

CS 277: Control and Reinforcement Learning

Winter 2026

Lecture 3: Temporal-Difference Methods

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Logistics

assignments

- Exercise 1 due **Friday**
- Quiz 2 due **next Monday**

resources

- Lots of resources on the website
- Will be updated with papers relevant to each lecture

Today's lecture

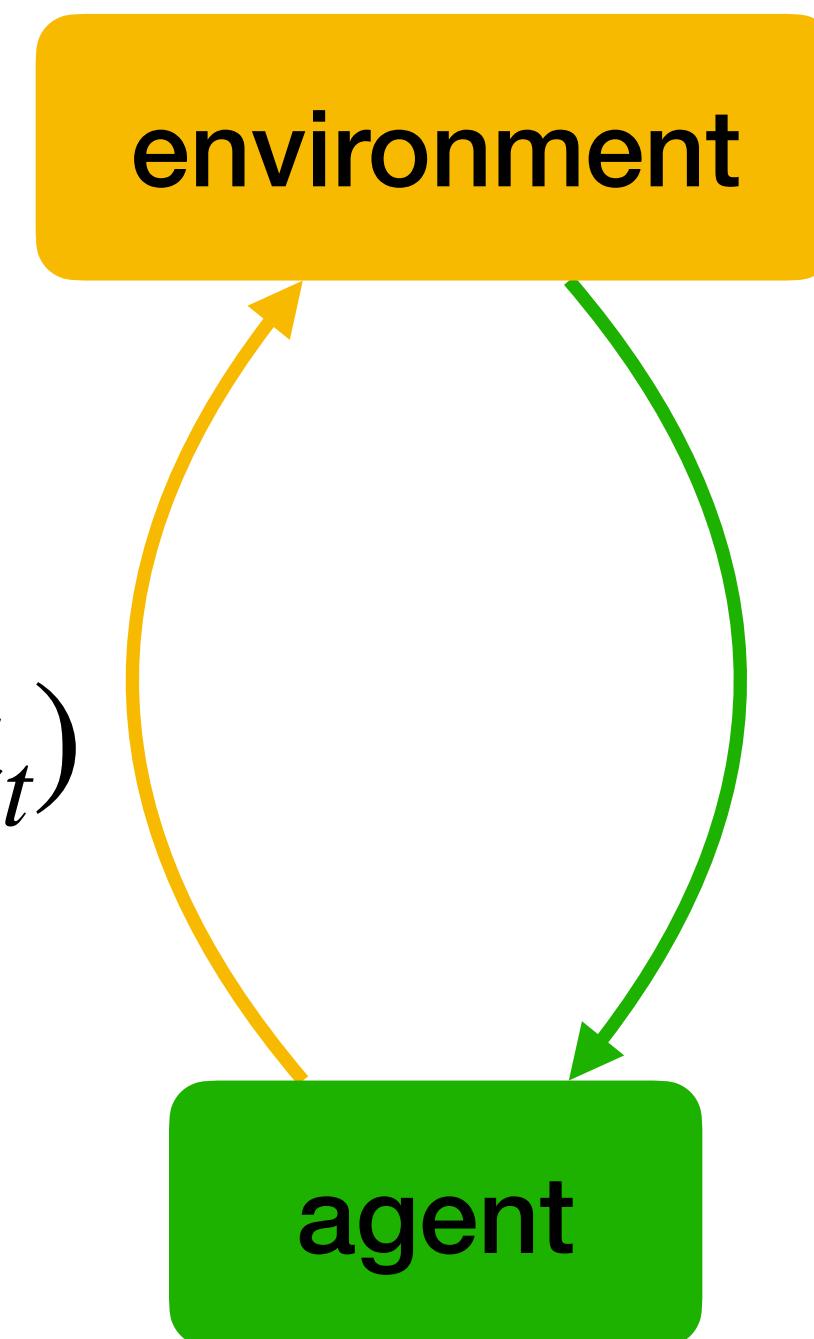
Policy evaluation

Temporal Difference

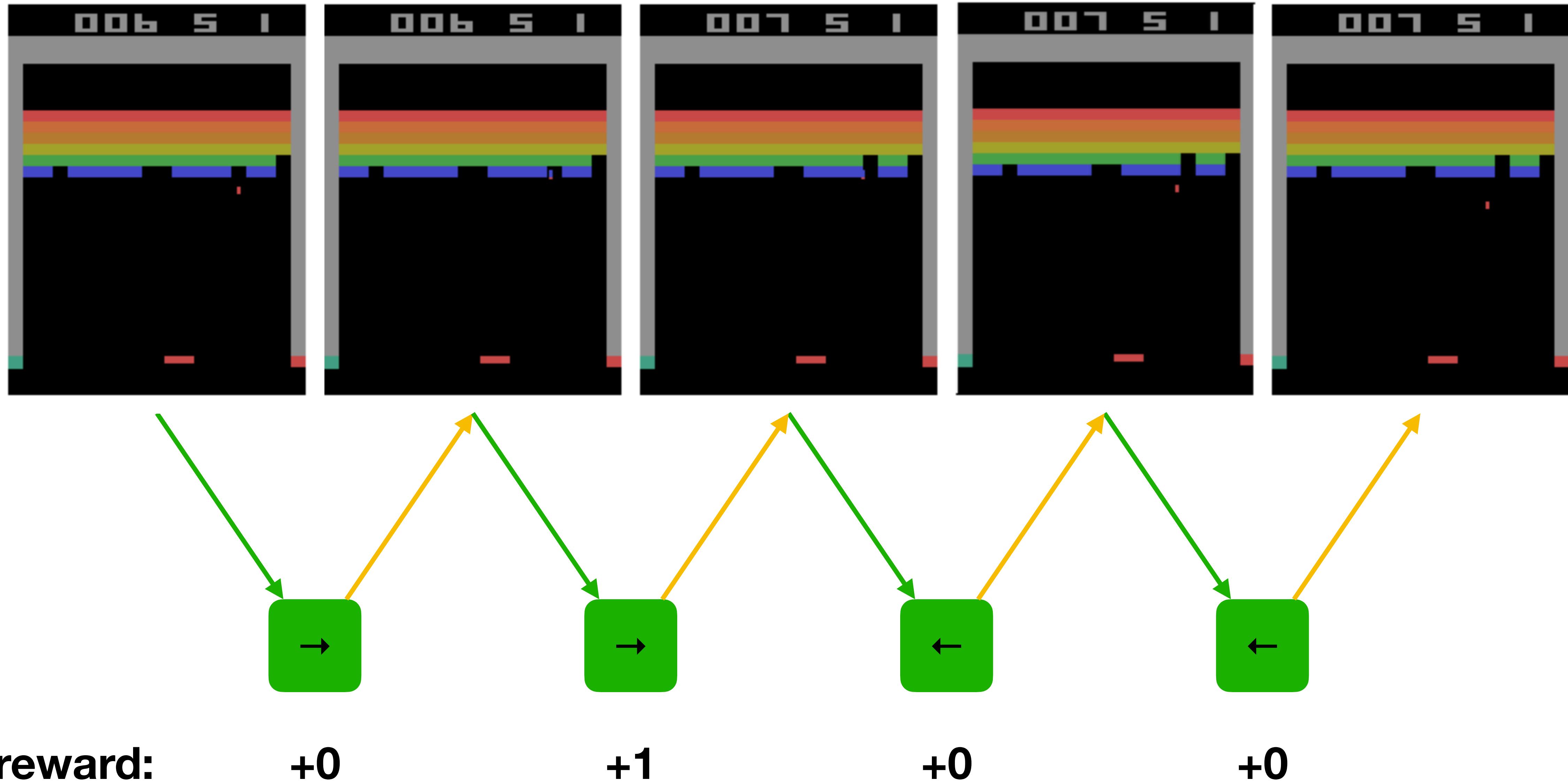
Policy improvement

Basic RL concepts

- **State:** $s \in S$; **action:** $a \in A$; **reward:** $r(s, a) \in \mathbb{R}$
- **Dynamics:** $p(s_{t+1} | s_t, a_t)$ for stochastic; $s_{t+1} = f(s_t, a_t)$ for deterministic
- **MDP:** $\mathcal{M} = \langle S, A, p \rangle$ or $\langle S, A, p, r \rangle$
- **Policy:** $\pi(a_t | s_t)$ for stochastic; $a_t = \pi(s_t)$ for deterministic
- **Trajectory:** $p_\pi(\xi = s_0, a_0, s_1, a_1, \dots) = p(s_0) \prod_{t \geq 0} \pi(a_t | s_t) p(s_{t+1} | s_t, a_t)$
- **Return:** $R(\xi) = \sum_{t \geq 0} \gamma^t r(s_t, a_t) \quad 0 \leq \gamma < 1$



