
Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

CS 277: Control and
Reinforcement Learning

Winter 2026
Lecture 3: Temporal-Difference Methods

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Logistics

assignments
• Exercise 1 due Friday

• Quiz 2 due next Monday

resources
• Lots of resources on the website

• Will be updated with papers relevant to each lecture

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Today's lecture

Policy evaluation

Temporal Difference

Policy improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Basic RL concepts
• State: ; action: ; reward:

• Dynamics: for stochastic; for deterministic

• MDP: or

• Policy: for stochastic; for deterministic

• Trajectory:

• Return:

s ∈ S a ∈ A r(s, a) ∈ ℝ

p(st+1 |st, at) st+1 = f(st, at)

ℳ = ⟨S, A, p⟩ ⟨S, A, p, r⟩

π(at |st) at = π(st)

pπ(ξ = s0, a0, s1, a1, …) = p(s0)∏
t≥0

π(at |st)p(st+1 |st, at)

R(ξ) = ∑
t≥0

γtr(st, at) 0 ≤ γ < 1 agent

environment

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Example: Breakout

→ → ← ←

+0 +1 +0 +0reward:

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Formulating reward: considerations

• We define , is that general enough?

• What if the reward depends on the next state ?

‣ If we only care about expected reward, define

• What if the reward is a random variable ?

‣ Define

‣ In practice we see ⇒ don't just assume you know =

r(s, a)

s′￼

r(s, a) = 𝔼(s′￼|s,a)∼p[r(s, a, s′￼)]

r̃

r(s, a) = 𝔼[r̃ |s, a]

r̃ r(s, a) r̃

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

RL objective: expected return

• We need a scalar to optimize

• Step 1: we have a whole sequence of rewards

‣ Summarize as return

• Step 2: is a random variable, induced by

‣ Take expectation

• can be calculated and optimized

{rt = r(st, at)}t≥0

R(ξ) = ∑
t≥0

γtr(st, at)

R(ξ) pπ(ξ)

Jπ = 𝔼ξ∼pπ
[R(ξ)]

Jπ

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

π(pick |available) = 1

r(available, pick) = 0

p(dropped |available, pick) = 0.1

0.9

0.9

0.1

(1, −10)

(1,3)

π(a |s) r(s, a)

1

donep(s′￼|s, a)

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

1

done

0.1

ξ

pπ(ξ) = 1 ⋅ 0.9 ⋅ 1 ⋅ 0.9 = 0.81

R(ξ) = 0 + γ ⋅ 3 = 2.7

γ = 0.9

(1,0)

(1,3)

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

done

0.1 ξ

pπ(ξ) = 1 ⋅ 0.1 ⋅ 1 ⋅ 1 = 0.1

R(ξ) = 0 + γ ⋅ (−10) = −9

γ = 0.9

(1,0)

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Monte Carlo (MC) policy evaluation

• Computing can be hard

‣ Exponentially many trajectories

‣ Model-based = requires , which may not be known

• Monte Carlo: estimate expectation using empirical mean

‣ Model-free = can sample with rollouts, without knowing

Jπ = 𝔼ξ∼pπ
[R(ξ)] = ∑

ξ

pπ(ξ)R(ξ)

p(s′￼|s, a)

Jπ ≈ 1
m ∑

i

R(ξ(i)) ξ(i) ∼ pπ

p

MF

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

MC: iterative computation

• We can keep a running average of the first returns

‣ Update:

‣ More generally:

‣ is a learning rate, exact average when it vanishes harmonically as

• To simplify expressions, we denote this update:

‣ Read: update toward at rate

R̄(i) i

R̄(i) = ((i − 1)R̄(i−1) + R(ξ(i))) 1
i

R̄(i) = (1 − α)R̄(i−1) + αR(ξ(i)) = R̄(i−1) + α(R(ξ(i)) − R̄(i−1))

α 1
i

J →α R(ξ)

J R(ξ) α

residual

MF

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Value function

• RL objective: maximize expected return

• We don't control , can break down:

‣ with the value function

• is the expected reward-to-go (= future return):

‣ For any , define

‣ Then

Jπ = 𝔼ξ∼pπ
[R]

s0 Jπ = 𝔼s0∼p[Vπ(s0) |s0]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s]

Vπ(s)

t0 R≥t0 = ∑
t≥t0

γt−t0r(st, at)

Vπ(s) = 𝔼ξ∼pπ
[R≥t0 |st0 = s]

future reward after being
in state in time s t0

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

MC for value-function estimation

• Why not use the same samples for non-initial states?

