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Logistics

assignments
• Exercise 1 due Friday


• Quiz 2 due next Monday

resources
• Lots of resources on the website


• Will be updated with papers relevant to each lecture
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Today's lecture

Policy evaluation

Temporal Difference

Policy improvement
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Basic RL concepts
• State: ; action: ; reward: 


• Dynamics:  for stochastic;  for deterministic


• MDP:  or 


• Policy:  for stochastic;  for deterministic


• Trajectory: 


• Return: 

s ∈ S a ∈ A r(s, a) ∈ ℝ

p(st+1 |st, at) st+1 = f(st, at)

ℳ = ⟨S, A, p⟩ ⟨S, A, p, r⟩

π(at |st) at = π(st)

pπ(ξ = s0, a0, s1, a1, …) = p(s0)∏
t≥0

π(at |st)p(st+1 |st, at)

R(ξ) = ∑
t≥0

γtr(st, at) 0 ≤ γ < 1 agent

environment
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Example: Breakout

→ → ← ←

+0 +1 +0 +0reward:
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Formulating reward: considerations

• We define , is that general enough?


• What if the reward depends on the next state ?


‣ If we only care about expected reward, define 


• What if the reward is a random variable ?


‣ Define 


‣ In practice we see  ⇒ don't just assume you know  = 

r(s, a)

s′￼

r(s, a) = 𝔼(s′￼|s,a)∼p[r(s, a, s′￼)]

r̃

r(s, a) = 𝔼[r̃ |s, a]

r̃ r(s, a) r̃
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RL objective: expected return

• We need a scalar to optimize


• Step 1: we have a whole sequence of rewards 


‣ Summarize as return 


• Step 2:  is a random variable, induced by 


‣ Take expectation 


•  can be calculated and optimized

{rt = r(st, at)}t≥0

R(ξ) = ∑
t≥0

γtr(st, at)

R(ξ) pπ(ξ)

Jπ = 𝔼ξ∼pπ
[R(ξ)]

Jπ
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Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

π(pick |available) = 1

r(available, pick) = 0

p(dropped |available, pick) = 0.1

0.9

0.9

0.1

(1, −10)

(1,3)

π(a |s) r(s, a)

1

donep(s′￼|s, a)
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Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

1

done

0.1

ξ

pπ(ξ) = 1 ⋅ 0.9 ⋅ 1 ⋅ 0.9 = 0.81

R(ξ) = 0 + γ ⋅ 3 = 2.7

γ = 0.9

(1,0)

(1,3)
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Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

done

0.1 ξ

pπ(ξ) = 1 ⋅ 0.1 ⋅ 1 ⋅ 1 = 0.1

R(ξ) = 0 + γ ⋅ (−10) = −9

γ = 0.9

(1,0)
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Monte Carlo (MC) policy evaluation

• Computing  can be hard


‣ Exponentially many trajectories


‣ Model-based = requires , which may not be known


• Monte Carlo: estimate expectation using empirical mean


 


‣ Model-free = can sample with rollouts, without knowing 

Jπ = 𝔼ξ∼pπ
[R(ξ)] = ∑

ξ

pπ(ξ)R(ξ)

p(s′￼|s, a)

Jπ ≈ 1
m ∑

i

R(ξ(i)) ξ(i) ∼ pπ

p

MF
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MC: iterative computation

• We can keep a running average  of the first  returns


‣ Update: 


‣ More generally: 


‣  is a learning rate, exact average when it vanishes harmonically as 


• To simplify expressions, we denote this update: 


‣ Read: update  toward  at rate 

R̄(i) i

R̄(i) = ((i − 1)R̄(i−1) + R(ξ(i))) 1
i

R̄(i) = (1 − α)R̄(i−1) + αR(ξ(i)) = R̄(i−1) + α(R(ξ(i)) − R̄(i−1))

α 1
i

J →α R(ξ)

J R(ξ) α

residual

MF
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Value function

• RL objective: maximize expected return 


• We don't control , can break down: 


‣ with the value function 


•  is the expected reward-to-go (= future return):


‣ For any , define 


‣ Then 

Jπ = 𝔼ξ∼pπ
[R]

s0 Jπ = 𝔼s0∼p[Vπ(s0) |s0]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s]

Vπ(s)

t0 R≥t0 = ∑
t≥t0

γt−t0r(st, at)

Vπ(s) = 𝔼ξ∼pπ
[R≥t0 |st0 = s]

future reward after being 
in state  in time s t0
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MC for value-function estimation

• Why not use the same samples for non-initial states?