Example: Breakout



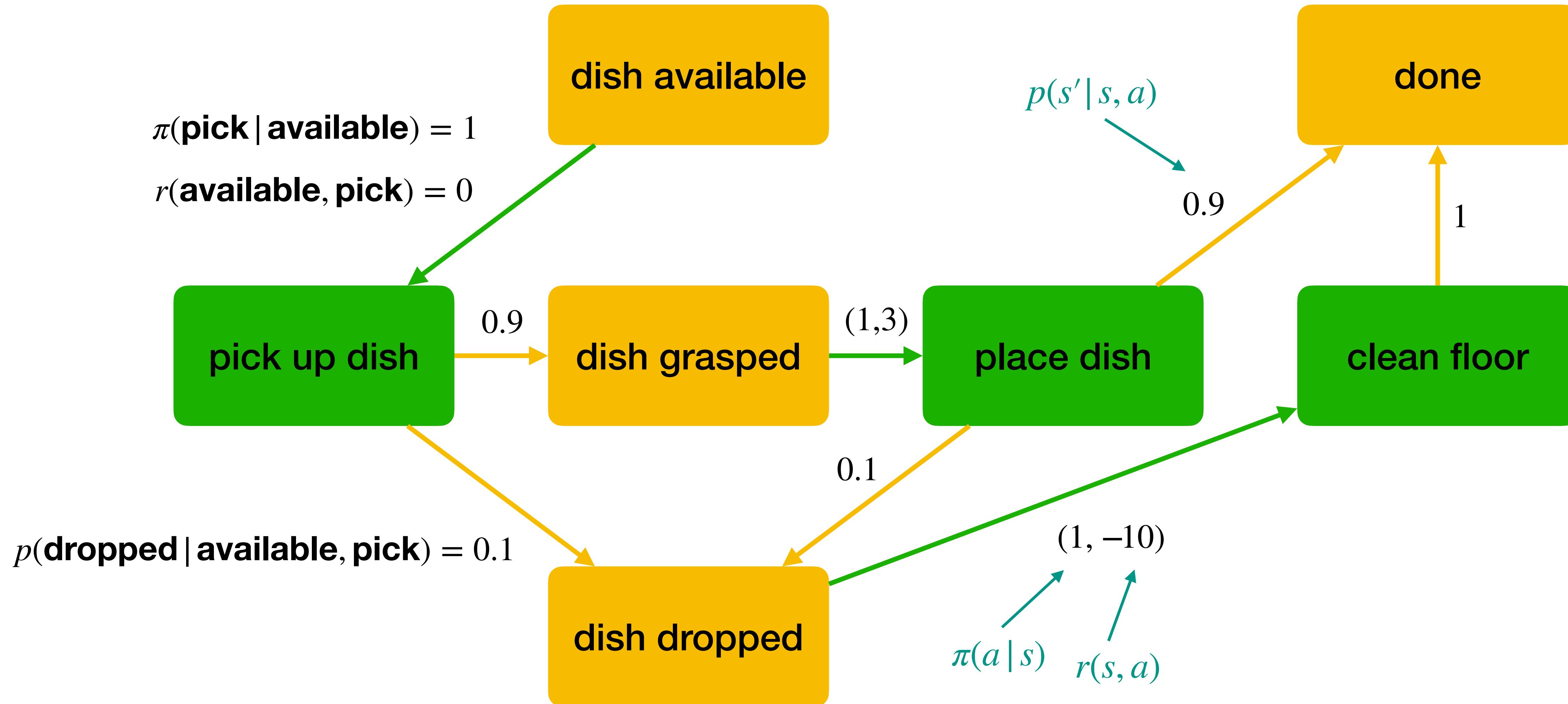
Formulating reward: considerations

- We define $r(s, a)$, is that general enough?
- What if the reward depends on the **next state** s' ?
 - ▶ If we only care about **expected** reward, define $r(s, a) = \mathbb{E}_{(s'|s,a) \sim p}[r(s, a, s')]$
- What if the reward is a **random** variable \tilde{r} ?
 - ▶ Define $r(s, a) = \mathbb{E}[\tilde{r} | s, a]$
 - ▶ In practice we see $\tilde{r} \Rightarrow$ don't just assume you know $r(s, a) = \tilde{r}$

RL objective: expected return

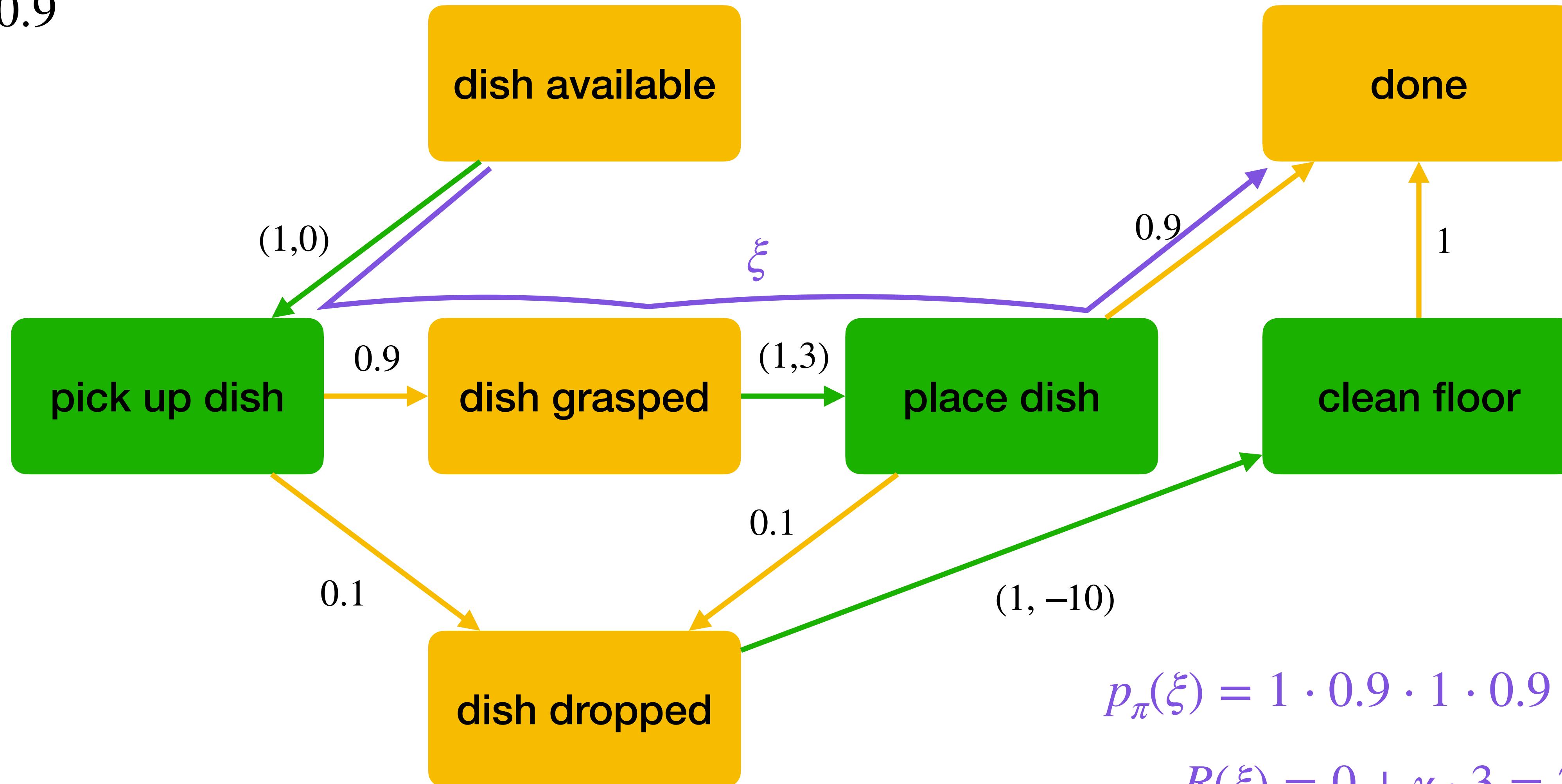
- We need a **scalar** to optimize
- **Step 1:** we have a whole sequence of rewards $\{r_t = r(s_t, a_t)\}_{t \geq 0}$
 - ▶ **Summarize** as return $R(\xi) = \sum_{t \geq 0} \gamma^t r(s_t, a_t)$
- **Step 2:** $R(\xi)$ is a random variable, induced by $p_\pi(\xi)$
 - ▶ Take **expectation** $J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R(\xi)]$
- J_π can be calculated and optimized