<latexit sha1_base64="DW1efNYNoycHV9Xvrsh+pI8UdRM=">AAADgniclZHPbtNAEMa3doFi/jSFI5cViaUUQWQX2l4QqtRLOCCVBqeVupG1dibOiPV6ZW/agpXH4Wm4woG3YW1MUWMkylw8nv2+b1a/jZTAQnvejzXLXr91+87GXefe/QcPNztbj8ZFtshjCOJMZPlpxAsQKCHQqAWcqhx4Ggk4iT4eVucn55AXmMkP+pOCScoTiTOMuTajcMt6wyJIUJYpSlQ8geVZPCm9wf4u03CpL3Cq50un0XCRZDnqebo8G04cFnNVhZTvDuksy+k5Fwt4MVvIuJpSKDSm9Za2H2MzG2muoXwrUSMX+Blob9wvtilLQBfU69WZXAjaKyhDSUc94zkGBVw7lDbuEU+VME52iZQVmFIVMoVGeaUI1NR86uzQM+k6o8d9I9+u4gKpUTgM5HTlbtcmzf8VIcdxbwLN/Ss19z+wtRKqu7m/Ibj/puDeCIPbcHDbINxVEu4KirDT9QZeXbTd+E3TJU0dhZ3n5jHVQpfTzOQ7LAcJF3GWptzkMj2HP8vKOt5fDWs3452Bvzd49X6nezBsFm2QJ+Qp6ROf7JMDMiRHJCCx9cX6an2zvtvr9jPbt1/+klprjecxuVb265/zzBqE</latexit>

Algorithm MC for value-function estimation
Initialize + (B) 0 for all B 2 (
repeat

Sample b ⇠ ?c
Update + (B0) ! '(b)

<latexit sha1_base64="RrI8XMvWiZOlrLrMc7U4rvG1Pck=">AAAD3XicnZFNb9NAEIa3MR/FfKVw5LIiKUokSJ0I6LVSL+GAVBqcVqoja+1MnBHr9cqetAUrR26IK+Kn8W9YO06rJpGomMuOXs+87/rZQEvMyHH+bNWsO3fv3d9+YD989PjJ0/rOs2GWzNIQ3DCRSXoaiAwkKnAJScKpTkHEgYST4Mth8f3kHNIME/WZvmoYxSJSOMFQkJH8ndrvXS+ACFUeo0ItIpifhaPc6ey/8wgu6QLHNJ3byyEhoyRFmsbzs/7IqKHQhU/+8ZBPkpSfCzmDN5OZCguVQ0YYl0EbHDAsxAEJgvyDQkIh8Rvw5rCVtbkXAWXcaZauQkrezLiHig+axdIxaBBk73Je7Q9ErKXZ9S6RexnGXPuexmL2asTVY3OU9r5jAijhxy0z3y4dXUUozQlqvHrDG9JSuIJl27fBt5HereHxVvWCvNde9ypu+T8YlxT/DXEjQ6oY+rkJ4TRfsLwOoiLcRJugBdx1tqtoV8j69YbTccri6023ahqsqiO//tr8m55RPk7C4mFSUHARJnEsjK9HU7jOykv77qrZejPsdbrvO28/9RoH/Spom71gL1mLddk+O2B9dsRcFlrMemXtWY7lW9+tH9bPxWhtq9p5zm6U9esv5fQ3Yg==</latexit>

Algorithm MC for value-function estimation (version 2)
Initialize + (B) 0 for all B 2 (
repeat

Sample b ⇠ ?c
Update + (BC) ! '�C (b) for all C � 0

MF

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

MC with function approximation

• What if the state space is large?

