
Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

CS 277: Control and
Reinforcement Learning

Winter 2026
Lecture 4: Deep Q-Learning

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Logistics

assignments
• Exercise 1 due tomorrow

• Quiz 2 due next Monday

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Q function
• To approach when we update , we need on-policy data

‣ Roll out to see transition with reward

• On-policy data is expensive: need more every time changes

• Action-value function:

‣ Compare:

• Action-value backward recursion:

‣ Broke down into two parts

Vπ V(s) → r + γV(s′￼)

π (s, a) → s′￼ r

π

Qπ(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s] = 𝔼(a|s)∼π[Qπ(s, a)]

Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

MF

θ

DP

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

TD from off-policy data
• Backward recursion in two parts:

• This should hold in every state and action

‣ can be sampled from any distribution for any alternative

• Put together, we update

‣ For any distribution of , giving reward and following state

‣ In other words:

Vπ(s) = 𝔼(a|s)∼π[Qπ(s, a)] Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

(s, a) pπ′￼
π′￼

Q(s, a) → r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)]

(s, a) r s′￼ ∼ p(⋅ |s, a)

Q(s, a) ← Q(s, a) + α(r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)] − Q(s, a))
temporal difference

MF

θ

DP

π′￼

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

TD with function approximation

• With large state space: represent or

• Instead of the update

‣ Descend on square loss

‣ On on-policy experience

• Instead of the update

‣ Descend on square loss

‣ On off-policy experience

Vθ : S → ℝ Qθ : S × A → ℝ

V(s) → r + γV(s′￼)

ℒθ = (r + γVθ̄(s′￼) − Vθ(s))2

(s, a, r, s′￼)

Q(s, a) → r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)]

ℒθ = (r + γ𝔼(a′￼|s′￼)∼π[Qθ̄(s′￼, a′￼)] − Qθ(s, a))2

(s, a, r, s′￼)

only learn
 is the target

⇒ don't take its gradient!

Vθ(s)
Vθ̄(s′￼)

only learn
 is the target

⇒ don't take its gradient!

Qθ(s, a)
Qθ̄(s′￼, a′￼)

MF

θ

DP

π′￼

MF

θ

DP

π′￼

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Today's lecture

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Policy Improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Special case: shortest path

• Deterministic dynamics: in state , take action to get to state

‣ Example above:

• Reward: in each step (until the goal is reached)

s a s′￼ = f(s, a)

s′￼ = f(s, aleft)

(−1) sf

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Shortest path: optimality principle
• Proposition: is shortest from to through ⇒ suffix of is shortest from to

• Proof: otherwise, let be a shorter path from to , then take

• The proposition is “if” but not “only if”, because we don't know which is best

‣ Try them all: for each , try

• Let be the shortest path length from to

‣ For each candidate , the shortest path through it is

‣ For all , we have

ξ s sf s′￼ ξ s′￼ sf

ξ′￼ s′￼ sf s ξ s′￼

ξ′￼ sf

s′￼

a s′￼ = f(s, a)

V(s) s sf

s′￼ 1 + V(s′￼)

s ≠ sf V(s) = min
a

(1 + V(f(s, a)))

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Bellman-Ford shortest path algorithm

• For all , we have

• The optimal policy is

s ≠ sf V(s) = min
a

(1 + V(f(s, a)))

π(s) = arg min
a

(1 + V(f(s, a)))