<latexit sha1_base64="DW1efNYNoycHV9Xvrsh+pI8UdRM="></latexit>

Algorithm MC for value-function estimation
Initialize + (B)  0 for all B 2 (
repeat

Sample b ⇠ ?c
Update + (B0) ! '(b)

<latexit sha1_base64="RrI8XMvWiZOlrLrMc7U4rvG1Pck=">AAAD3XicnZFNb9NAEIa3MR/FfKVw5LIiKUokSJ0I6LVSL+GAVBqcVqoja+1MnBHr9cqetAUrR26IK+Kn8W9YO06rJpGomMuOXs+87/rZQEvMyHH+bNWsO3fv3d9+YD989PjJ0/rOs2GWzNIQ3DCRSXoaiAwkKnAJScKpTkHEgYST4Mth8f3kHNIME/WZvmoYxSJSOMFQkJH8ndrvXS+ACFUeo0ItIpifhaPc6ey/8wgu6QLHNJ3byyEhoyRFmsbzs/7IqKHQhU/+8ZBPkpSfCzmDN5OZCguVQ0YYl0EbHDAsxAEJgvyDQkIh8Rvw5rCVtbkXAWXcaZauQkrezLiHig+axdIxaBBk73Je7Q9ErKXZ9S6RexnGXPuexmL2asTVY3OU9r5jAijhxy0z3y4dXUUozQlqvHrDG9JSuIJl27fBt5HereHxVvWCvNde9ypu+T8YlxT/DXEjQ6oY+rkJ4TRfsLwOoiLcRJugBdx1tqtoV8j69YbTccri6023ahqsqiO//tr8m55RPk7C4mFSUHARJnEsjK9HU7jOykv77qrZejPsdbrvO28/9RoH/Spom71gL1mLddk+O2B9dsRcFlrMemXtWY7lW9+tH9bPxWhtq9p5zm6U9esv5fQ3Yg==</latexit>

Algorithm MC for value-function estimation (version 2)
Initialize + (B)  0 for all B 2 (
repeat

Sample b ⇠ ?c
Update + (BC) ! '�C (b) for all C � 0

MF
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MC with function approximation

• What if the state space is large?


‣ Can't represent  as a big table


‣ Won't have enough data to estimate each 


• Function approximation: represent 


‣ , a parametric family of functions; for example, a neural network


• Generalization over state space ⇒ data efficiency

V(s)

V(s)

Vθ : S → ℝ

θ ∈ Θ

<latexit sha1_base64="QSXFq8KRCNPHSjQJbjW2aEX3GsQ="></latexit>

Algorithm MC with function approximation
Initialize +\

repeat
Sample b ⇠ ?c
Descend on L\ =

Õ
C�0('�C (b) �+\ (BC))2

with tabular representation: 
 

same as in previous slide
V(st) += −α∇V(st)ℒ = 2α(R≥t(ξ) − V(st))

MF

θ
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Today's lecture

Policy evaluation

Temporal Difference

Policy improvement
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Policy evaluation: example

pick up dish place dish clean floor

dish 1 available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

dish 2 available

0.1

⋯

# trajectories = exponential in # dishes

(1,0)
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MC inefficiency
• The MC estimator is unbiased (correct expectation), but high variance


‣ Requires many samples to give good estimate


• But MC misses out on the sequential structure


• Example:


‣ Day 1: I take route 1 to work — 40 minutes; I take route 2 home — 10 minutes


‣ Day 2: I take route 3 to work — 30 minutes; I take route 4 home — 30 minutes


• Which route should I take to work?


