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Logistics

assignments
• Quiz 5 due next Monday


• Exercise 3 to be published soon, due next Friday

videos • Lecture 7 addendum on exploration in RL coming soon
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Today's lecture

LQR with process noise

Linear–Quadratic Estimator

Linear–Quadratic–Gaussian control
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Reminder: Linear Quadratic Regulator (LQR)

• Linear Quadratic Regulation (LQR) optimization problem:


‣ Given LTI dynamics + quadratic cost 


‣ Find the control function 


‣ That minimizes 


‣ Such that  for all 

(A, B, Q, R)

ut = π(xt)

Jπ =
T−1

∑
t=0

c(xt, ut) = 1
2

T−1

∑
t=0

(x⊺
t Qxt + u⊺

t Rut)

xt+1 = Axt + But t

agent

environment
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• Simplest stochastic dynamics — Gaussian: 


 


‣ Markov property: all  are i.i.d for all 


• Why is there process noise?


‣ Part of the state we don't model; Gaussian = maximum entropy given a fixed 


• In continuous time = Langevin / Fokker–Plank equations;  = external force

p(xt+1 |xt, ut) = 𝒩(xt+1; Axt + But, Σω)

xt+1 = Axt + But + ωt ωt ∼ 𝒩(0,Σω) Σω ∈ ℝn×n

ωt t

Σω

But

Stochastic control
xt+1xtxt−1

ut−1 ut

A A

B B

ωt−1 ωt



Roy Fox | CS 277 | Winter 2026 | Lecture 10: Stochastic Optimal Control

Stochastic optimal control
• Minimize expected cost-to-go


 


• Bellman equation:


 


• The cost-to-go is still quadratic, but with a free term


‣  is no longer absorbing ⇒ 


 

Vπ
t (xt) = 1

2 x⊺
t Qxt + 1

2 u⊺
t Rut + 𝔼[Vπ

t+1(xt+1) |xt, ut = π(xt)]

Vt(xt) = min
ut

1
2 x⊺

t Qxt + 1
2 u⊺

t Rut + 𝔼(xt+1|xt,ut)∼𝒩(Axt+But,Σω)[Vt+1(xt+1)]

xt = 0 Vt(0) ≠ 0

Vt(xt) = 1
2 x⊺

t Stxt + Vt(0)
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Solving the Bellman recursionSolving the Bellman recursion
• Good to know: expectation of quadratic under Gaussian is 


 


• Linear control:  with same feedback gain: 


• Same Ricatti equation for cost-to-go Hessian: 


• Cost-to-go: 


‣ Infinite horizon case: 

𝔼x∼𝒩(μx,Σx)[x
⊺Sx] = μ⊺

x Sμx + tr(SΣx)

Vt(xt) = min
ut

𝔼(xt+1|xt,ut)∼𝒩(Axt+But,Σω) [ 1
2 x⊺

t Qxt + 1
2 u⊺

t Rut + 1
2 x⊺

t+1St+1xt+1+ Vt+1(0)]
= min

ut
( 1

2 x⊺
t Qxt + 1

2 u⊺
t Rut + 1

2 (Axt + But)⊺St+1(Axt + But) + 1
2 tr(St+1Σω) +Vt+1(0))

u*t = Ltxt Lt = − (R + B⊺St+1B)−1B⊺St+1A

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

Vt(xt) = 1
2 x⊺

t Stxt +
T

∑
t′￼=t+1

1
2 tr(St′￼

Σω)

lim
T→∞

1
T V0(x0) = lim

T→∞

1
2T (x⊺

0Sx0 +
T

∑
t=1

tr(SΣω)) = 1
2 tr(SΣω)

noise–cost term, due to process noise

state independent

new term, constant in ut
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Today's lecture

LQR with process noise

Linear–Quadratic Estimator

Linear–Quadratic–Gaussian control
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Partial observability

• What happens when we see just an observation , not the full state 


‣ Simplest observability model — Linear–Gaussian: 


 


‣ Markov property: all  and  are independent, for all 


• Why is there observation noise?


‣ Transient process noise that doesn't affect future states; only in agent's sensors

yt ∈ ℝk xt

p(yt |xt) = 𝒩(yt; Cxt, Σψ)

yt = Cxt + ψt ψt ∼ 𝒩(0,Σψ) C ∈ ℝk×n, Σψ ∈ ℝk×k

ωt ψt t

xt+1xtxt−1

yt−1 yt

A A

C

ψt−1 ψt

C
special case of 

Hidden Markov Model 
(HMM)

ωt−1 ωt
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Gaussian ProcessesGaussian Processes

• Jointly Gaussian variables: 


‣ Conditional distribution: 


 


‣ Converse also true: Gaussian  and , linear   jointly Gaussian 


• Gaussian Process (GP) : all variables are (pairwise) jointly Gaussian

[x
y] ∼ 𝒩 ([μx

μy], Σ(x,y) = [
Σx Σxy

Σyx Σy ])
(x |y) ∼ 𝒩(μx|y, Σx|y)

μx|y = 𝔼[x |y] = μx + ΣxyΣ−1
y (y − μy)

