sigma'_t C^\top + \Sigma_\psi)^{-1} \overbrace{(y_t - C \hat{x}'_t)}^{\text{prediction error / innovation } e_t} \\ &\quad \Sigma_{y_t | y_{<t}} = C \Sigma_{x_t | y_{<t}} C^\top + \Sigma_\psi \end{aligned}$$

$$\begin{aligned} \Sigma_t &= \text{Cov}[x_t | y_{\leq t}] = \Sigma_{x_t | y_{<t}} - \Sigma_{x_t y_t | y_{<t}} \Sigma_{y_t | y_{<t}}^{-1} \Sigma_{y_t x_t | y_{<t}} \end{aligned}$$

$$= \Sigma'_t - \Sigma'_t C^\top (C \Sigma'_t C^\top + \Sigma_\psi)^{-1} C \Sigma'_t$$

Kalman filter

- Linear belief update: $\hat{x}_t = A\hat{x}_{t-1} + K_t e_t = (I - K_t C)A\hat{x}_{t-1} + K_t y_t$

$$\bullet \text{ Kalman gain: } K_t = \Sigma_t' C^\top (C \Sigma_t' C^\top + \Sigma_\psi)^{-1}$$

- Covariance update – Riccati equation:

$$\Sigma'_{t+1} = A(\Sigma'_t - \Sigma'_t C^\top (C \Sigma'_t C^\top + \Sigma_\psi)^{-1} C \Sigma'_t) A^\top + \Sigma_\omega$$

- ▶ Compare to prior (no observations): $\Sigma_{x_{t+1}} = A \Sigma_{x_t} A^\top + \Sigma_\omega$
- Observations reduce covariance
 - ▶ Actual observation not needed to say by how much

Control as inference

- View Bayesian inference as optimization: **minimizes MSE** $\mathbb{E}[\|x_t - \hat{x}_t\|^2]$
- **Control** and **inference** are deeply connected:

$$\Sigma'_{t+1} = A(\Sigma'_t - \Sigma'_t C^\top (C\Sigma'_t C^\top + \Sigma_\psi)^{-1} C\Sigma'_t)A^\top + \Sigma_\omega$$

$$S_t = Q + A^\top (S_{t+1} - S_{t+1} B (R + B^\top S_{t+1} B)^{-1} B^\top S_{t+1}) A$$

- The shared form (Riccati) suggests **duality**:

LQR	LQE
backward	forward
S_{T-t}	Σ'_t
A	A^\top
B	C^\top
Q	Σ_ω
R	Σ_ψ

- **Information filter**: recursion on $(\Sigma'_t)^{-1}$, presents a more principled duality