Policy evaluation: example



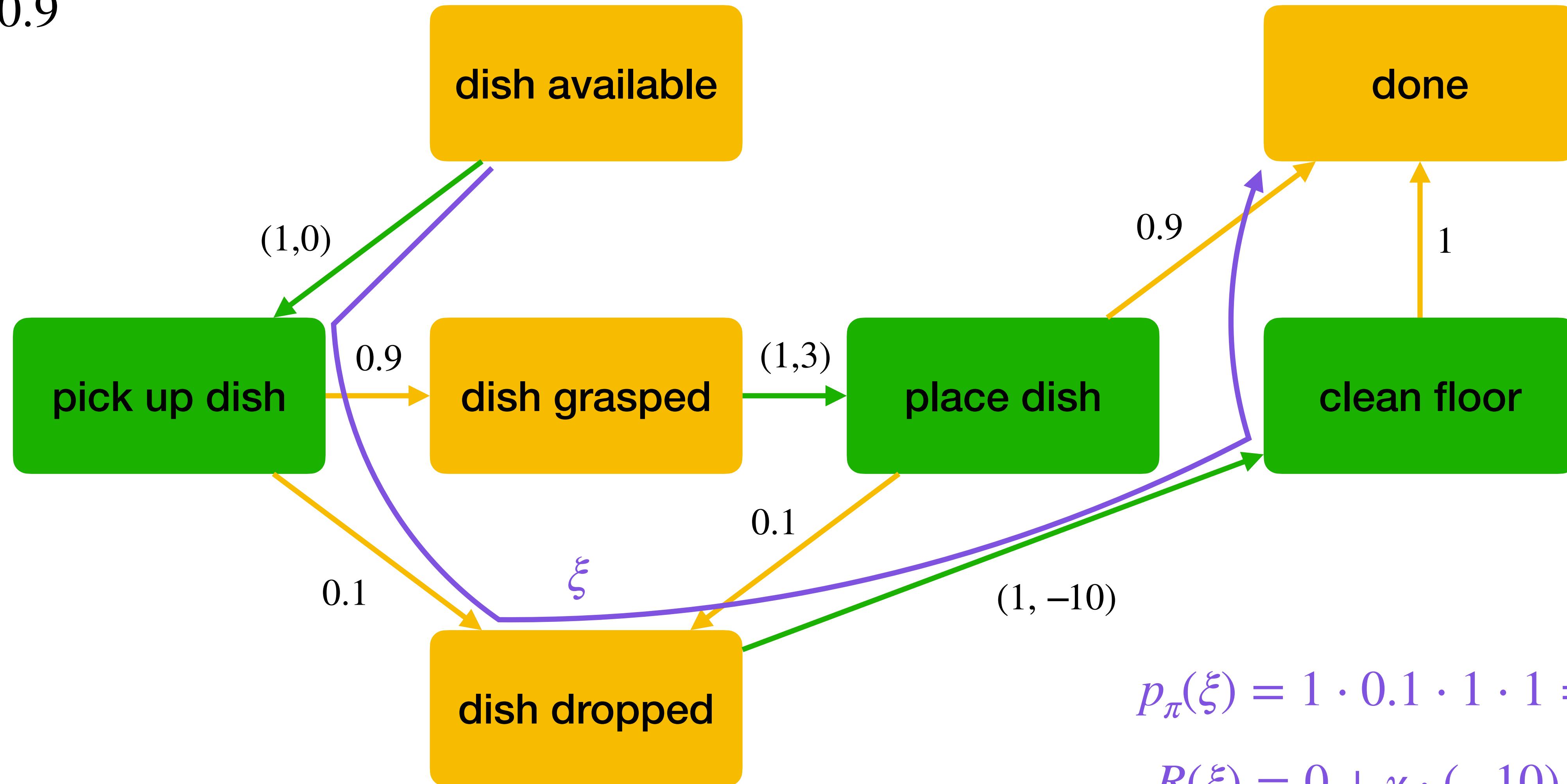
Policy evaluation: example

$$\gamma = 0.9$$



Policy evaluation: example

$$\gamma = 0.9$$



Monte Carlo (MC) policy evaluation

MF

- Computing $J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R(\xi)] = \sum_{\xi} p_\pi(\xi)R(\xi)$ can be hard
 - ▶ **Exponentially many** trajectories
 - ▶ **Model-based** = requires $p(s' | s, a)$, which may not be known
- **Monte Carlo:** estimate expectation using empirical mean

