U CI University of
California, Irvine

CS 277: Control and

Reinforcement Learning
Winter 2026

Lecture 3: Temporal-Difference Methods

| o/;
Roy Fox L
. %\/\/ILL PREss &
Department of Computer Science LEVER |

FOR

School of Information and Computer Sciences I
University of California, Irvine ___/

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Logistics

e Quiz 2 due next Monday

e |Lots of resources on the website

_  Exercise 1 due Friday

 Will be updated with papers relevant to each lecture

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Today's lecture

Temporal Difference

Policy improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Basic RL concepts

« State: s € §; action: a € A; reward: r(s,a) € |
» Dynamics: p(s,,|$,, a,) for stochastic; s,, | = f(s,, a,) for deterministic

o MDP: A/ = (S,A,p)or(S,A,p,r)

environment

» Policy: n(a,|s,) for stochastic; a, = n(s,) for deterministic

Trajectory: p_(& = Sy, Ay, S1> A1y --.) = p(SO)HJZ'(Clt | s)p(s,.q 15, a,)

>0

_ Return: R(S) = Z y'r(s,a,) 0<y<l -

>0

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Example: Breakout

reward:

—
AN

+0

i1 =5 |

gl =5 |

AN

gl =5 |

+1 +0 +0

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Formulating reward: considerations

« We define (s, a), is that general enough?

« What if the reward depends on the next state §'?

~ If we only care about expected reward, define r(s, a) = E g5 4~ 7(S, a, 57)]

« What if the reward is a random variable r?

» Define r(s,a) = E[F]|s, a]

> |n practice we see 7 = don't just assume you know r(s,a) =7

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



RL objective: expected return

 We need a scalar to optimize

. Step 1: we have a whole sequence of rewards {r, = r(s,, a,) } ¢

Summarize as return R(&) = Z y'r(s, a,)

>0

>

« Step 2: R(&) is a random variable, induced by p_(€)

» Take expectation J, = k., [R(S)]

» J_can be calculated and optimized

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Policy evaluation: example

dish available o(s'| s, a) done
r(pick |available) = 1 \
r(available, pick) = 0 0.9 |

0.9 (1,3)
dish grasped —
0.1
p(dropped | available, pick) = 0.1 (1, =10)
dish dropped (as) F(S/ 2

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Policy evaluation: example

y =0.9

dish available done

0.9 (1,3)
dish grasped —

0.1 (1, —10)

p.(&)=1-09-1-0.9=0.81
RE=0+y-3=2.7

dish dropped

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Policy evaluation: example

y =0.9

dish available done

0.9 |

0.9 (1,3)
dish grasped —
0.1
0.1 g (1, -10)

p(E=1-01-1-1=0.1
RE) =0+y-(~=10) = -9

dish dropped

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Monte Carlo (MC) policy evaluation

~ Computing J. = 5Npﬂ[R(§)] — 2 p.(E)R(E) can be hard
S

> Exponentially many trajectories

» Model-based = requires p(s’| s, a), which may not be known

 Monte Carlo: estimate expectation using empirical mean

Jom— ) RED) &0 ~p,

> Model-free = can sample with rollouts, without knowing p

MF

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



MC: iterative computation

 \We can keep a running average RY of the first i returns

» Update: R(i) — ((l — I)R(i_l) + R(é(l)))% residual

/

> More generally: RV = (1 — a)R"™D + aR(EW) = RV 4 q(R(EW) — RVD)

1

» (IS a learning rate, exact average when it vanishes harmonically as n

» To simplify expressions, we denote this update: J — , R(&)

» Read: update J toward R(&) at rate o

MF

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Value function

. RL objective: maximize expected return J_ = [ Enp |R]
» We don't control s, can break down: J, = [E; _ [V, (so) | 5]
» with the value function V_(s) = e [R | 59 = 5]

» V () is the expected reward-to-go (= future return):

For any 1), define R, = 2 v hor(s,, a,)

>

121, future reward after being
/ in state s in time 7,
» T hen VJZ'(S) — _prﬂ[RZt() ‘ StO — S] H\x\z\

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



MC for value-function estimation

Algorithm MC for value-function estimation

Initialize V(s) < O forall s € S
repeat

Sample & ~ p,

Update V(sg) — R(&)

 Why not use the same samples for non-initial states?