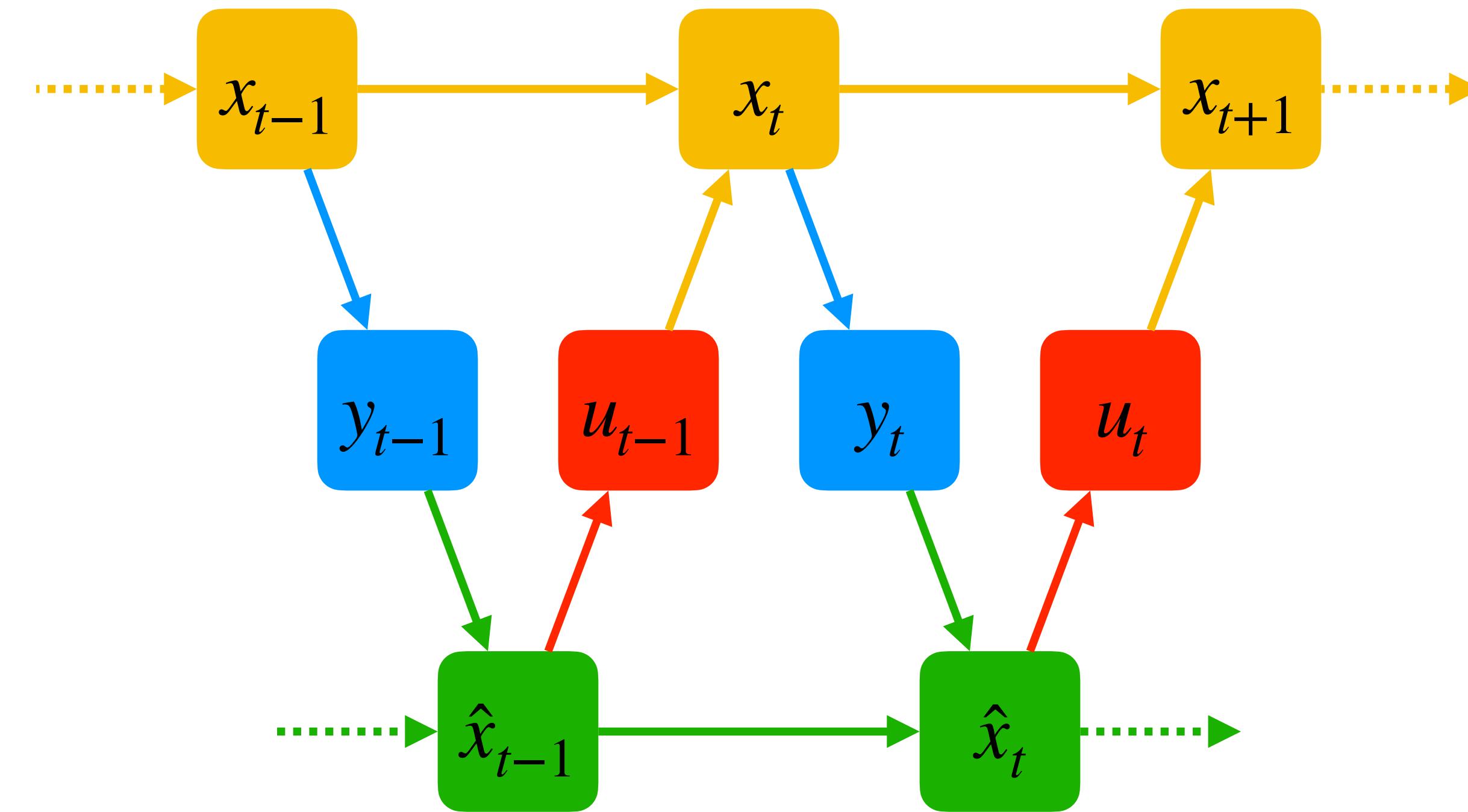
Today's lecture

LQR with process noise

Linear-Quadratic Estimator

Linear-Quadratic-Gaussian control

Linear–Quadratic–Gaussian (LQG) control



- Putting it all together:

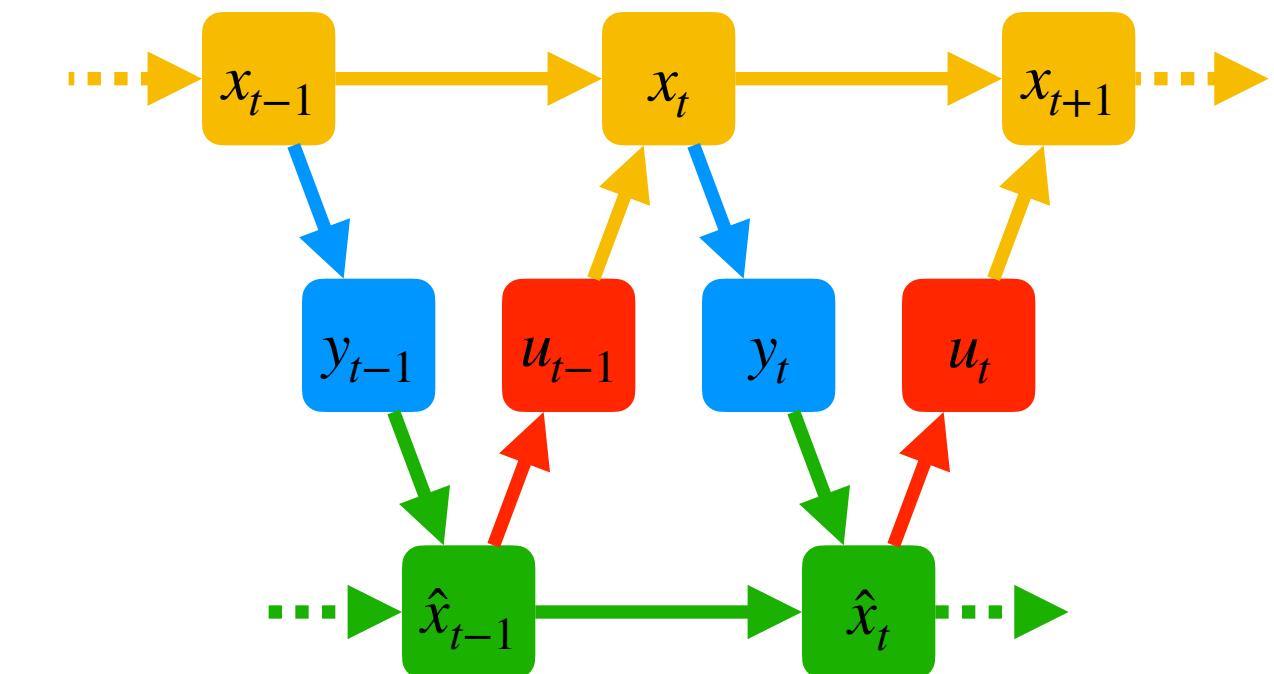
$$x_{t+1} = Ax_t + Bu_t + \omega_t \quad \omega_t \sim \mathcal{N}(0, \Sigma_\omega) \quad \Sigma_\omega \in \mathbb{R}^{n \times n}$$