$$J_\pi \approx \frac{1}{m} \sum_i R(\xi^{(i)}) \quad \xi^{(i)} \sim p_\pi$$

- ▶ **Model-free** = can sample with rollouts, without knowing p

MC: iterative computation

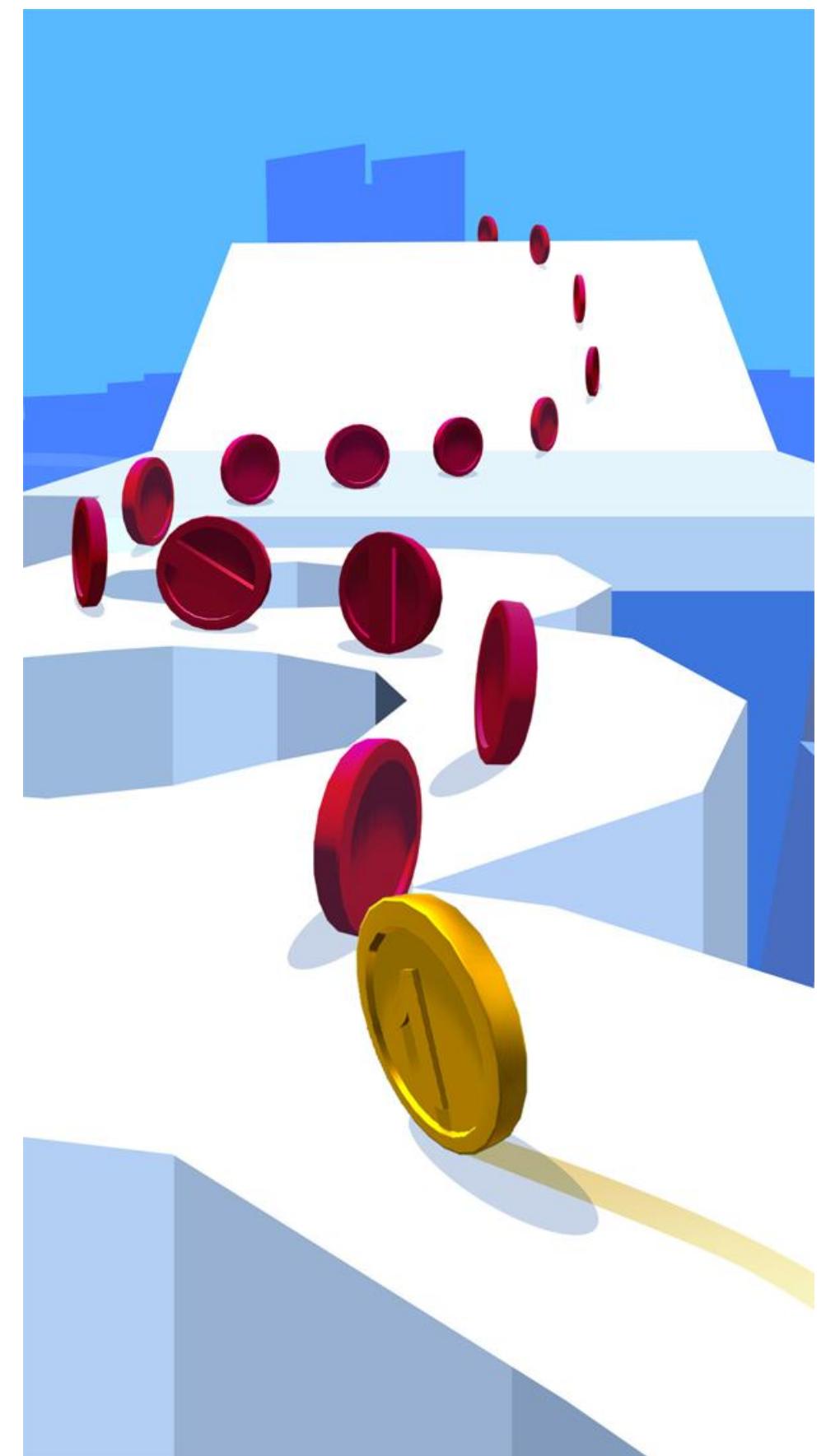
MF

- We can keep a **running average** $\bar{R}^{(i)}$ of the first i returns
 - ▶ **Update:** $\bar{R}^{(i)} = ((i - 1)\bar{R}^{(i-1)} + R(\xi^{(i)}))\frac{1}{i}$
 - ▶ More generally: $\bar{R}^{(i)} = (1 - \alpha)\bar{R}^{(i-1)} + \alpha R(\xi^{(i)}) = \bar{R}^{(i-1)} + \alpha(R(\xi^{(i)}) - \bar{R}^{(i-1)})$
 - ▶ α is a **learning rate**, exact average when it vanishes harmonically as $\frac{1}{i}$
- To simplify expressions, we denote this update: $J \rightarrow_{\alpha} R(\xi)$
 - ▶ **Read:** update J toward $R(\xi)$ at rate α

Value function

- RL objective: maximize expected return $J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R]$
- We don't control s_0 , can break down: $J_\pi = \mathbb{E}_{s_0 \sim p}[V_\pi(s_0) \mid s_0]$
 - ▶ with the value function $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s]$
- $V_\pi(s)$ is the expected reward-to-go (= future return):
 - ▶ For any t_0 , define $R_{\geq t_0} = \sum_{t \geq t_0} \gamma^{t-t_0} r(s_t, a_t)$

**future reward after being
in state s in time t_0**
 - ▶ Then $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R_{\geq t_0} \mid s_{t_0} = s]$



MC for value-function estimation

MF

Algorithm MC for value-function estimation

Initialize $V(s) \leftarrow 0$ for all $s \in S$

repeat

 Sample $\xi \sim p_\pi$

 Update $V(s_0) \rightarrow R(\xi)$

- Why not use the same samples for **non-initial** states?

Algorithm MC for value-function estimation (version 2)

Initialize $V(s) \leftarrow 0$ for all $s \in S$

repeat

 Sample $\xi \sim p_\pi$

 Update $V(s_t) \rightarrow R_{\geq t}(\xi)$ for all $t \geq 0$

MC with function approximation

- What if the state space is **large**?
 - ▶ Can't represent $V(s)$ as a **big table**
 - ▶ Won't have **enough data** to estimate each $V(s)$
- **Function approximation:** represent $V_\theta : S \rightarrow \mathbb{R}$
 - ▶ $\theta \in \Theta$, a parametric family of functions; for example, a **neural network**
 - **Generalization** over state space \Rightarrow data efficiency

Algorithm MC with function approximation

Initialize V_θ

repeat

 Sample $\xi \sim p_\pi$

 Descend on $\mathcal{L}_\theta = \sum_{t \geq 0} (R_{\geq t}(\xi) - V_\theta(s_t))^2$

MF

θ

with tabular representation:

$$V(s_t) += -\alpha \nabla_{V(s_t)} \mathcal{L} = 2\alpha(R_{\geq t}(\xi) - V(s_t))$$

