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Logistics

 EXxercise 3 to be published soon, due next Friday

_ e Quiz 5 due next Monday

* [ecture 7 addendum on exploration in RL coming soon
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Today's lecture

Linear—Quadratic Estimator

Linear—-Quadratic—-Gaussian control
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Reminder: Linear Quadratic Regulator (LQR)

* Linear Quadratic Regulation (LQR) optimization problem:

> Given LTI dynamics + quadratic cost (A, B, O, R)

environment
> Find the control function u, = z(x,)

T—1 T—1
 That minimizes J* = 2 c(x, u,) = %2 (xtTth + utTRut)

> Such that x,,; = Ax, + Bu, for all ¢
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Stochastic control

A A
X1—1 X At

[
\ B \ B
= |
» Simplest stochastic dynamics — Gaussian: p(x,, | | x,, u,) = N (x,,1;Ax,+ Bu, %2 )
X, =Ax,+ Bu, + o, o, ~ N(0,X ) Y, € R
» Markov property: all w, are i.i.d for all ¢

 Why is there process noise?

> Part of the state we don't model; Gaussian = maximum entropy given a fixed 2

» In continuous time = Langevin / Fokker-Plank equations; Bu, = external force
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Stochastic optimal control

 Minimize expected cost-to-go

Vix,) = —xTth utTRut [V ) | X u, = 7(x,)]

* Bellman equation:

4 (xt) — IIllIl th l/ttTR U+ IC (X1 |xpu)~ N (Ax+Bu,,2,) [ Vt+ 1 (xt+ 1 )]

Uy

* The cost-to-go is still quadratic, but with a free term

x, = 0 is no longer absorbing = V,(0) # 0

Vix,) = —xTS x,+ V,(0)
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Solving the Bellman recursion

» Good to know: expectation of quadratic under Gaussianis E,_ 4, 5 )[xTSx] = u{Sp, + r(5Z))

: 1
Vi(x,) = min =~ (X1 [Xptt)~ N (Ax+Bu, Z,) 2 A '0x, + Rut T ExtTJrlSt+1xt+1+ Vi+1(0)

Uy

—~

= min (—xTQx + —uRu, + %(Axt + Bu,)'S,, (Ax, + Bu,) + %tr(St 112,) TV, +1(O))
U, \

| new term, constant in u,
» Linear control: u* = L,x, with same feedback gain: L, = — (R + B'S,,;B)""B'S, 1A

. Same Ricatti equation for cost-to-go Hessian: S, = Q + A'(S,,; — S,. {B(R + B1S,, \B)"'BTS,, DA

— noise-cost term, due to process noise
. Cost-to-go: Vi(x,) = —xTS X, + Z —tr(S,2 )

'=t+1

1
— Etr(SZa))

>

Infinite horizon case: lim — Vo(xo) = lIim — ( 15X + Z tr(S,)

T—>oo T— o0
=1

) . — state independent
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Today's lecture

LQR with process noise

Linear—-Quadratic—-Gaussian control
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Partial observability

A

A1 At X+1 special case of

Hidden Markov Model

C C
\ \A (HMM)

« What happens when we see just an observation y, € | k, not the full state X,

» Simplest observability model — Linear-Gaussian: p(y, | x,) = 4 (y; Cx;, Z)

v, =Cx,+y,  y~HN0OZ) CeR* X, e R

» Markov property: all @, and y;, are independent, for all ¢

 Why is there observation noise?