$$y_t = Cx_t + \psi_t \quad \psi_t \sim \mathcal{N}(0, \Sigma_\psi) \quad C \in \mathbb{R}^{k \times n}, \Sigma_\psi \in \mathbb{R}^{k \times k}$$

LQE with control

- How does control affect estimation?

- ▶ Shifts predicted next state $\hat{x}'_{t+1} = A\hat{x}_t + Bu_t$



- ▶ Bu_t known \Rightarrow no change in covariances \Rightarrow Riccati equation still holds

- ▶ Same Kalman gain K_t

$$\hat{x}_t = A\hat{x}_{t-1} + K_t e_t = (I - K_t C)(A\hat{x}_{t-1} + Bu_{t-1}) + K_t y_t$$

- And... that's it, everything else the same

LQR with partial observability

- Bellman recursion must be expressed in terms of what u_t can depend on = \hat{x}_t

- ▶ **Problem:** but value depends on the true state x_t

- Value recursion for **full state** (environment + agent):

$$V_t^\pi(x_t, \hat{x}_t) = c(x_t, u_t) + \mathbb{E}[V_{t+1}^\pi(x_{t+1}, \hat{x}_{t+1}) | x_t, \hat{x}_t]$$

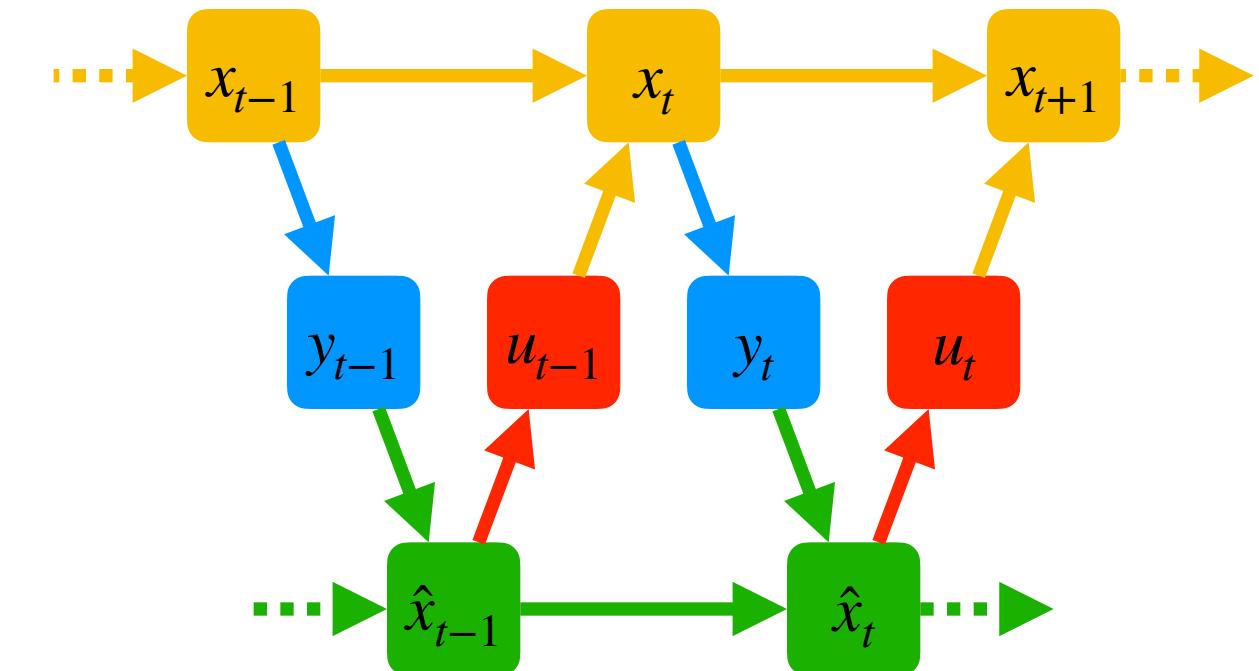
- In terms of only \hat{x}_t :