<latexit sha1_base64="2ceCorMYHcOjntTPQ4ZjWLTwQYE=">AAAJk3iczVTbbtNAEHXLLQm3FsQTLyPqqI5ooiQC+oCQStugVqKibUhaqQ7WxtkkK9YX2Zs2wfVv8S9IvMJ3MOs4zq1IVStQ92VXszNzZs+cnabLmS+KxR8Li7du37l7L5XO3H/w8NHjpeUndd/peSatmQ53vOMm8SlnNq0JJjg9dj1KrCanR82vW/L+6JR6PnPsz2Lg0oZFOjZrM5MINBnLqU9ZvUk7zA4sZjOXdGh4YjaCYmH9tS5oX5yxluiGmZET4R3HY6JrhSc7DbSaxJV5gr0taDsenBLeo/l2zzalFagvmBUBXZCBmdJYFUTQYNdmghHOvlFQ65qfA71DhQ9FNcpKOAfVB53ZUFVl0CF1KRGZLEAcXyWWyzFW7zPQfWaBa+guk76JS81t4RalN4oIIBw41NA/F2Ws2YJx3Kndmq1wyjQyJGRlMv+FP9DiJkI5d7O4FDGXRoA4IMIhp2MsIfER/YawfIZmSAgmrus5/Sto1NBFlwpyZQa3qW/iCwFrUHWE75qEBx/DOC28w7ieZQQxeSFoMwRDHkY1DHuQ+1K+LsWXYfhCghN+NynnFrHzHxyvNe8rq4ifHymnPZbm1MXIjBpti8FQSpSYXbAdOy+ohwUSDr6IJOjLWMQL1PPqeb6kAkOPqJ1+mEG68aqCscHfYgGSnkxho6MREPlN3ocalF7Wtbbmr5EcMh1F6RW7hbkzyT5H+Czf/0TR+w5n5gB2R4++vIZ9x6LgDsPVWJ7zUq7IiSTJQqkl3gfIBJCEqgoqc0rp4QkcwjngnEUhS9foQKBx0RDB2SFzdzxKW4PJgiaaQbwOfpK+QSCGvhHTpC6H9ZWpj0b9eBKp9dkGjJQ7IdbshFonZvBYtJIjDby4Py/RTiyLRC3S/FXZk2HjolZhmzB4NQeNSNPZsaivw62xtFIsFKMF84dSfFhR4rVvLK3hL3N7Img5ppxCHrXpmelg3ZhXjrgxWBClL80mmz/Uy4XSm8Krg/LKxk4MlFKeKy8UTSkp68qGsqPsKzXFTH1P/Uz9Sv1OP0u/TW+mt4euiwtxzFNlaqX3/gAzMTcx</latexit>

Algorithm Bellman-Ford
+ (B 5) 0
+ (B) 1 for each non-terminal state B
for |(| � 1 iterations

for each non-terminal state B
+ (B) min02� (1 ++ (5 (B, 0)))

MF

θ

DP

π′￼

max

[Ford and Fulkerson, 1962]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Policy improvement
• A value function suggests the greedy policy:

• The greedy policy may not be the optimal policy

‣ But is the greedy policy always an improvement?

• Proposition: the greedy policy for (value of) is never worse than

• Corollary (Bellman optimality): if is greedy for its value then it is optimal

‣ In a finite MDP, the iteration converges, and then is optimal

π(s) = arg max
a

Q(s, a) = arg max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

π* = arg max
π

Jπ

Qπ π π

π Qπ

π evaluate Qπ
greedy π π

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

The RL scheme

policy evaluation

policy improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Policy Iteration

• If we know the MDP (model-based), we can just alternate evaluate/greedy:

• Upon convergence, and π = π* Q = Q*

<latexit sha1_base64="NXUHonx5Ea7TISsERDa9rT5s034=">AAAIOXiczZRNb9NAEIbdAnUJXy0cuYyoKzmiiZII6AmpUIJaCaS2IWmlOrU29iZZsf6QvWkTXF+4wj/il3Dkhrgi7szajtskRaAeUH3xanZm3vGzr7fjcxaKSuXr3Py16zcW1MWbhVu379y9t7R8vxV6g8CiTcvjXnDQISHlzKVNwQSnB35AidPhdL/zflPu7x/TIGSe+06MfNp2SM9lXWYRgSFzeeHXqtGhPeZGDnOZT3o0PrTaUaW8/tQQdChOmC36cWGcRHjPC5joO/HhVhujFvFln+jtJnS9AI4JH9BSd+BaMgo0FMxJhC7owCwZbAgiaLTtMsEIZx8oaC09LILRoyKEipZ0JZyDFoLBXGhosmiP+pSIwipAVt8gjs+x1hgyMELmgG8aPpO5eUrTt/GVtDcrKCA82NMxv5h0bLqCcXxT156ecCI0DuSwCoX/wg/07BChVrxaLEXG0oxQB0ScMj3TElIf1a8I5RMMQw6Y+H7gDS/hUdMQfSrIpQm+oqGFXwg4g2agfN8iPHoTZ23hOdYNHDPK4MWgTwGGEoxnSM+geFS7EohfUs4d4pZee4H9F6CJfbpn/pzcGcfRqV0xSg1FidUH13NLggY4JeEQisSIYVKMmpF22jgtVTVgmJKcaphix706Vkd/rAbID2dCHjPNiMj/5UWsQ/VxS+/q4RopIvLsROuujd1RP19cAv6/sL8QfU5+x+PMGsH2+MNn8+Uks2YOPYeCnxZrqU/Hls6J1OXFJFmh4/LcXeQAJAdVR4NOGD4+hD04Bbxu0c8yNVkQaKPC9FWCN4hs3QsotUfnpzl3EiTo4a8yNAlkynLS1O+zxKeBT/E2l1Yq5UrywOyimi1WlOzZMZfW0AL+QES2Z8njCqhLTyzPQa/bkfwRz7SipH11utnsolUrV5+Vn+zWVja2MqFF5aHySNGVqrKubChbyo7SVCzVUD+qn9TP6hf1m/pd/ZGmzs9lNQ+UiUf9+RuV/MJS</latexit>

Algorithm Policy Iteration
Initialize some policy c
repeat

Evaluate the policy&(B, 0) Eb⇠?c [' |B0 = B, 00 = 0]
Update to the greedy policy c(B) arg max0 &(B, 0)

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Value Iteration

• We can also alternate evaluate/greedy inside the loop over states:

• Must update each state repeatedly until convergence

• Upon convergence, π*(s) = arg max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

<latexit sha1_base64="DGEtv0mwYqt1UtSPgerVWBQkTNg=">AAAJlHiczZRLb9NAEMfd8krCqwWJC5cRdVVHNFESAb2AVChBrQQobUhaqQ7WxtkkK9YP2Zs2wfXn4rNw4Apfg1nHcZ4VVZGge/Fqdh67v/l7mi5nvigUvi8tX7t+4+atVDpz+87de/dXVh/UfafnmbRmOtzxjprEp5zZtCaY4PTI9SixmpweNr/syPPDE+r5zLE/iYFLGxbp2KzNTCLQZKymKut6k3aYHVjMZi7p0PDYbASF/NZzXdC+OGUt0Q0zIyfCO47HRNcKj3cbaDWJK/MEH3ag7XhwQniP5to925RWoL5gVlRoQQZmSmNVEEGDPZsJRjj7SkGta34W9A4VPhTUKCvhHFQfdGZDVZVBB9SlRGTWAeL4KrFcjrF6n4HuMwtcQ3eZ9E1cam4LP1F6o4AFhAMHGvpno4w1WzCOX2q3Zm84ZRoZEliZzD/hB1rcRChlrxZLEbM0AqwDIhwyHdcSsj5WvyKUT9EMCWDiup7Tv4RGDV10qSCXJviW+ia+EPAOqo7luybhwfswTguvMK5nGUEMLwRtBjDkYHSHYQ+yn0tXAvEbyrlF7Nw7x2v9AWgkn/ZYn9MnIzsqtS0GQ0FRYnbBduycoB7eknDwRSREPwrGmoF6Vj3LFVVg6BJ11R9ix7MyRgfnRgMkzZkqj55GQOT/8jrUoPi0rrU1f5NkEXnc0bLdwuxYP9n8L/gVhzNzAHujt19c0b5jUXCH4Wos1nlhl+V8kshQeIn3PuIAkvAqo06ndB8ewwGcAU5dlLV0jTYEGotGCk4SmbvjUdoaTF5ooiPE6+Av0zcIxKX/VvgXQb+QfAK+Luf2JPdF2M+hHs388UhS6/icEfoJ4U5odUKqE5N4rFjJRgMv7stTtBPLIlFrNH9D9mLYsKhF2B4M3shCIxL0WM8x0XmgszxncBora4V8IVowvynGmzUlXhVjZRP/LrcngpZjym541KanpoNXxrxyxo1rBVH64myy+U29lC++yD/bL61t78aFUspj5YmiKUVlS9lWdpWKUlPM1LfUj9TP1K/0o/TL9E66PHRdXopjHipTK/3xNwxSN2A=</latexit>