same as in previous slide

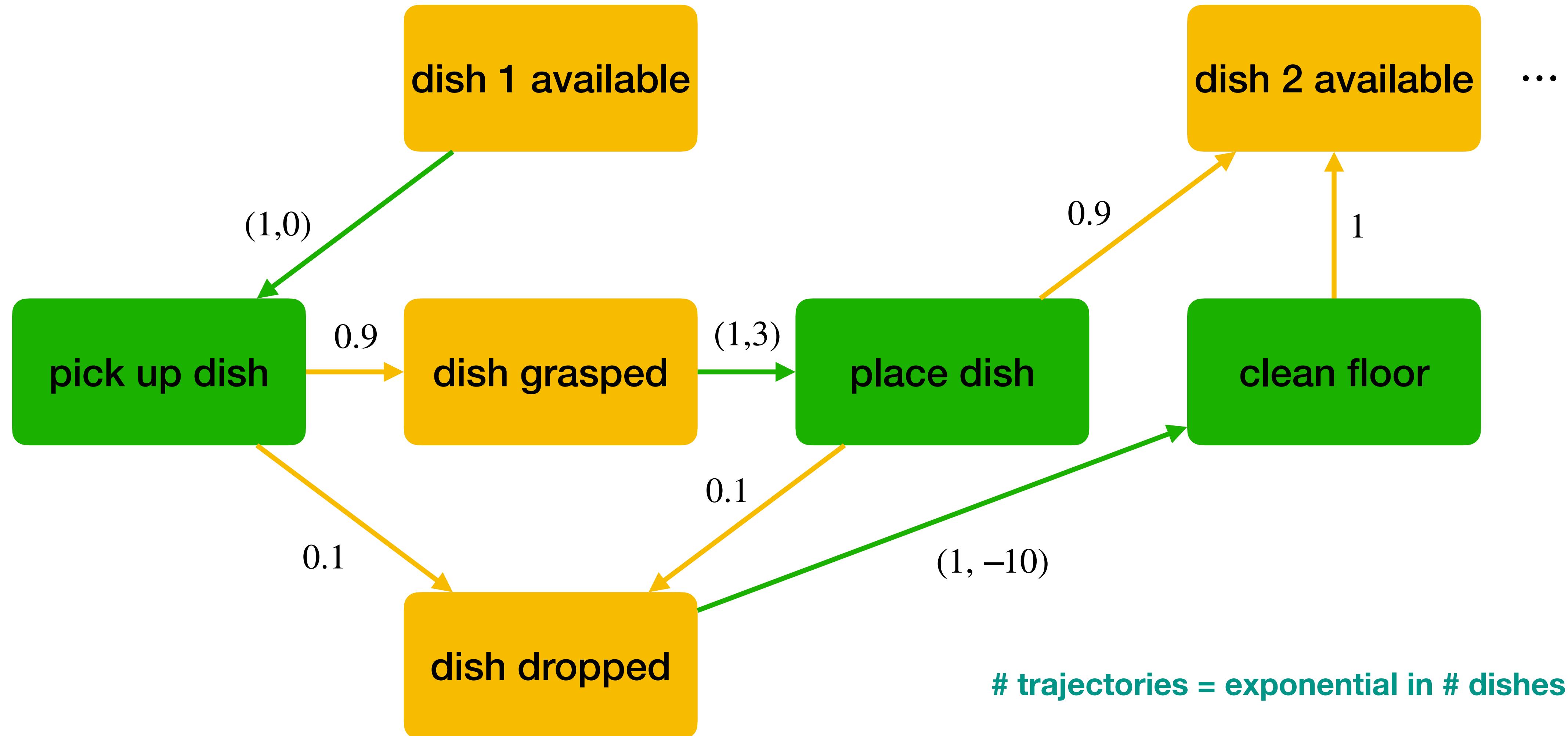
Today's lecture

Policy evaluation

Temporal Difference

Policy improvement

Policy evaluation: example



MC inefficiency

- The MC estimator is **unbiased** (correct expectation), but **high variance**
 - ▶ Requires many samples to give good estimate
- But MC misses out on the **sequential structure**
- Example:
 - ▶ Day 1: I take **route 1** to work – **40 minutes**; I take **route 2** home – **10 minutes**
 - ▶ Day 2: I take **route 3** to work – **30 minutes**; I take **route 4** home – **30 minutes**
- Which route should I take to work?
 - ▶ Route 1 → 50-minute daily commute, route 3 → 60-minute; is **route 1 better?**

Dynamic Programming (DP)

- Dynamic Programming = remember reusable partial results
- Value recursion:

$$V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s]$$

break down sum of rewards

$$= \mathbb{E}_{\xi \sim p_\pi}[r(s_0, a_0) + \gamma R_{\geq 1} \mid s_0 = s]$$

first reward only depends on a

$$= \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{\xi \sim p_\pi}[R_{\geq 1} \mid s_0 = s, a_0 = a]]$$

s' is a state, all that matters for $R_{\geq 1}$

$$= \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[\mathbb{E}_{\xi \sim p_\pi}[R_{\geq 1} \mid s_1 = s']]]$$

definition of $V_\pi(s')$

$$= \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]]$$

Richard Bellman

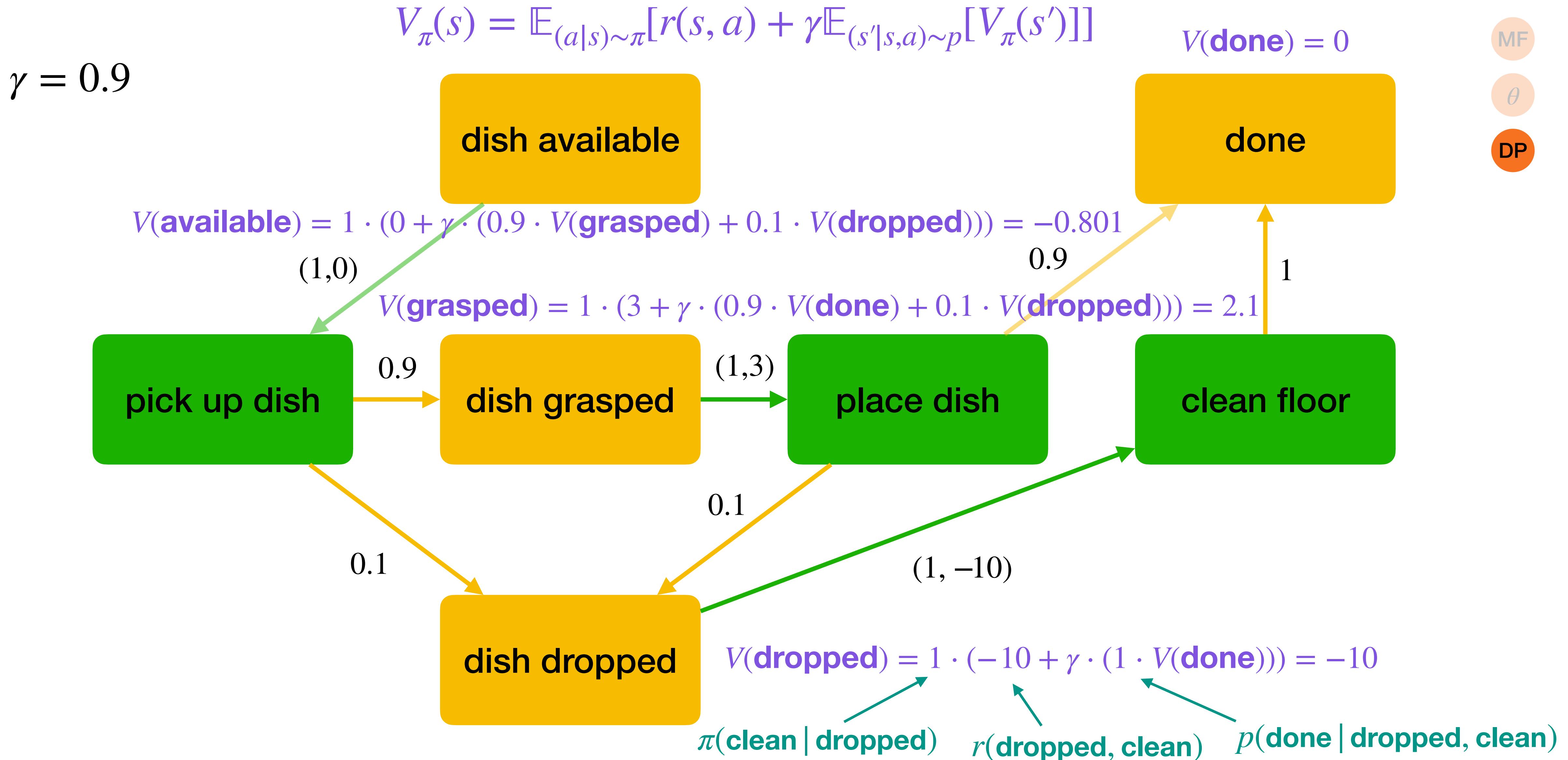
MF

θ

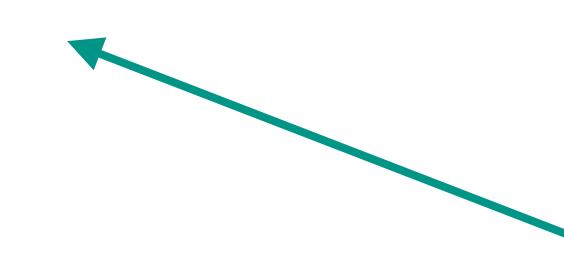
DP

[Bellman, 1956]

Policy evaluation: example



DP + MC: Temporal Difference (TD)