Σx|y = Cov[x |y] = Σx − ΣxyΣ−1
y Σyx = Σ(x,y)/Σy

y (x |y) μx|y ⟹ (x, y)

x0, y0, u0, x1, …
sufficient

Schur complement
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Linear–Quadratic Estimator (LQE)

• Belief: our distribution over state  given what we know


• Belief given past observations (observable history): 


•  is sufficient statistic of  for  = nothing more  can tell us about 


‣ In principle, we can update  only from  and  = filtering


‣ Probabilistic Graphical Models terminology: belief propagation


• Linear–Quadratic Estimator (LQE): belief for our Gaussian Process


‣ Update equations = Kalman filter

xt

bt(xt |y≤t)

bt y≤t xt y≤t xt

bt+1 bt yt+1
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Belief and prediction

• Belief = what the observable history says of current state: 


• Prediction = what the observable history says of next state: 


• In this Gaussian Process, both belief and prediction are Gaussian


‣ Can be represented by their means ,  and covariances , 


‣ Computed recursively forward

bt(xt |y≤t)

b′￼t(xt+1 |y≤t)

̂xt ̂x′￼t+1 Σt Σ′￼t+1

xt+1xtxt−1

yt−1 yt⋯

bt(xt |y≤t)

b′￼t(xt+1 |y≤t)observable history
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Kalman filterKalman fi
• Given belief , predict :


 


• Given prediction , update belief of  on seeing :


 


 

bt(xt |y≤t) = 𝒩( ̂xt, Σt) xt+1

̂x′￼t+1 = 𝔼[xt+1 |y≤t] = 𝔼[Axt + ωt |y≤t] = A ̂xt

Σ′￼t+1 = Cov[xt+1 |y≤t] = Cov[Axt + ωt |y≤t] = AΣtA⊺ + Σω

b′￼t(xt |y<t) = 𝒩( ̂x′￼t, Σ′￼t) xt yt

̂xt = 𝔼[xt |y≤t] = μxt|y<t
+ Σxtyt|y<t

Σ−1
yt|y<t

(yt − μyt|y<t
)

= ̂x′￼t + Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1(yt − C ̂x′￼t)

Σt = Cov[xt |y≤t] = Σxt|y<t
− Σxtyt|y<t

Σ−1
yt|y<t

Σytxt|y<t

= Σ′￼t − Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1CΣ′￼t

like conditioning  on  
and doing this given 

xt yt
y<t

yt = Cxt + noise ⟹ Σxtyt|y<t
= Σxt|y<t

C⊺

Σyt|y<t
= CΣxt|y<t

C⊺ + Σψ

prediction error / innovation et
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• Linear belief update: 


• Kalman gain: 


• Covariance update — Ricatti equation:


 


‣ Compare to prior (no observations): 


• Observations reduce covariance


‣ Actual observation not needed to say by how much

̂xt = A ̂xt−1 + Ktet = (I − KtC)A ̂xt−1 + Ktyt

Kt = Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1

Σ′￼t+1 = A(Σ′￼t − Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1CΣ′￼t)A⊺ + Σω

Σxt+1
= AΣxt

A⊺ + Σω

Kalman filter
et = yt − C ̂x′￼t
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Control as inference
• View Bayesian inference as optimization: minimizes MSE 


• Control and inference are deeply connected:


 


 


• The shared form (Ricatti) suggests duality:


• Information filter: recursion on , presents a more principled duality

𝔼[∥xt − ̂xt∥2]

Σ′￼t+1 = A(Σ′￼t − Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1CΣ′￼t)A⊺ + Σω

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

(Σ′￼t)−1

LQR LQE
backward forward

ST−t Σ′￼t

A A⊺

B
Q
R

C⊺

Σω
Σψ
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Linear–Quadratic–Gaussian (LQG) control

• Putting it all together:


 


 

xt+1 = Axt + But + ωt ωt ∼ 𝒩(0,Σω) Σω ∈ ℝn×n

yt = Cxt + ψt ψt ∼ 𝒩(0,Σψ) C ∈ ℝk×n, Σψ ∈ ℝk×k

xt+1xtxt−1

ut−1 utyt−1 yt

̂xt−1 ̂xt
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LQE with control

• How does control affect estimation?


‣ Shifts predicted next state 


‣  known ⇒ no change in covariances ⇒ Ricatti equation still holds


‣ Same Kalman gain 


 


• And... that's it, everything else the same

̂x′￼t+1 = A ̂xt + But

But

Kt

̂xt = A ̂xt−1 + Ktet = (I − KtC)(A ̂xt−1 + But−1) + Ktyt

xt+1xtxt−1

ut−1 utyt−1 yt

̂xt−1 ̂xt
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LQR with partial observabilityLQR with partial observability
• Bellman recursion must be expressed in terms of what  can depend on = 


‣ Problem: but value depends on the true state 


• Value recursion for full state (environment + agent):


 


• In terms of only :


 


• Certainty equivalent control:  with the same feedback gain 


• And... that's it, everything else the same

ut ̂xt

xt

Vπ
t (xt, ̂xt) = c(xt, ut) + 𝔼[Vπ

t+1(xt+1, ̂xt+1) |xt, ̂xt]