‣ Can't represent as a big table

‣ Won't have enough data to estimate each

• Function approximation: represent

‣ , a parametric family of functions; for example, a neural network

• Generalization over state space ⇒ data efficiency

V(s)

V(s)

Vθ : S → ℝ

θ ∈ Θ

<latexit sha1_base64="QSXFq8KRCNPHSjQJbjW2aEX3GsQ=">AAAFQHiczZLPbtNAEMa3rYES/qVw5DIiqZRINHIioCekinIoEkilIWmlOlibzSRZsbZX9qQJWH4ArvBGvAVvwA1xRRxYO05Kk0ggISH2sqvPM983+1t3tZIR2fbntfUN69LlK5tXC9eu37h5q7h1ux0Fo1BgSwQqCE+6PEIlfWyRJIUnOkTudRUed9/sp9+PzzCMZOC/orcaOx4f+LIvBScjuVsbP7adLg6kH3vSl5oPMDkVndiu7T50CCc0lj0aJoVZEVeDIJQ09JLTg45RBdepT/xiH/pBCGdcjXCnP/JFqgJGJL0saIWDFKnYJE4YP/MlSa7kO4RyuxJVwRkgRWCXM1euFJQjcKQPzXLadIQaORW2AfL+Jve0Mr3ORIITSQ+062iZ1s5LWrpntszetU0ABXBUMfXVzLHlk1RmR7+3OOEFaSbMYRUK/4QfVPJHhEb1/2JJOUs3NjlAyZTpeRal+Sb9Lyn/CeSVjH9FPDYqzOlyrcNgMv9BVzFdhdR1aIjEzYVm7H6Pbl7xFCNhbgYmvuyY5KHgKn6e5J7w2LSNPDfOoSVQWQALOzAbYMq++rqRTjIluwx2kesCVrdYsmt2tmD5UM8PJZavQ7d43/w5ekRxLxDpq4To41gEnseNbzrXeVac2dcXzZYP7Uat/qj24GWjtPckD9pkd9k9VmF1tsv22AE7ZC0mLGG9tz5YH61P1hfrq/VtWrq+lvfcYReW9f0n+9e5/g==</latexit>

Algorithm MC with function approximation
Initialize +\

repeat
Sample b ⇠ ?c
Descend on L\ =

Õ
C�0('�C (b) �+\ (BC))2

with tabular representation:

same as in previous slide
V(st) += −α∇V(st)ℒ = 2α(R≥t(ξ) − V(st))

MF

θ

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Today's lecture

Policy evaluation

Temporal Difference

Policy improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Policy evaluation: example

pick up dish place dish clean floor

dish 1 available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

dish 2 available

0.1

⋯

trajectories = exponential in # dishes

(1,0)

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

MC inefficiency
• The MC estimator is unbiased (correct expectation), but high variance

‣ Requires many samples to give good estimate

• But MC misses out on the sequential structure

• Example:

‣ Day 1: I take route 1 to work — 40 minutes; I take route 2 home — 10 minutes

‣ Day 2: I take route 3 to work — 30 minutes; I take route 4 home — 30 minutes

• Which route should I take to work?

‣ Route 1 → 50-minute daily commute, route 3 → 60-minute; is route 1 better?

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Dynamic Programming (DP)

• Dynamic Programming = remember reusable partial results

• Value recursion:

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s]

= 𝔼ξ∼pπ
[r(s0, a0) + γR≥1 |s0 = s]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼ξ∼pπ
[R≥1 |s0 = s, a0 = a]]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[𝔼ξ∼pπ
[R≥1 |s1 = s′￼]]]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

break down sum of rewards

first reward only depends on a

 is a state, all that matters for s′￼ R≥1

definition of Vπ(s′￼)

Richard Bellman

MF

θ

DP

[Bellman, 1956]

Dynamic Programming (DP)

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

done

0.1

(1,0)

V(done) = 0

V(dropped) = 1 ⋅ (−10 + γ ⋅ (1 ⋅ V(done))) = −10

γ = 0.9

V(grasped) = 1 ⋅ (3 + γ ⋅ (0.9 ⋅ V(done) + 0.1 ⋅ V(dropped))) = 2.1

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

V(available) = 1 ⋅ (0 + γ ⋅ (0.9 ⋅ V(grasped) + 0.1 ⋅ V(dropped))) = −0.801

π(clean |dropped) r(dropped, clean) p(done |dropped, clean)

MF

θ

DP

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

DP + MC: Temporal Difference (TD)

• Policy evaluation with DP:

‣ Drawback: model-based = need to know

• MC: , where and

‣ Drawback: high variance

• Put together:

‣ where , , and in some trajectory

‣ In other words:

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

p

V(s) → R≥t(ξ) ξ ∼ pπ st = s

V(s) → r + γV(s′￼)

s = st r = r(st, at) s′￼ = st+1

V(s) ← V(s) + α(r + γV(s′￼) − V(s))
temporal difference
between and V(s′￼) V(s)

recursion from to
= backward in time!

s′￼ s

MF

θ

DP

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Q function
• To approach when we update , we need on-policy data

‣ Roll out to see transition with reward

• On-policy data is expensive: need more every time changes

• Action-value function:

‣ Compare:

• Action-value backward recursion:

‣ Broke down into two parts

Vπ V(s) → r + γV(s′￼)

π (s, a) → s′￼ r

π

Qπ(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s] = 𝔼(a|s)∼π[Qπ(s, a)]

Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

MF

θ

DP

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

TD from off-policy data
• Backward recursion in two parts:

• This should hold in every state and action

‣ can be sampled from any distribution for any alternative

• Put together, we update

‣ For any distribution of , giving reward and following state

‣ In other words:

Vπ(s) = 𝔼(a|s)∼π[Qπ(s, a)] Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

(s, a) pπ′￼
π′￼

Q(s, a) → r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)]

(s, a) r s′￼ ∼ p(⋅ |s, a)

Q(s, a) ← Q(s, a) + α(r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)] − Q(s, a))
temporal difference

MF

θ

DP

π′￼

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

TD with function approximation

• With large state space: represent or

• Instead of the update

‣ Descend on square loss

‣ On on-policy experience

• Instead of the update

‣ Descend on square loss

‣ On off-policy experience

Vθ : S → ℝ Qθ : S × A → ℝ

V(s) → r + γV(s′￼)

ℒθ = (r + γVθ̄(s′￼) − Vθ(s))2

(s, a, r, s′￼)

Q(s, a) → r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)]

ℒθ = (r + γ𝔼(a′￼|s′￼)∼π[Qθ̄(s′￼, a′￼)] − Qθ(s, a))2

(s, a, r, s′￼)

only learn
 is the target

⇒ don't take its gradient!

Vθ(s)
Vθ̄(s′￼)

only learn
 is the target

⇒ don't take its gradient!

Qθ(s, a)
Qθ̄(s′￼, a′￼)

MF

θ

DP

π′￼

MF

θ

DP

π′￼

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Today's lecture

Policy evaluation

Temporal Difference

Policy improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Special case: shortest path

• Deterministic dynamics: in state , take action to get to state

‣ Example above:

• Reward: in each step (until the goal is reached)

s a s′￼ = f(s, a)

s′￼ = f(s, aleft)

(−1) sf

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Shortest path: optimality principle
• Proposition: is shortest from to through ⇒ suffix of is shortest from to

• Proof: otherwise, let be a shorter path from to , then take

• The proposition is “if” but not “only if”, because we don't know which is best

‣ Try them all: for each , try

• Let be the shortest path length from to

‣ For each candidate , the shortest path through it is

‣ For all , we have

ξ s sf s′￼ ξ s′￼ sf

ξ′￼ s′￼ sf s ξ s′￼

ξ′￼ sf

s′￼

a s′￼ = f(s, a)

V(s) s sf

s′￼ 1 + V(s′￼)

s ≠ sf V(s) = min
a

(1 + V(f(s, a)))

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Bellman-Ford shortest path algorithm

• For all , we have

• The optimal policy is

s ≠ sf V(s) = min
a

(1 + V(f(s, a)))

π(s) = arg min
a

(1 + V(f(s, a)))