- Policy evaluation with DP: $V_\pi(s) = \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V_\pi(s')]]$
 - ▶ **Drawback:** model-based = need to know p

recursion from s' to s
= backward in time!
- MC: $V(s) \rightarrow R_{\geq t}(\xi)$, where $\xi \sim p_\pi$ and $s_t = s$
 - ▶ **Drawback:** high variance
- Put together: $V(s) \rightarrow r + \gamma V(s')$
 - ▶ where $s = s_t$, $r = r(s_t, a_t)$, and $s' = s_{t+1}$ in some trajectory
 - ▶ In other words: $V(s) \leftarrow V(s) + \alpha(r + \gamma V(s') - V(s))$

temporal difference
between $V(s')$ and $V(s)$

Q function

- To approach V_π when we update $V(s) \rightarrow r + \gamma V(s')$, we need **on-policy data**
 - ▶ Roll out π to see transition $(s, a) \rightarrow s'$ with reward r
- On-policy data is **expensive**: need more every time π changes
- **Action-value function**: $Q_\pi(s, a) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s, a_0 = a]$
 - ▶ Compare: $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s] = \mathbb{E}_{(a|s) \sim \pi}[Q_\pi(s, a)]$
- Action-value **backward recursion**: $Q_\pi(s, a) = r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]$
 - ▶ Broke down $V_\pi(s) = \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]]$ into two parts

MF

 θ

DP

TD from off-policy data

- Backward recursion in two parts:

$$V_\pi(s) = \mathbb{E}_{(a|s) \sim \pi}[Q_\pi(s, a)] \quad Q_\pi(s, a) = r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]$$

- This should hold in every state and action

- (s, a) can be sampled from **any distribution** $p_{\pi'}$ for any alternative π'
- Put together, we **update** $Q(s, a) \rightarrow r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q(s', a')]$
 - For any distribution of (s, a) , giving reward r and following state $s' \sim p(\cdot | s, a)$
 - In other words: $Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q(s', a')] - Q(s, a))$

MF

θ

DP

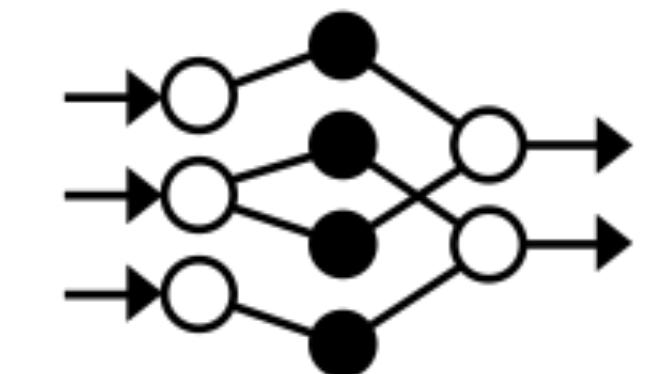
π'

temporal difference

TD with function approximation

- With large state space: represent $V_\theta : S \rightarrow \mathbb{R}$ or $Q_\theta : S \times A \rightarrow \mathbb{R}$

- Instead of the update $V(s) \rightarrow r + \gamma V(s')$



- Descend on **square loss** $\mathcal{L}_\theta = (r + \gamma V_{\bar{\theta}}(s') - V_\theta(s))^2$

- On **on-policy** experience (s, a, r, s')

only learn $V_\theta(s)$
 $V_{\bar{\theta}}(s')$ is the target
⇒ don't take its gradient!

- Instead of the update $Q(s, a) \rightarrow r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q(s', a')]$

- Descend on **square loss** $\mathcal{L}_\theta = (r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q_{\bar{\theta}}(s', a')] - Q_\theta(s, a))^2$

- On **off-policy** experience (s, a, r, s')

only learn $Q_\theta(s, a)$
 $Q_{\bar{\theta}}(s', a')$ is the target
⇒ don't take its gradient!

MF
 θ
DP
 π'

MF
 θ
DP
 π'