\hat{x}_{t+1} is sufficient for x_{t+1}
⇒ separates it from \hat{x}_t

$$V_t^\pi(\hat{x}_t) = \mathbb{E}[V_t^\pi(x_t, \hat{x}_t) | \hat{x}_t] = \mathbb{E}[c(x_t, u_t) + V_{t+1}^\pi(x_{t+1}, \hat{x}_{t+1}) | \hat{x}_t] = \mathbb{E}[c(x_t, u_t) + V_{t+1}^\pi(\hat{x}_{t+1}) | \hat{x}_t]$$

- Certainty equivalent control: $u_t = L_t \hat{x}_t$ with the same feedback gain L_t

- And... that's it, everything else the same



LQG separability

Given $(A, B, C, \Sigma_\omega, \Sigma_\psi, Q, R)$, solve LQG = **LQR** + **LQE** separately

- **LQR:**

- ▶ Compute value Hessian recursively backwards

$$S_t = Q + A^\top (S_{t+1} - S_{t+1} B (R + B^\top S_{t+1} B)^{-1} B^\top S_{t+1}) A$$

- ▶ Compute feedback gain:

$$L_t = - (R + B^\top S_{t+1} B)^{-1} B^\top S_{t+1} A$$

- ▶ Control policy: $u_t = L_t \hat{x}_t$

- **LQE:**

- ▶ Compute belief covariance recursively forward

$$\Sigma'_{t+1} = A(\Sigma'_t - \Sigma'_t C^\top (C \Sigma'_t C^\top + \Sigma_\psi)^{-1} C \Sigma'_t) A^\top + \Sigma_\omega$$

- ▶ Compute Kalman gain:

$$K_t = \Sigma'_t C^\top (C \Sigma'_t C^\top + \Sigma_\psi)^{-1}$$

- ▶ Belief update: $\hat{x}_t = A \hat{x}_{t-1} + K_t e_t$

- ▶ with $e_t = y_t - C(A \hat{x}_{t-1} + B u_{t-1})$

Recap

- **Stochastic optimal control**: control with process noise (stochastic dynamics)
 - ▶ Same concepts of **controllability**, but can't stop at $x_t = 0$
- **LQE** = linear–Gaussian observability $y_t = Cx_t + \psi_t$
 - ▶ **Kalman filter** = forward recursion to find belief $b_t(x_t | y_{\leq t})$
- **LQG** = **LQR** + **LQE**: estimate and control at the same time
 - ▶ **Separability** = optimal to solve LQR and LQE separately (only in LQG!)
 - ▶ Only differences: use \hat{x}_t for control; add Bu_t to prediction

Today's lecture

LQR with process noise

Linear-Quadratic Estimator

Linear-Quadratic-Gaussian control

Hamiltonian

Co-state

$$c_t \in \mathbb{R}$$

$$f_t \in \mathbb{R}^n$$

- Consider the **cost-to-go** $V_t^\pi(x_t) = c(x_t, u_t) + V_{t+1}^\pi(f(x_t, u_t))$
- To study its landscape over state space, consider its spatial **gradient**

$$\nu_t^\pi = \nabla_{x_t} V_t^\pi = \nabla_{x_t} c_t + \nabla_{x_{t+1}} V_{t+1}^\pi \cdot \nabla_{x_t} f_t = \nabla_{x_t} c_t + \nu_{t+1}^\pi \cdot \nabla_{x_t} f_t$$

- ▶ **Jacobian** of the dynamics: $\nabla_{x_t} f_t \in \mathbb{R}^{n \times n}$
- **Co-state** $\nu_t^\pi(x_t) \in \mathbb{R}^n$ = direction of steepest increase in cost-to-go
- ▶ Linear backward **recursion** $\nu_t = \nabla_{x_t} c_t + \nu_{t+1} \cdot \nabla_{x_t} f_t$; **initialization**: $\nu_T \equiv 0$

Hamiltonian

- Cost-to-go **recursion**: (first-order approximation)

$$V_t^\pi(x_t) = c(x_t, u_t) + V_{t+1}^\pi(x_{t+1}) \approx c(x_t, u_t) + f(x_t, u_t) \cdot \nabla_{x_{t+1}} V_{t+1}^\pi$$