̂xt

Vπ
t ( ̂xt) = 𝔼[Vπ

t (xt, ̂xt) | ̂xt] = 𝔼[c(xt, ut) + Vπ
t+1(xt+1, ̂xt+1) | ̂xt] = 𝔼[c(xt, ut) + Vπ

t+1( ̂xt+1) | ̂xt]

ut = Lt ̂xt Lt

xt+1xtxt−1

ut−1 utyt−1 yt

̂xt−1 ̂xt

 is sufficient for  
⇒ separates it from 
̂xt+1 xt+1

̂xt
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LQG separability

• LQR:


‣ Compute value Hessian recursively backwards


 




‣ Compute feedback gain:


 


‣ Control policy: 

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

Lt = − (R + B⊺St+1B)−1B⊺St+1A

ut = Lt ̂xt

• LQE:


‣ Compute belief covariance recursively forward


 


‣ Compute Kalman gain:


 


‣ Belief update: 


‣ with 

Σ′￼t+1 = A(Σ′￼t − Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1CΣ′￼t)A⊺ + Σω

Kt = Σ′￼tC⊺(CΣ′￼tC⊺ + Σψ)−1

̂xt = A ̂xt−1 + Ktet

et = yt − C(A ̂xt−1+But−1)

Given , solve LQG = LQR + LQE separately(A, B, C, Σω, Σψ, Q, R)
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Recap

• Stochastic optimal control: control with process noise (stochastic dynamics)


‣ Same concepts of controllability, but can't stop at 


• LQE = linear–Gaussian observability 


‣ Kalman filter = forward recursion to find belief 


• LQG = LQR + LQE: estimate and control at the same time


‣ Separability = optimal to solve LQR and LQE separately (only in LQG!)


‣ Only differences: use  for control; add  to prediction

xt = 0

yt = Cxt + ψt

bt(xt |y≤t)

̂xt But
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Linear–Quadratic–Gaussian control

Hamiltonian
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Co-state

• Consider the cost-to-go 


• To study its landscape over state space, consider its spatial gradient


 


‣ Jacobian of the dynamics: 


• Co-state  = direction of steepest increase in cost-to-go


‣ Linear backward recursion ; initialization: 

Vπ
t (xt) = c(xt, ut) + Vπ

t+1( f(xt, ut))

νπ
t = ∇xt

Vπ
t = ∇xt

ct + ∇xt+1
Vπ

t+1 ⋅ ∇xt
ft = ∇xt

ct + νπ
t+1 ⋅ ∇xt

ft

∇xt
ft ∈ ℝn×n

νπ
t (xt) ∈ ℝn

νt = ∇xt
ct + νt+1 ⋅ ∇xt

ft νT ≡ 0

ft ∈ ℝnct ∈ ℝ
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Hamiltonian
• Cost-to-go recursion: (first-order approximation)


 


• Hamiltonian = first-order approximation of the cost-to-go


 


‣ Related to, but not the same as the Hamiltonian in physics


• The Hamiltonian is useful to get first-order conditions for optimal control


‣ Equivalent to Bellman optimality


‣ Most useful in continuous time (Hamilton–Jacobi–Bellman) + stochastic (Itô calculus) 

Vπ
t (xt) = c(xt, ut) + Vπ

t+1(xt+1) ≈ c(xt, ut) + f(xt, ut) ⋅ ∇xt+1
Vπ

t+1

ℋt(xt, νt+1, ut) = c(xt, ut) + νt+1 ⋅ f(xt, ut)

co-state νt+1

state xt+1



Roy Fox | CS 277 | Winter 2026 | Lecture 10: Stochastic Optimal Control

Pontryagin's maximum principle

• Hamiltonian: 


• Necessary optimality conditions:


 


•  necessary for  to be the state for dynamics   


•  necessary for  to be a co-state


• Objective:  s.t. ; Lagrangian: 

ℋt(xt, νt+1, ut) = c(xt, ut) + νt+1 ⋅ f(xt, ut)

∇νt+1
ℋt = xt+1 ∇xt

ℋt = νt ∇ut
ℋt = 0

∇νt+1
ℋt = f(xt, ut) = xt+1 xt f

∇xt
ℋt = ∇xt

ct + νt+1 ⋅ ∇xt
ft = νt νt = ∇xt

Vπ
t

min
π

Jπ xt+1 = f(xt, ut) ℒ =
T−1

∑
t=0

ℋt − νt+1 ⋅ xt+1

Lev Pontryagin

independent of ut
optimal when ∇ut

ℋt = 0
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Hamiltonian in LQR
• The Hamiltonian is generally high-degree, global, hard to solve


• In LQR, the Hamiltonian is quadratic


 


• This suggests forward–backward recursions for , , and :


 


• The solution coincides with the Ricatti equations with 

ℋt = 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut + νt+1(Axt + But)

x ν u

xt+1 = ∇νt+1
ℋt = Axt + But

νt = ∇xt
ℋt = νt+1A + x⊺

t Q

∇ut
ℋt = Rut + B⊺ν⊺

t+1 = 0

ν⊺
t = Stxt ut = Ltxt