> Transient process noise that doesn't affect future states; only in agent's sensors
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Gaussian Processes

. . . X P 2y
. Jomtly (Gaussian variables: [y] ~ N [ﬂy] ) E(X,y) o 3 3
yX Y
- Conditional distribution: (x| y) ~ A (4,5 Zy1)
/’tx\y = ‘[X ‘ y] = Ky T 2xy2y_1(y o //ty) /Schur complement
— — —1 —
Y, = Covlx|y] =%, - % 58 =% /5

» Converse also true: Gaussian y and (x| y), linear Hyjy = jointly Gaussian (x, y)

sufficient

/
« Gaussian Process (GP) Xy, yo, Uy, X1, - ..: all variables are (pairwise) jointly Gaussian
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Linear—-Quadratic Estimator (LQE)

» Belief: our distribution over state X, given what we know

- Belief given past observations (observable history): b,(x; | y,)

» b, is sufficient statistic of y, for x; = nothing more y_, can tell us about x,

~ In principle, we can update b, ; only from b, and y,. | = filtering
> Probabilistic Graphical Models terminology: belief propagation

o |inear—Quadratic Estimator (LQE): belief for our Gaussian Process

» Update equations = Kalman filter
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Belief and prediction

b (x| y<)
X1 X X+1

[
observable history< X. .

» Belief = what the observable history says of current state: b(x; | y,)

b(x 41 |y <)

« Prediction = what the observable history says of next state: b/(x,, \yg)

* In this Gaussian Process, both belief and prediction are Gaussian

a7

~ Can be represented by their means i, X/, ,

/

and covariances 2., 2,

> Computed recursively forward
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Kalman filter

» Given b(x,|y<,) = N(x, =), predict x, q:

Y/

X = Elxg vyl = ElAG, + 0, |y, ] = A
1 = Covlx, |yl =CovlAx, + o, |y, ] =AZ AT+ X,

+1

» Given prediction b/(x,|y.,) = /N (X,, 2/), update of x, on seeing y,:

y, = Cx, + noise — X =2, CT

X Vel y < xt|Y<t

—1
— CIX — -|— 2 2 —
[ t | Y St] //txt\yq X Vel y < Ytb’<t(y r— M yf|y<%prediction error / innovation ¢,

i e . / B
like conditioning x, on Yy, Ay Yal ali —1/. A/
and doing this given y_, T xt + Ztc (CZtC +v\21//) (yt o Cxt

2 =CX , CT+ Zw

Vel Ve Xl yes

—1
Xl Vs thytb}<tzyt‘y<tzytxt‘y<t

=2/ - X/ CY(CZCT+ X)) 'C

= Covlx, |yl =2
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Kalman filter

e, =y — CX;
o Linear belief update: X, = AX,_; + Kte;/ = ([ — KC)AX,_; + K.y,

 Kalman gain: K, = 2,C(CZCT + Zw)_l
e Covariance update — Ricatti equation:
Y =AC - Z,CU(CZCT+Z)'CIDAT+ X,

» Compare to prior (no observations): 2, =AX A+ 2,

Xt41

e Observations reduce covariance

> Actual observation not needed to say by how much
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Control as inference

» View Bayesian inference as optimization: minimizes MSE [E[||x, — )Actﬂz]

e Control and inference are deeply connected:
1 =AC - Z/CH(CZCT+ 2 )'CIDAT+ X,

S=0+A%S,,, =S, ,B(R+B'S,, ,B)~'B1S_ )A

* The shared form (Ricatti) suggests duality: LQR LQE
backward forward
51—t 2
A Al
B CT
Q 2
R 2y,

e Information filter: recursion on (Z;)_l, presents a more principled duality
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Today's lecture

LQR with process noise

Linear—Quadratic Estimator
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Linear—-Quadratic—Gaussian (LQG) control

Xr—1 Xy Arr1

\ /)
W o

 Putting it all together:

X, =Ax,+ Bu, + o, w, ~ N(0,X ) Y. € R™"

)

vy=Cx,+y, wy,~N0ZL) CeR*" X R
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LQE with control

* How does control affect estimation?