‣ Route 1 → 50-minute daily commute, route 3 → 60-minute; is route 1 better?
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Dynamic Programming (DP)

• Dynamic Programming = remember reusable partial results


• Value recursion:


 

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s]

= 𝔼ξ∼pπ
[r(s0, a0) + γR≥1 |s0 = s]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼ξ∼pπ
[R≥1 |s0 = s, a0 = a]]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[𝔼ξ∼pπ
[R≥1 |s1 = s′￼]]]

= 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

break down sum of rewards

first reward only depends on a

 is a state, all that matters for s′￼ R≥1

definition of Vπ(s′￼)

Richard Bellman

MF

θ

DP

[Bellman, 1956]

Dynamic Programming (DP)
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Policy evaluation: example

pick up dish place dish clean floor

dish available

dish grasped

dish dropped

0.9

0.9

0.1

(1, −10)

(1,3)

1

done

0.1

(1,0)

V(done) = 0

V(dropped) = 1 ⋅ (−10 + γ ⋅ (1 ⋅ V(done))) = −10

γ = 0.9

V(grasped) = 1 ⋅ (3 + γ ⋅ (0.9 ⋅ V(done) + 0.1 ⋅ V(dropped))) = 2.1

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

V(available) = 1 ⋅ (0 + γ ⋅ (0.9 ⋅ V(grasped) + 0.1 ⋅ V(dropped))) = −0.801

π(clean |dropped) r(dropped, clean) p(done |dropped, clean)

MF

θ

DP
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DP + MC: Temporal Difference (TD)

• Policy evaluation with DP: 


‣ Drawback: model-based = need to know 


• MC: , where  and 


‣ Drawback: high variance


• Put together: 


‣ where , , and  in some trajectory


‣ In other words: 

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

p

V(s) → R≥t(ξ) ξ ∼ pπ st = s

V(s) → r + γV(s′￼)

s = st r = r(st, at) s′￼ = st+1

V(s) ← V(s) + α(r + γV(s′￼) − V(s))
temporal difference 
between  and V(s′￼) V(s)

recursion from  to  
= backward in time!

s′￼ s

MF

θ

DP
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Q function
• To approach  when we update , we need on-policy data


‣ Roll out  to see transition  with reward 


• On-policy data is expensive: need more every time  changes


• Action-value function: 


‣ Compare: 


• Action-value backward recursion: 


‣ Broke down  into two parts

Vπ V(s) → r + γV(s′￼)

π (s, a) → s′￼ r

π

Qπ(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s] = 𝔼(a|s)∼π[Qπ(s, a)]

Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

MF

θ

DP
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TD from off-policy data
• Backward recursion in two parts:


 


• This should hold in every state and action


‣  can be sampled from any distribution  for any alternative 


• Put together, we update 


‣ For any distribution of , giving reward  and following state 


‣ In other words: 

Vπ(s) = 𝔼(a|s)∼π[Qπ(s, a)] Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

(s, a) pπ′￼
π′￼

Q(s, a) → r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)]

(s, a) r s′￼ ∼ p( ⋅ |s, a)

Q(s, a) ← Q(s, a) + α(r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)] − Q(s, a))
temporal difference

MF

θ

DP

π′￼
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TD with function approximation

• With large state space: represent  or 


• Instead of the update 


‣ Descend on square loss 


‣ On on-policy experience 


• Instead of the update 


‣ Descend on square loss 


‣ On off-policy experience 

Vθ : S → ℝ Qθ : S × A → ℝ

V(s) → r + γV(s′￼)

ℒθ = (r + γVθ̄(s′￼) − Vθ(s))2

(s, a, r, s′￼)

Q(s, a) → r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)]

ℒθ = (r + γ𝔼(a′￼|s′￼)∼π[Qθ̄(s′￼, a′￼)] − Qθ(s, a))2

(s, a, r, s′￼)

only learn  
 is the target 

⇒ don't take its gradient!