Algorithm MC for value-function estimation (version 2)

Initialize V(s) < Oforall s € S
repeat
Sample & ~ p,
Update V(s;) — R>;(&) forallr > 0

MF

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



MC with function approximation

Algorithm MC with function approximation

Initialize Vy MF
» What if the state space is large? repeat r
Sample & ~ p;,
> Can't represent V(s) as a big table Descend on Ly = ¥,50(Rx(€) = Vo(s1))* I
» Won't have enough data to estimate each V(s) \

with tabular representation:
V(St) += — VV(St)g — ZG(RZZ(f) - V(St))

e Function approximation: represent Vg S — | same as in previous slide

» 0 € O, a parametric family of functions; for example, a neural network

 (Generalization over state space = data efficiency

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Today's lecture

Policy evaluation

Policy improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Policy evaluation: example

dish 1 available dish 2 available
(1,0) 0.9 1
0.9 (1,3)
dish grasped —
0.1
0.1 (1, —10)

dish dropped

# trajectories = exponential in # dishes

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



MC inefficiency

 The MC estimator is unbiased (correct expectation), but high variance

> Requires many samples to give good estimate

e But MC misses out on the sequential structure

 Example:
> Day 1: | take route 1 to work — ; | take route 2 home —
> Day 2: | take route 3 to work — ; | take route 4 home —

e Which route should | take to work?

> Route 1 = 50-minute daily commute, route 3 = 60-minute; is route 1 better?

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Dynamic Programming (DP)

 Dynamic Programming = remember reusable partial results

e \alue recursion:

V.(s)
break down sum of rewards

first reward only depends on a

s’ is a state, all that matters for R,

definition of V_(s')

[R|S():S]

—E~p,

= (als)~al 78> @) + YE (15 0yl

5an[r(so’ Clo) T }/RZI ‘ 50 = S] Richard Bellman

‘(a‘S)Nﬂ[V(S, a)+vy -5Npﬂ[R21 | 59 = 5, a5 = al]

'5Npﬂ[RZ1 ‘51 = s5']]]

_(a‘S)Nﬂ[r(Sa Cl) T 4 _(S/‘S’a)Np[V]Z'(S,)]]

[Bellman, 1956]

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Policy evaluation: example

Va($) = Bjonal (s, @) + YE 5150y pl Vals)]] V(done) = 0

y =0.9
dish available done ‘
V(available) = 1 - (0 + (0.9 - V(grasped) + 0.1 - V(dropped))) = —0.801
(1,0) 0.9 1
V(grasped)=1-3+y-(0.9-V(done) + 0.1 - V(dropped))) = 2.1

0.9 (1,3)
dish grasped —

0.1
0.1 (1, —10)

dish dropped V(dropped)=1-(-10+y-(l-V(done))) =—10

N ™~

n(clean | dropped) (dropped, clean) P(done|dropped, clean)

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



DP + MC: Temporal Difference (TD)

« Policy evaluation with DP: V () = = (als)~rl? (s,a) +y

> Drawback: model-based = need to know p \

« MC: V(s) = R, /(&), where S ~ p and s, = s
> Drawback: high variance

» Put together: V(s) = r+ yV(s')

_(S’\S,a)Np[Vyz(S 1]

recursion from s’ to s
= backward in time!

~ wheres =s,, r = r(s,,a,), and s' = s,, | in some trajectory
temporal difference
between V(s') and V()

> In other words: V(s) <« V(s) + a(r + yV(s') — V(s))

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Q function

» To approach V,_ when we update V(s) — r + yV(s’), we need on-policy data
> Roll out 7 to see transition (s, a) — s’ with reward r

 On-policy data is expensive: need more every time & changes

. Action-value function: Q_(s, a) = [R|sy=s,ay=al

—E~p,

» Compare: V (s) = E., [R|s) = 5] = E(4)5) O,(s, @]

+ Action-value backward recursion: Q(s, a) = (s, @) + YE 1 ap[ V(5D

» Broke down V (s) = E,15l7(s,a) +7 [ V_(s")]] into two parts DP

—(s'|s,a)~p

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



TD from off-policy data

e Backward recursion in two parts:

VE(S) — _(a‘s)Nyz-[Qyz(Sa Cl)] Qyz(Sa Cl) — I/'(S, Cl) T }/ _(S"S,a)Np[Vyz(S,)]

* This should hold in every state and action

> (s, a) can be sampled from any distribution p_. for any alternative z’

. Put together, we update QJ(s,a) — r+vy = (a Sf)N,,[Q(S ,a’)]

~ For any distribution of (s, @), giving reward r and following state s’ ~ p( - | s, a)
temporal difference

> In other words: Q(s,a) < Q(s,a) + a(r + yE ;1,11 a@')] —ﬁs, a))

MF

DP

ﬂ,

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



1D with function approximation

» With large state space: represent Vy : § = RorQy: S XA — |

» Instead of the update V(s) — r + yV(s') 3@3

» Descend on square loss &, = (r + yVi(s) — Vy(s))*

\ only learn VQ(S)

> On on-policy experience (s, a,r,s’) V4(s') is the target
= don't take its gradient!