state x_{t+1}

co-state ν_{t+1}

- **Hamiltonian** = first-order approximation of the cost-to-go

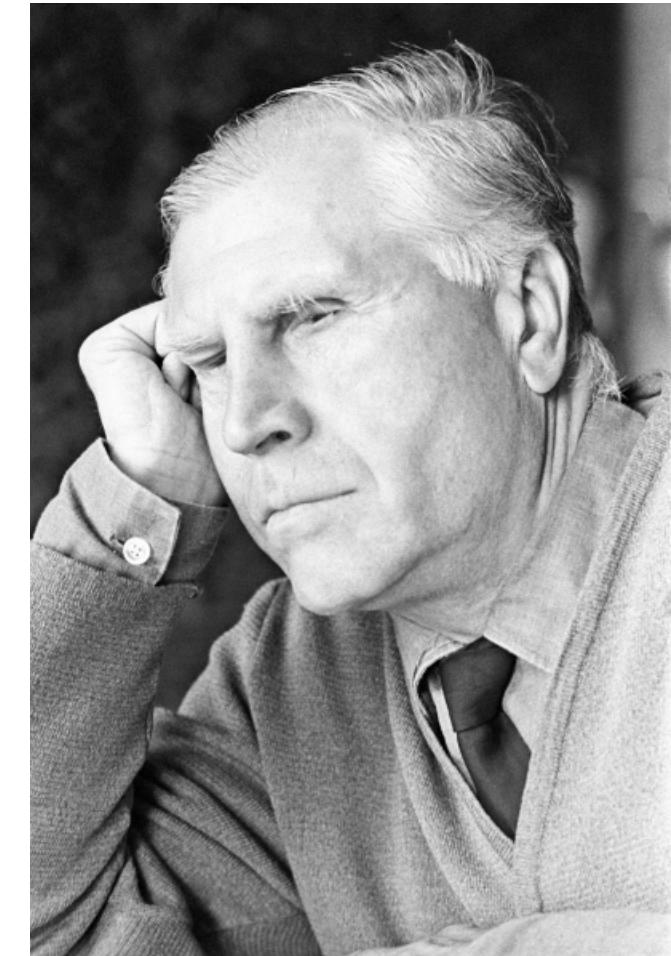
$$\mathcal{H}_t(x_t, \nu_{t+1}, u_t) = c(x_t, u_t) + \nu_{t+1} \cdot f(x_t, u_t)$$

- ▶ Related to, but not the same as the Hamiltonian in physics
- The Hamiltonian is useful to get **first-order conditions** for optimal control
 - ▶ Equivalent to **Bellman optimality**
 - ▶ Most useful in **continuous time** (Hamilton–Jacobi–Bellman) + **stochastic** (Itô calculus)

Pontryagin's maximum principle

- Hamiltonian: $\mathcal{H}_t(x_t, \nu_{t+1}, u_t) = c(x_t, u_t) + \nu_{t+1} \cdot f(x_t, u_t)$
- Necessary optimality conditions:

$$\nabla_{\nu_{t+1}} \mathcal{H}_t = x_{t+1} \quad \nabla_{x_t} \mathcal{H}_t = \nu_t \quad \nabla_{u_t} \mathcal{H}_t = 0$$



Lev Pontryagin

- $\nabla_{\nu_{t+1}} \mathcal{H}_t = f(x_t, u_t) = x_{t+1}$ necessary for x_t to be the **state** for dynamics f
- $\nabla_{x_t} \mathcal{H}_t = \nabla_{x_t} c_t + \nu_{t+1} \cdot \nabla_{x_t} f_t = \nu_t$ necessary for $\nu_t = \nabla_{x_t} V_t^\pi$ to be a **co-state**
- **Objective:** $\min_{\pi} J^\pi$ s.t. $x_{t+1} = f(x_t, u_t)$; **Lagrangian:** $\mathcal{L} = \sum_{t=0}^{T-1} \mathcal{H}_t - \nu_{t+1} \cdot x_{t+1}$
 - optimal when** $\nabla_{u_t} \mathcal{H}_t = 0$
 - independent of** u_t

Hamiltonian in LQR

- The Hamiltonian is generally **high-degree**, global, hard to solve
- In **LQR**, the Hamiltonian is **quadratic**

$$\mathcal{H}_t = \frac{1}{2}x_t^\top Q x_t + \frac{1}{2}u_t^\top R u_t + \nu_{t+1}(Ax_t + Bu_t)$$

- This suggests **forward–backward recursions** for x , ν , and u :

$$x_{t+1} = \nabla_{\nu_{t+1}} \mathcal{H}_t = Ax_t + Bu_t$$

$$\nu_t = \nabla_{x_t} \mathcal{H}_t = \nu_{t+1} A + x_t^\top Q$$

$$\nabla_{u_t} \mathcal{H}_t = Ru_t + B^\top \nu_{t+1}^\top = 0$$

- The solution coincides with the **Riccati equations** with $\nu_t^\top = S_t x_t$ $u_t = L_t x_t$