Vθ(s)
Vθ̄(s′￼)

only learn  
 is the target 

⇒ don't take its gradient!

Qθ(s, a)
Qθ̄(s′￼, a′￼)

MF

θ

DP

π′￼

MF

θ

DP

π′￼
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Today's lecture

Policy evaluation

Temporal Difference

Policy improvement
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Special case: shortest path

• Deterministic dynamics: in state , take action  to get to state 


‣ Example above: 


• Reward:  in each step (until the goal  is reached)

s a s′￼ = f(s, a)

s′￼ = f(s, aleft)

(−1) sf
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Shortest path: optimality principle
• Proposition:  is shortest from  to  through  ⇒ suffix of  is shortest from  to 


• Proof: otherwise, let  be a shorter path from  to , then take  


• The proposition is “if” but not “only if”, because we don't know which  is best


‣ Try them all: for each , try 


• Let  be the shortest path length from  to 


‣ For each candidate , the shortest path through it is 


‣ For all , we have 

ξ s sf s′￼ ξ s′￼ sf

ξ′￼ s′￼ sf s ξ s′￼

ξ′￼ sf

s′￼

a s′￼ = f(s, a)

V(s) s sf

s′￼ 1 + V(s′￼)

s ≠ sf V(s) = min
a

(1 + V( f(s, a)))
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Bellman-Ford shortest path algorithm

• For all , we have 


• The optimal policy is 

s ≠ sf V(s) = min
a

(1 + V( f(s, a)))

π(s) = arg min
a

(1 + V( f(s, a)))

<latexit sha1_base64="2ceCorMYHcOjntTPQ4ZjWLTwQYE="></latexit>

Algorithm Bellman-Ford
+ (B 5 )  0
+ (B)  1 for each non-terminal state B
for |( | � 1 iterations

for each non-terminal state B
+ (B)  min02� (1 ++ ( 5 (B, 0)))

MF

θ

DP

π′￼

max

[Ford and Fulkerson, 1962]
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Policy improvement
• A value function suggests the greedy policy:


 


• The greedy policy may not be the optimal policy 


‣ But is the greedy policy always an improvement?


• Proposition: the greedy policy for  (value of ) is never worse than 


• Corollary (Bellman optimality): if  is greedy for its value  then it is optimal


‣ In a finite MDP, the iteration  converges, and then  is optimal

π(s) = arg max
a

Q(s, a) = arg max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

π* = arg max
π

Jπ

Qπ π π

π Qπ

π evaluate Qπ
greedy π π
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The RL scheme

policy evaluation

policy improvement
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• If we know the MDP (model-based), we can just alternate evaluate/greedy:


• Upon convergence,  and π = π* Q = Q*

Policy Iteration

<latexit sha1_base64="NXUHonx5Ea7TISsERDa9rT5s034=">AAAIOXiczZRNb9NAEIbdAnUJXy0cuYyoKzmiiZII6AmpUIJaCaS2IWmlOrU29iZZsf6QvWkTXF+4wj/il3Dkhrgi7szajtskRaAeUH3xanZm3vGzr7fjcxaKSuXr3Py16zcW1MWbhVu379y9t7R8vxV6g8CiTcvjXnDQISHlzKVNwQSnB35AidPhdL/zflPu7x/TIGSe+06MfNp2SM9lXWYRgSFzeeHXqtGhPeZGDnOZT3o0PrTaUaW8/tQQdChOmC36cWGcRHjPC5joO/HhVhujFvFln+jtJnS9AI4JH9BSd+BaMgo0FMxJhC7owCwZbAgiaLTtMsEIZx8oaC09LILRoyKEipZ0JZyDFoLBXGhosmiP+pSIwipAVt8gjs+x1hgyMELmgG8aPpO5eUrTt/GVtDcrKCA82NMxv5h0bLqCcXxT156ecCI0DuSwCoX/wg/07BChVrxaLEXG0oxQB0ScMj3TElIf1a8I5RMMQw6Y+H7gDS/hUdMQfSrIpQm+oqGFXwg4g2agfN8iPHoTZ23hOdYNHDPK4MWgTwGGEoxnSM+geFS7EohfUs4d4pZee4H9F6CJfbpn/pzcGcfRqV0xSg1FidUH13NLggY4JeEQisSIYVKMmpF22jgtVTVgmJKcaphix706Vkd/rAbID2dCHjPNiMj/5UWsQ/VxS+/q4RopIvLsROuujd1RP19cAv6/sL8QfU5+x+PMGsH2+MNn8+Uks2YOPYeCnxZrqU/Hls6J1OXFJFmh4/LcXeQAJAdVR4NOGD4+hD04Bbxu0c8yNVkQaKPC9FWCN4hs3QsotUfnpzl3EiTo4a8yNAlkynLS1O+zxKeBT/E2l1Yq5UrywOyimi1WlOzZMZfW0AL+QES2Z8njCqhLTyzPQa/bkfwRz7SipH11utnsolUrV5+Vn+zWVja2MqFF5aHySNGVqrKubChbyo7SVCzVUD+qn9TP6hf1m/pd/ZGmzs9lNQ+UiUf9+RuV/MJS</latexit>

Algorithm Policy Iteration
Initialize some policy c
repeat

Evaluate the policy&(B, 0)  Eb⇠?c [' |B0 = B, 00 = 0]
Update to the greedy policy c(B)  arg max0 &(B, 0)

MF

θ

DP

π′￼

max
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Value Iteration

• We can also alternate evaluate/greedy inside the loop over states:


• Must update each state repeatedly until convergence


• Upon convergence, π*(s) = arg max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

<latexit sha1_base64="DGEtv0mwYqt1UtSPgerVWBQkTNg="></latexit>

Algorithm Value Iteration
Initialize some value function +
repeat

for each state B
Update+ (B)  max0 (A (B, 0)+WE(B0 |B,0)⇠? [+ (B0)])

MF

θ

DP

π′￼

max
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Generalized Policy Iteration

• We can even alternate in any order we wish:


 


• As long as each state gets each of the two update without starvation


‣ The process will eventually converge to  and 

V(s) ← 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)]]
π(s) ← arg max

a
(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

V* π*

MF

θ

DP

π′￼

max
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Model-free reinforcement learning
• We can be model-free using MC policy evaluation:


• On-policy policy evaluation in the inner loop — very inefficient

<latexit sha1_base64="TTD5tOCEvk/iNY53ngDh8yYGqAQ="></latexit>

Algorithm MC model-free RL
Initialize some policy c
repeat

Initialize some value function &
repeat to convergence

Sample b ⇠ ?c
Update &(BC , 0C) ! '�C (b) for all C � 0

c(B)  arg max0 &(B, 0) for all B

MF

θ

DP

π′￼

max
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Off-policy model-free reinforcement learning

• Value iteration is model-based: 


• Action-value version: 


• A model-free (data-driven) version — Q-Learning:


‣ On off-policy data , update


 

V(s) ← max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

Q(s, a) ← r(s, a) + γ𝔼(s′￼|s,a)∼p[max
a′￼

Q(s′￼, a′￼)]

(s, a, r, s′￼)

Q(s, a) → r + γ max
a′￼

Q(s′￼, a′￼)

MF

θ

DP

π′￼

max

[Watkins and Dayan, 1992]
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Recap
• RL is a (policy evaluation ↔ policy improvement) loop


• Policy evaluation: model-based, Monte Carlo, or Temporal-Difference


‣ Temporal-Difference exploits the sequential structure using dynamic programming


• TD can be off-policy by considering the action-value Q function


‣ Off-policy data can be thrown out less often as the policy changes


• Policy improvement can be greedy


‣ Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)


• Many approaches can be made differentiable for Deep RL