<latexit sha1_base64="2ceCorMYHcOjntTPQ4ZjWLTwQYE=">AAAJk3iczVTbbtNAEHXLLQm3FsQTLyPqqI5ooiQC+oCQStugVqKibUhaqQ7WxtkkK9YX2Zs2wfVv8S9IvMJ3MOs4zq1IVStQ92VXszNzZs+cnabLmS+KxR8Li7du37l7L5XO3H/w8NHjpeUndd/peSatmQ53vOMm8SlnNq0JJjg9dj1KrCanR82vW/L+6JR6PnPsz2Lg0oZFOjZrM5MINBnLqU9ZvUk7zA4sZjOXdGh4YjaCYmH9tS5oX5yxluiGmZET4R3HY6JrhSc7DbSaxJV5gr0taDsenBLeo/l2zzalFagvmBUBXZCBmdJYFUTQYNdmghHOvlFQ65qfA71DhQ9FNcpKOAfVB53ZUFVl0CF1KRGZLEAcXyWWyzFW7zPQfWaBa+guk76JS81t4RalN4oIIBw41NA/F2Ws2YJx3Kndmq1wyjQyJGRlMv+FP9DiJkI5d7O4FDGXRoA4IMIhp2MsIfER/YawfIZmSAgmrus5/Sto1NBFlwpyZQa3qW/iCwFrUHWE75qEBx/DOC28w7ieZQQxeSFoMwRDHkY1DHuQ+1K+LsWXYfhCghN+NynnFrHzHxyvNe8rq4ifHymnPZbm1MXIjBpti8FQSpSYXbAdOy+ohwUSDr6IJOjLWMQL1PPqeb6kAkOPqJ1+mEG68aqCscHfYgGSnkxho6MREPlN3ocalF7Wtbbmr5EcMh1F6RW7hbkzyT5H+Czf/0TR+w5n5gB2R4++vIZ9x6LgDsPVWJ7zUq7IiSTJQqkl3gfIBJCEqgoqc0rp4QkcwjngnEUhS9foQKBx0RDB2SFzdzxKW4PJgiaaQbwOfpK+QSCGvhHTpC6H9ZWpj0b9eBKp9dkGjJQ7IdbshFonZvBYtJIjDby4Py/RTiyLRC3S/FXZk2HjolZhmzB4NQeNSNPZsaivw62xtFIsFKMF84dSfFhR4rVvLK3hL3N7Img5ppxCHrXpmelg3ZhXjrgxWBClL80mmz/Uy4XSm8Krg/LKxk4MlFKeKy8UTSkp68qGsqPsKzXFTH1P/Uz9Sv1OP0u/TW+mt4euiwtxzFNlaqX3/gAzMTcx</latexit>

Algorithm Bellman-Ford
+ (B 5) 0
+ (B) 1 for each non-terminal state B
for |(| � 1 iterations

for each non-terminal state B
+ (B) min02� (1 ++ (5 (B, 0)))

MF

θ

DP

π′￼

max

[Ford and Fulkerson, 1962]

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Policy improvement
• A value function suggests the greedy policy:

• The greedy policy may not be the optimal policy

‣ But is the greedy policy always an improvement?

• Proposition: the greedy policy for (value of) is never worse than

• Corollary (Bellman optimality): if is greedy for its value then it is optimal

‣ In a finite MDP, the iteration converges, and then is optimal

π(s) = arg max
a

Q(s, a) = arg max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

π* = arg max
π

Jπ

Qπ π π

π Qπ

π evaluate Qπ
greedy π π

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

The RL scheme

policy evaluation

policy improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

• If we know the MDP (model-based), we can just alternate evaluate/greedy:

• Upon convergence, and π = π* Q = Q*

Policy Iteration

<latexit sha1_base64="NXUHonx5Ea7TISsERDa9rT5s034=">AAAIOXiczZRNb9NAEIbdAnUJXy0cuYyoKzmiiZII6AmpUIJaCaS2IWmlOrU29iZZsf6QvWkTXF+4wj/il3Dkhrgi7szajtskRaAeUH3xanZm3vGzr7fjcxaKSuXr3Py16zcW1MWbhVu379y9t7R8vxV6g8CiTcvjXnDQISHlzKVNwQSnB35AidPhdL/zflPu7x/TIGSe+06MfNp2SM9lXWYRgSFzeeHXqtGhPeZGDnOZT3o0PrTaUaW8/tQQdChOmC36cWGcRHjPC5joO/HhVhujFvFln+jtJnS9AI4JH9BSd+BaMgo0FMxJhC7owCwZbAgiaLTtMsEIZx8oaC09LILRoyKEipZ0JZyDFoLBXGhosmiP+pSIwipAVt8gjs+x1hgyMELmgG8aPpO5eUrTt/GVtDcrKCA82NMxv5h0bLqCcXxT156ecCI0DuSwCoX/wg/07BChVrxaLEXG0oxQB0ScMj3TElIf1a8I5RMMQw6Y+H7gDS/hUdMQfSrIpQm+oqGFXwg4g2agfN8iPHoTZ23hOdYNHDPK4MWgTwGGEoxnSM+geFS7EohfUs4d4pZee4H9F6CJfbpn/pzcGcfRqV0xSg1FidUH13NLggY4JeEQisSIYVKMmpF22jgtVTVgmJKcaphix706Vkd/rAbID2dCHjPNiMj/5UWsQ/VxS+/q4RopIvLsROuujd1RP19cAv6/sL8QfU5+x+PMGsH2+MNn8+Uks2YOPYeCnxZrqU/Hls6J1OXFJFmh4/LcXeQAJAdVR4NOGD4+hD04Bbxu0c8yNVkQaKPC9FWCN4hs3QsotUfnpzl3EiTo4a8yNAlkynLS1O+zxKeBT/E2l1Yq5UrywOyimi1WlOzZMZfW0AL+QES2Z8njCqhLTyzPQa/bkfwRz7SipH11utnsolUrV5+Vn+zWVja2MqFF5aHySNGVqrKubChbyo7SVCzVUD+qn9TP6hf1m/pd/ZGmzs9lNQ+UiUf9+RuV/MJS</latexit>