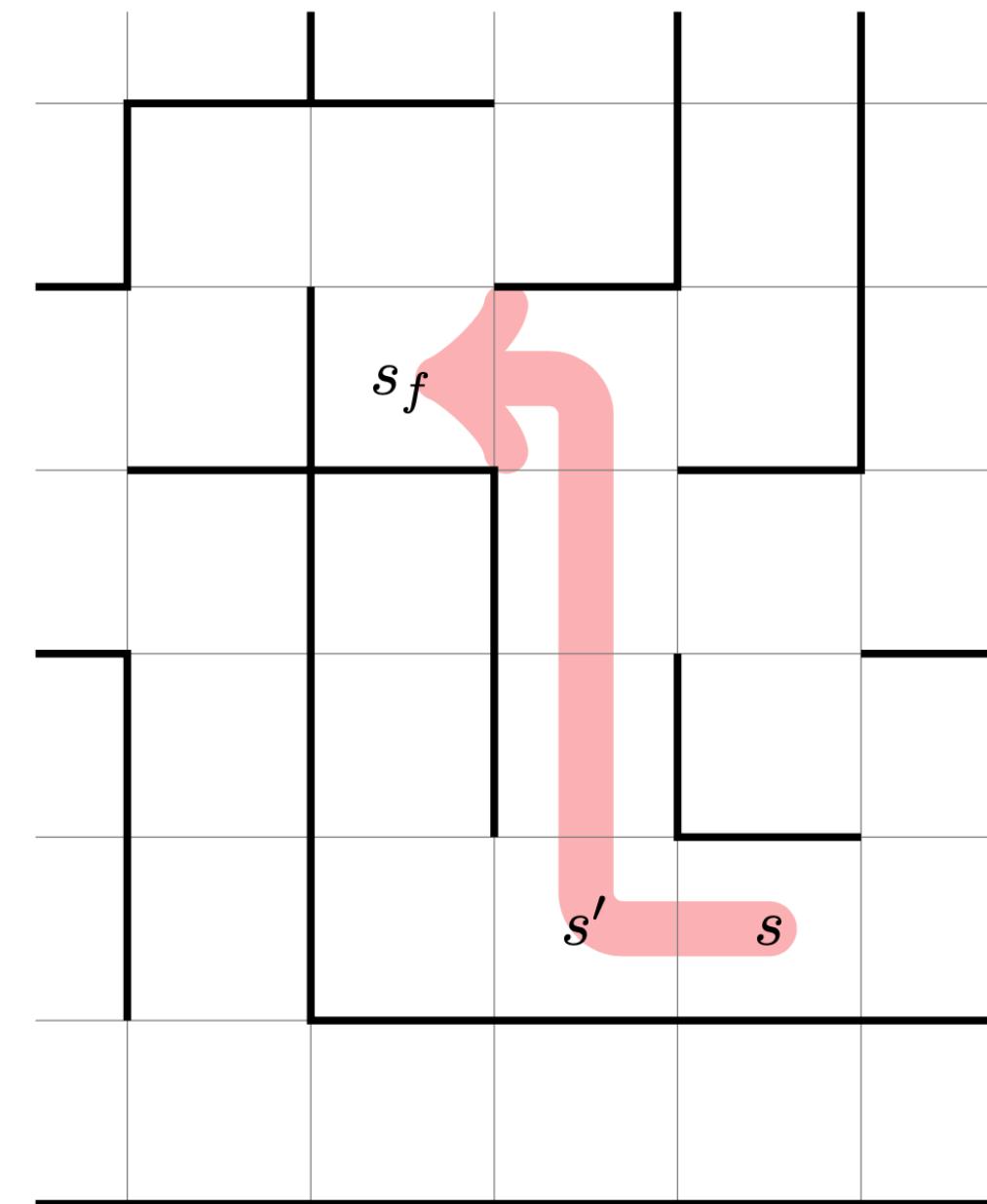
Today's lecture

Policy evaluation

Temporal Difference

Policy improvement

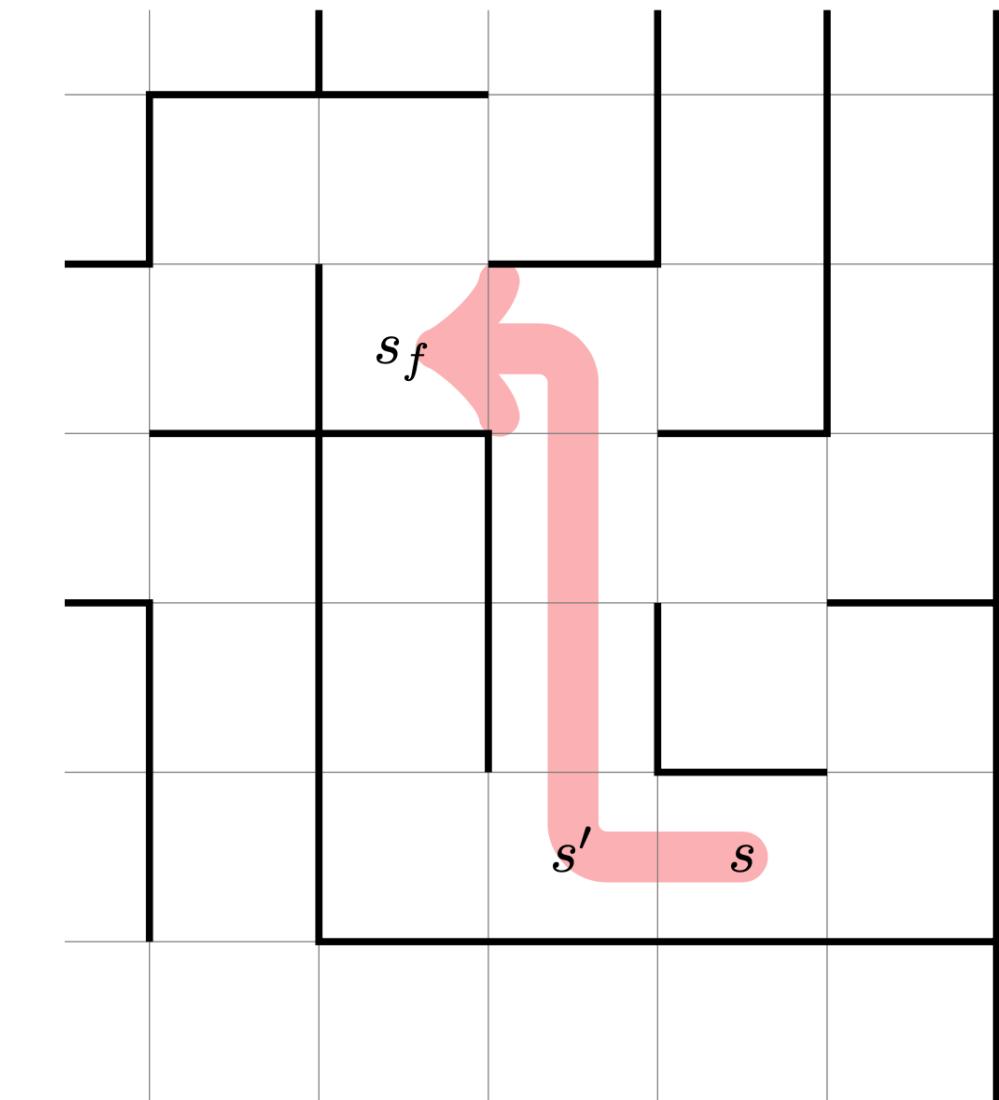
Special case: shortest path



- **Deterministic dynamics:** in state s , take action a to get to state $s' = f(s, a)$
 - ▶ Example above: $s' = f(s, a_{\text{left}})$
- **Reward:** (-1) in each step (until the goal s_f is reached)

Shortest path: optimality principle

- **Proposition:** ξ is shortest from s to s_f through $s' \Rightarrow$ suffix of ξ is shortest from s' to s_f
- **Proof:** otherwise, let ξ' be a shorter path from s' to s_f , then take $s \xrightarrow{\xi} s' \xrightarrow{\xi'} s_f$
- The proposition is “if” but not “only if”, because we don't know **which s'** is best
 - ▶ **Try them all:** for each a , try $s' = f(s, a)$
- Let $V(s)$ be the shortest path length from s to s_f
 - ▶ For each candidate s' , the **shortest path** through it is $1 + V(s')$
 - ▶ For all $s \neq s_f$, we have $V(s) = \min_a(1 + V(f(s, a)))$



Bellman-Ford shortest path algorithm

- For all $s \neq s_f$, we have $V(s) = \min_a(1 + V(f(s, a)))$

Algorithm Bellman-Ford

$V(s_f) \leftarrow 0$

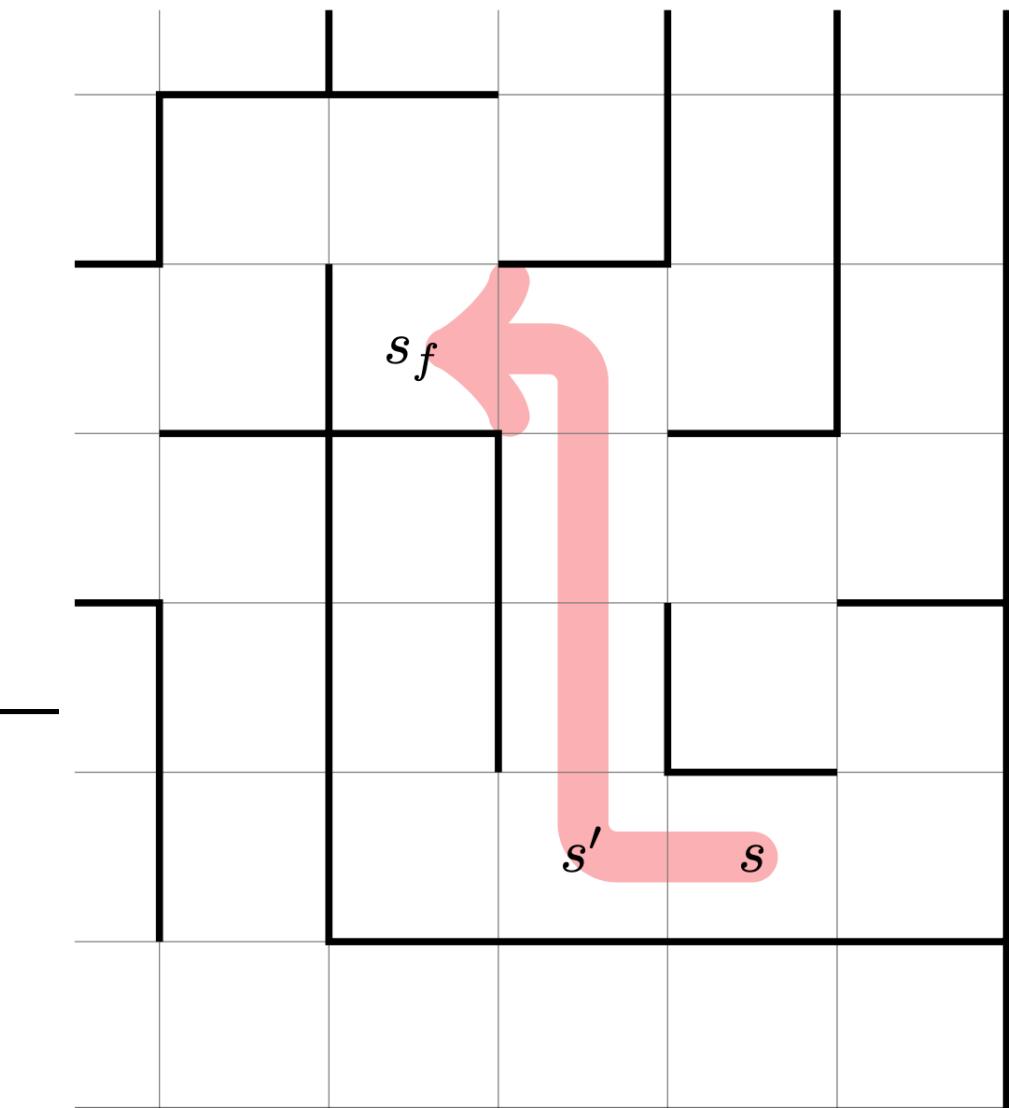
$V(s) \leftarrow \infty$ for each non-terminal state s

for $|S| - 1$ iterations

for each non-terminal state s

$V(s) \leftarrow \min_{a \in A}(1 + V(f(s, a)))$

- The **optimal policy** is $\pi(s) = \arg \min_a(1 + V(f(s, a)))$



[Ford and Fulkerson, 1962]