\ /)
» Shifts predicted next state x;, ; = Ax, + Bu, 1 e 1 e
Ry

> Bu, known = no change in covariances = Ricatti equation still holds

> Same Kalman gain K,

)Act — A)Act—l + Ktet = ([ — Ktc)(Ajet—l + But—l) T Ktyt

 And... that's it, everything else the same
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LQR with partial observability

» Bellman recursion must be expressed in terms of what 1, can depend on = X,

Xy X Xt41

 Value recursion for full state (environment + agent): 1 1
> E—> - - - )

» Problem: but value depends on the true state X,

Vilx, x,) = c(x,u,) + _[‘/t]j—l(xt+l’5et+l) | X, X, ]

X, 1 Is sufficient for x,_

* Interms of only .x,: = separates it from X,

/

Vix,) = EIVi(x, x) [ X,] = Ele(x, u) + Vi Oy X ) [ X ] = EleCe, ) + VI (X)X

» Certainty equivalent control: u, = L X, with the same feedback gain L,

 And... that's it, everything else the same
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LQG separability

Given (A,B,C, 2, va’ 0, R), solve LQG = LQR + LQE separately

« LQR: o LQE:
>  Compute value Hessian recursively backwards >  Compute belief covariance recursively forward
S,=Q+AT(S,,; — S, BR+B'S, \B)'B1S, DA Z, =AE-ZC(CICT+2Z,)'CEAT+ 3,
»  Compute feedback gain: >  Compute Kalman gain:
L =-(R+B'S, B 'BTS, A K,=Z,C(CZCT+%,)""!
> Control policy: u, = L,X, » Belief update: X, = AX,_; + K e,

» withe, =y, — C(AX,_+Bu,_;)
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Recap

o Stochastic optimal control: control with process noise (stochastic dynamics)

~ Same concepts of controllability, but can't stop at x, = 0
» LQE = linear-Gaussian observability y, = Cx, + v,

» Kalman filter = forward recursion to find belief b,(x, | y,)

e | QG =LAR + LQE: estimate and control at the same time

» Separability = optimal to solve LQR and LQE separately (only in LQG!)

~ Only differences: use x, for control; add B, to prediction
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Today's lecture

LQR with process noise

Linear—Quadratic Estimator

Linear—-Quadratic—-Gaussian control
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Co-state

c, € R f, e R”
» Consider the cost-to-go V/'(x,) = c(x, u,) + V7 ,(f(x,, u,))

* Jo study its landscape over state space, consider its spatial gradient

v = thVf = thct + V .o thft = thct +v thf;

Xer1 11

» Jacobian of the dynamics: V, f, € | nxn

» Co-state /(x,) € R" = direction of steepest increase in cost-to-go

» Linear backward recursion v, = V, ¢, + v,y - V, f,; initialization: vp = 0
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Hamiltonian

* Cost-to-go recursion: (first-order approximation) state X, |
t+

/

Vix,) = cx,u) + Vi () = e, u) + f(x, u) -V, Vi

Xt+1

\

 Hamiltonian = first-order approximation of the cost-to-go co-state v,

A (X Vyy1s W) = (X 1) + Vg - (X 1))
> Related to, but not the same as the Hamiltonian in physics
 The Hamiltonian is useful to get first-order conditions for optimal control

> Equivalent to Bellman optimality

> Most useful in continuous time (Hamilton—-Jacobi—-Bellman) + stochastic (I1to calculus)
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Pontryagin's maximum principle

o Hamiltonian: Z (x,, v, ,u,) = c(x,u,) + v, | - f(x,u,)

 Necessary optimality conditions:

V, H,=x. V.2, =1, Vo7, =0

Vil

Lev Pontryagin

.V, H = fx,u) = x| necessary for x, to be the state for dynamics f

e Vi, Z,=V,c,+V, -V, J,=v,necessary fory, = V, V[ to be a co-state

optimal when V % =0 independent of i,

\ /
Objective: min J” s.t. x,, | = f(x,, u,); Lagrangian: &£ = Z H,— VX

d =0
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Hamiltonian in LQR

 The Hamiltonian is generally high-degree, global, hard to solve

e |n LQR, the Hamiltonian is quadratic

1 1
= 7xOx+—u/Ru, + v, (Ax, + Bu,)

* This suggests forward-backward recursions for x, v, and u:

v % = Ax, + Bu,
Ut — th%l‘ — DZ‘-I-IA + XtTQ
V., =Ru,+BWw =0

« The solution coincides with the Ricatti equations with v = S,x, u, = Lx,
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