Algorithm Policy Iteration
Initialize some policy c
repeat

Evaluate the policy&(B, 0) Eb⇠?c [' |B0 = B, 00 = 0]
Update to the greedy policy c(B) arg max0 &(B, 0)

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Value Iteration

• We can also alternate evaluate/greedy inside the loop over states:

• Must update each state repeatedly until convergence

• Upon convergence, π*(s) = arg max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

<latexit sha1_base64="DGEtv0mwYqt1UtSPgerVWBQkTNg=">AAAJlHiczZRLb9NAEMfd8krCqwWJC5cRdVVHNFESAb2AVChBrQQobUhaqQ7WxtkkK9YP2Zs2wfXn4rNw4Apfg1nHcZ4VVZGge/Fqdh67v/l7mi5nvigUvi8tX7t+4+atVDpz+87de/dXVh/UfafnmbRmOtzxjprEp5zZtCaY4PTI9SixmpweNr/syPPDE+r5zLE/iYFLGxbp2KzNTCLQZKymKut6k3aYHVjMZi7p0PDYbASF/NZzXdC+OGUt0Q0zIyfCO47HRNcKj3cbaDWJK/MEH3ag7XhwQniP5to925RWoL5gVlRoQQZmSmNVEEGDPZsJRjj7SkGta34W9A4VPhTUKCvhHFQfdGZDVZVBB9SlRGTWAeL4KrFcjrF6n4HuMwtcQ3eZ9E1cam4LP1F6o4AFhAMHGvpno4w1WzCOX2q3Zm84ZRoZEliZzD/hB1rcRChlrxZLEbM0AqwDIhwyHdcSsj5WvyKUT9EMCWDiup7Tv4RGDV10qSCXJviW+ia+EPAOqo7luybhwfswTguvMK5nGUEMLwRtBjDkYHSHYQ+yn0tXAvEbyrlF7Nw7x2v9AWgkn/ZYn9MnIzsqtS0GQ0FRYnbBduycoB7eknDwRSREPwrGmoF6Vj3LFVVg6BJ11R9ix7MyRgfnRgMkzZkqj55GQOT/8jrUoPi0rrU1f5NkEXnc0bLdwuxYP9n8L/gVhzNzAHujt19c0b5jUXCH4Wos1nlhl+V8kshQeIn3PuIAkvAqo06ndB8ewwGcAU5dlLV0jTYEGotGCk4SmbvjUdoaTF5ooiPE6+Av0zcIxKX/VvgXQb+QfAK+Luf2JPdF2M+hHs388UhS6/icEfoJ4U5odUKqE5N4rFjJRgMv7stTtBPLIlFrNH9D9mLYsKhF2B4M3shCIxL0WM8x0XmgszxncBora4V8IVowvynGmzUlXhVjZRP/LrcngpZjym541KanpoNXxrxyxo1rBVH64myy+U29lC++yD/bL61t78aFUspj5YmiKUVlS9lWdpWKUlPM1LfUj9TP1K/0o/TL9E66PHRdXopjHipTK/3xNwxSN2A=</latexit>

Algorithm Value Iteration
Initialize some value function +
repeat

for each state B
Update+ (B) max0 (A (B, 0)+WE(B0 |B,0)⇠? [+ (B0)])

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Generalized Policy Iteration

• We can even alternate in any order we wish:

• As long as each state gets each of the two update without starvation

‣ The process will eventually converge to and

V(s) ← 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)]]
π(s) ← arg max

a
(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

V* π*

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Model-free reinforcement learning
• We can be model-free using MC policy evaluation:

• On-policy policy evaluation in the inner loop — very inefficient

<latexit sha1_base64="TTD5tOCEvk/iNY53ngDh8yYGqAQ=">AAALYniczVVbTxNBFF7whlsvII8acyJL2AbatETlyQTFGkgw4WILCVs30+20nTg7u9mdQnHpo7/GV/0xvvtDPLO7vUMgmCj7spMz5zbf982Zms9ZKAuFX1PTt27fuXtv5r6eefDw0ePZuSeV0GsHDi07HveCwxoJKWeCliWTnB76ASVujdOD2pcNtX9wTIOQeeKTPPVp1SVNwRrMIRJN9pz+fNGq0SYTkcsE80mTdo+calTIr72yJO3IE1aXra7ecyK86QVMttzu0WYVrQ7xVZ7o4wY0vACOCW/TXKMtHGUFGkrmxoXOycAcZdyXRNJoSzDJCGdfKRgVM8yC1aQyhIIRZyWcgxGCxQTsGypoj/qUSH0RII3fJ67PMdbqMLBC5oJvWz5Tvn2Xsl/HX5zeLmAB6cGeif7ZOGNZSMbxT0V9vMMRU8/QB0vX/wl+YKYkwmr2ZmEpUyztCOuA7CaYDmpJVR+r3xCUT9AMfYCJ7wde5xoatS3ZopJcG8H3NHTwhIA9GBaWbzmER9vdNC28wbi2a0cpeF0wxwCGHPR6SDjIfl69ERC/o5y7ROQ+eEH9EkBj+TQG+hzd6dlRqQ15mgiKEqcFwhM5SQPsknAIZSzEMA7GmpFxtn+WKxrA0CVmNUxgx70SRkcXRgP0yRkpj552RNR9eds1obhcMRtmuEKyCHnKaEnUMTvW7y/+F/g7HmfOKWz1zn51RYeeS8FPwo1UrJPCLqn5pCBD4fW9dxEOIH28SqjTEd13j2APzgCnLspaucYLAtXzRgpOEpW7GVBaPx1uaIgREjTxynRsAmnpGyH8ihrd14Y+HvyDuWRUxgno6fcCyQ5N5IFyFUYmBCk/y2gnrktiisxwSXGSEBdThTRh8FIWqpPC/gtsrwLtucgOD23Xq1Oea6AoYG970l91ciVJ9wDtw3YZDbsYhM5JWKTU6XgCX+ImFQ5VW5fP/HNI2lUjW12Eq7+dmCMhYTCkLrsUQ8+9OnoSPknhOINjBNqzC4V8If5gclFMFwta+u3Ysys4K/22jOqeo/gPqKAnjofCw7zqxRrUiuL0xfFkk4vKar74Ov9yd3VhfTMtNKM91V5oplbU1rR1bVPb0cqao3/Tv+s/9J/674yemcvMJ67TU2nMvDbyZZ79AWn11aw=</latexit>

Algorithm MC model-free RL
Initialize some policy c
repeat

Initialize some value function &
repeat to convergence

Sample b ⇠ ?c
Update &(BC , 0C) ! '�C (b) for all C � 0

c(B) arg max0 &(B, 0) for all B

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Off-policy model-free reinforcement learning

• Value iteration is model-based:

• Action-value version:

• A model-free (data-driven) version — Q-Learning:

‣ On off-policy data , update

V(s) ← max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

Q(s, a) ← r(s, a) + γ𝔼(s′￼|s,a)∼p[max
a′￼

Q(s′￼, a′￼)]

(s, a, r, s′￼)

Q(s, a) → r + γ max
a′￼

Q(s′￼, a′￼)

MF

θ

DP

π′￼

max

[Watkins and Dayan, 1992]

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods

Recap
• RL is a (policy evaluation ↔ policy improvement) loop

• Policy evaluation: model-based, Monte Carlo, or Temporal-Difference

‣ Temporal-Difference exploits the sequential structure using dynamic programming

• TD can be off-policy by considering the action-value Q function

‣ Off-policy data can be thrown out less often as the policy changes

• Policy improvement can be greedy

‣ Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)

• Many approaches can be made differentiable for Deep RL