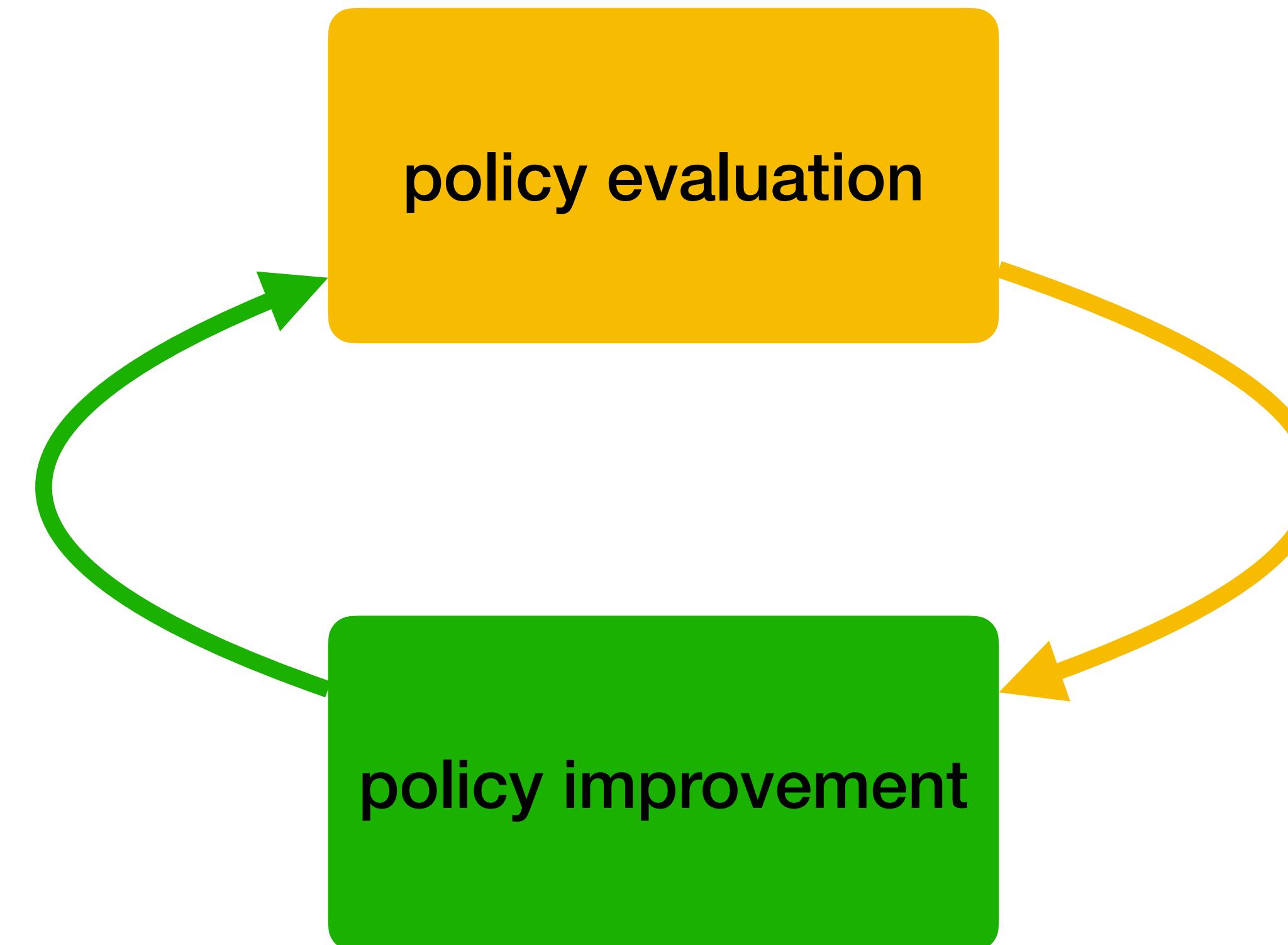
Policy improvement

- A value function suggests the **greedy policy**:

$$\pi(s) = \arg \max_a Q(s, a) = \arg \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$$

- The greedy policy **may not be the optimal policy** $\pi^* = \arg \max_{\pi} J_{\pi}$
 - ▶ But is the greedy policy always an **improvement**?
 - **Proposition:** the greedy policy for Q_{π} (value of π) is never worse than π
 - Corollary (**Bellman optimality**): if π is greedy for its value Q_{π} then it is optimal
 - ▶ In a finite MDP, the iteration $\pi \xrightarrow{\text{evaluate}} Q_{\pi} \xrightarrow{\text{greedy}} \pi$ **converges**, and then π is optimal

The RL scheme



Policy Iteration

- If we know the MDP (model-based), we can just alternate evaluate/greedy:

Algorithm Policy Iteration

Initialize some policy π

repeat

 Evaluate the policy $Q(s, a) \leftarrow \mathbb{E}_{\xi \sim p_\pi}[R|s_0 = s, a_0 = a]$

 Update to the greedy policy $\pi(s) \leftarrow \arg \max_a Q(s, a)$

- Upon convergence, $\pi = \pi^*$ and $Q = Q^*$

MF
 θ
DP
 π'
max

Value Iteration

- We can also alternate evaluate/greedy **inside the loop** over states:

Algorithm Value Iteration

Initialize some value function V

repeat

for each state s

 Update $V(s) \leftarrow \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')])$

- Must update each state **repeatedly** until convergence
- Upon convergence, $\pi^*(s) = \arg \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')])$

MF
 θ
DP
 π'
max

Generalized Policy Iteration

MF
 θ
DP
 π'
max

- We can even alternate in **any order** we wish:

$$V(s) \leftarrow \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')]]$$

$$\pi(s) \leftarrow \arg \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')])$$

- As long as each state gets each of the two update **without starvation**
 - ▶ The process will eventually **converge to V^* and π^***

Model-free reinforcement learning

- We can be **model-free** using MC policy evaluation:

Algorithm MC model-free RL

Initialize some policy π

repeat

 Initialize some value function Q

repeat to convergence

 Sample $\xi \sim p_\pi$

 Update $Q(s_t, a_t) \rightarrow R_{\geq t}(\xi)$ for all $t \geq 0$

$\pi(s) \leftarrow \arg \max_a Q(s, a)$ for all s

- On-policy policy evaluation in the inner loop – **very inefficient**

MF
 θ
DP
 π'
max

Off-policy model-free reinforcement learning

- Value iteration is **model-based**:
$$V(s) \leftarrow \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$$
- **Action-value** version:
$$Q(s, a) \leftarrow r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[\max_{a'} Q(s', a')]$$
- A **model-free** (data-driven) version – **Q-Learning**:

- ▶ On **off-policy** data (s, a, r, s') , update

$$Q(s, a) \rightarrow r + \gamma \max_{a'} Q(s', a')$$

MF

θ

DP

π'

max

[Watkins and Dayan, 1992]

Recap

- RL is a (policy evaluation \leftrightarrow policy improvement) loop
- Policy evaluation: model-based, Monte Carlo, or Temporal-Difference
 - ▶ Temporal-Difference exploits the sequential structure using dynamic programming
- TD can be off-policy by considering the action-value Q function
 - ▶ Off-policy data can be thrown out less often as the policy changes
- Policy improvement can be greedy
 - ▶ Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)
- Many approaches can be made differentiable for Deep RL