. Instead of the update Q(s,a) - r+y = (] Sf)N,,[Q(S', a’)l

» Descend on square loss £y = (r+y = (4 S/)N,,[Qg(s', a’)] — Qy(s, Cl))z

\ only learn Q/(s, a)

Qs(s’, a’) is the target

. . /
» On off-policy experience (s, a, r, s’) ~, don't take its gradient!

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Today's lecture

Policy evaluation

Temporal Difference

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Special case: shortest path

» Deterministic dynamics: in state s, take action a to get to state s’ = f(s, a)

~ Example above: 5" = (s, dj.¢)

. Reward: (—1) in each step (until the goal Sy is reached)

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Shortest path: optimality principle

« Proposition: & is shortest from s to Sfthrough s’ = suffix of & is shortest from s’ to Sy

/

. Proof: otherwise, let £’ be a shorter path from s’ to S then take s —(’i s’ i St

» The proposition is “if” but not “only if’, because we don't know which s’ is best
|

> Try them all: for each a, try s" = f(s, a)

Sf

» Let V(s) be the shortest path length from s to s,

» For each candidate s’, the shortest path through itis 1 + V(s’) ¢ s

. Forall s # 55 we have V(s) = min(1 + V(f(s,a)))

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Bellman-Ford shortest path algorithm

, Foralls # S5 we have V(s) = min(1 + V(f(s,a)))

DP

Algorithm Bellman-Ford

V(S f) «— (
V(s) <« oo for each non-terminal state s
for | S| — 1 iterations

for each non-terminal state s ’

V(s) — mingea (1 +V(f(s,a))) _ _

. The optimal policy is 7(s) = arg min(1 + V(f(s, a)))

[Ford and Fulkerson, 1962]

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Policy improvement

* A value function suggests the greedy policy:

n(s) = arg max Q(s,a) = arg max(r(s,a) +y _(s’|s,a)~p[V(S,)])

d a

. The greedy policy may not be the optimal policy #* = arg max J
T

> But is the greedy policy always an improvement?

» Proposition: the greedy policy for Q. (value of x) is never worse than z

o Corollary (Bellman optimality): if z is greedy for its value O then it is optimal

- . . evaluate reed . .
. In a finite MDP, the iteration > Q7r J X T converges, and then x is optimal

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



The RL scheme

policy evaluation

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Policy lteration

e |f we know the MDP (model-based), we can just alternate evaluate/greedy: @p

W max

Initialize some policy n

repeat
Evaluate the policy Q (s, a) « Eg., _|R|so = s,a0 = a]
Update to the greedy policy n(s) « arg max, Q(s, a)

e Upon convergence, 7 = 7 and 0 = O*

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Value lteration

 We can also alternate evaluate/greedy inside the loop over states:

Algorithm Value Iteration

Initialize some value function V
repeat
for each state s
Update V(s) « max,(r(s,a)+y Ey5.0)~p [V (5)])

 Must update each state repeatedly until convergence

. Upon convergence, 77(s) = arg max(r(s, @) + yE 5 -, V(S) ]
d

DP

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Generalized Policy lteration

 \We can even alternate in any order we wish:

V(s) < _(a\S)Nﬂ[r(Sa a) +y "(S'\S,a)Np[V(S/)]]
n(s) « arg max(r(s,a) +y —(S/‘S,Q)NP[V(S’)])

A

* As long as each state gets each of the two update without starvation

» The process will eventually converge to V* and 7*

DP

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Model-free reinforcement learning

* \We can be model-free using MC policy evaluation:

Algorithm MC model-free RL

Initialize some policy
repeat
Initialize some value function Q
repeat to convergence
Sample & ~ p,
Update Q(s;,a;) = R>,(&) forallt > 0

(s) « argmax, Q(s,a) for all s

* On-policy policy evaluation in the inner loop — very inefficient

MF

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Off-policy model-free reinforcement learning

. Value iteration is model-based: V(s) « max(r(s,a) + yE s o)~ [ V(s)])
d

. Action-value version: 0(s,a) < r(s,a) +vy C (o) S,G)Np[max Q(s’,a’)]
a/

A model-free (data-driven) version — Q-Learning:

» On off-policy data (s, a, r, s’), update

O(s,a) > r+vy max O(s’,a’)

A

[Watkins and Dayan, 1992]

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



Recap

e RLisa( < policy improvement) loop

. model-based, Monte Carlo, or Temporal-Difference

> Temporal-Difference exploits the sequential structure using dynamic programming
 TD can be off-policy by considering the action-value Q function

> Off-policy data can be thrown out less often as the policy changes
e Policy iImprovement can be greedy

> Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)

 Many approaches can be made differentiable for Deep RL

Roy Fox | CS 277 | Winter 2026 | Lecture 3: Temporal-Difference Methods