Algorithm Value Iteration
Initialize some value function +
repeat

for each state B
Update+ (B) max0 (A (B, 0)+WE(B0 |B,0)⇠? [+ (B0)])

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Generalized Policy Iteration

• We can even alternate in any order we wish:

• As long as each state gets each of the two update without starvation

‣ The process will eventually converge to and

V(s) ← 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)]]
π(s) ← arg max

a
(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

V* π*

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Model-free reinforcement learning
• We can be model-free using MC policy evaluation:

• On-policy policy evaluation in the inner loop — very inefficient

• We could also do this with function approximation

<latexit sha1_base64="TTD5tOCEvk/iNY53ngDh8yYGqAQ=">AAALYniczVVbTxNBFF7whlsvII8acyJL2AbatETlyQTFGkgw4WILCVs30+20nTg7u9mdQnHpo7/GV/0xvvtDPLO7vUMgmCj7spMz5zbf982Zms9ZKAuFX1PTt27fuXtv5r6eefDw0ePZuSeV0GsHDi07HveCwxoJKWeCliWTnB76ASVujdOD2pcNtX9wTIOQeeKTPPVp1SVNwRrMIRJN9pz+fNGq0SYTkcsE80mTdo+calTIr72yJO3IE1aXra7ecyK86QVMttzu0WYVrQ7xVZ7o4wY0vACOCW/TXKMtHGUFGkrmxoXOycAcZdyXRNJoSzDJCGdfKRgVM8yC1aQyhIIRZyWcgxGCxQTsGypoj/qUSH0RII3fJ67PMdbqMLBC5oJvWz5Tvn2Xsl/HX5zeLmAB6cGeif7ZOGNZSMbxT0V9vMMRU8/QB0vX/wl+YKYkwmr2ZmEpUyztCOuA7CaYDmpJVR+r3xCUT9AMfYCJ7wde5xoatS3ZopJcG8H3NHTwhIA9GBaWbzmER9vdNC28wbi2a0cpeF0wxwCGHPR6SDjIfl69ERC/o5y7ROQ+eEH9EkBj+TQG+hzd6dlRqQ15mgiKEqcFwhM5SQPsknAIZSzEMA7GmpFxtn+WKxrA0CVmNUxgx70SRkcXRgP0yRkpj552RNR9eds1obhcMRtmuEKyCHnKaEnUMTvW7y/+F/g7HmfOKWz1zn51RYeeS8FPwo1UrJPCLqn5pCBD4fW9dxEOIH28SqjTEd13j2APzgCnLspaucYLAtXzRgpOEpW7GVBaPx1uaIgREjTxynRsAmnpGyH8ihrd14Y+HvyDuWRUxgno6fcCyQ5N5IFyFUYmBCk/y2gnrktiisxwSXGSEBdThTRh8FIWqpPC/gtsrwLtucgOD23Xq1Oea6AoYG970l91ciVJ9wDtw3YZDbsYhM5JWKTU6XgCX+ImFQ5VW5fP/HNI2lUjW12Eq7+dmCMhYTCkLrsUQ8+9OnoSPknhOINjBNqzC4V8If5gclFMFwta+u3Ysys4K/22jOqeo/gPqKAnjofCw7zqxRrUiuL0xfFkk4vKar74Ov9yd3VhfTMtNKM91V5oplbU1rR1bVPb0cqao3/Tv+s/9J/674yemcvMJ67TU2nMvDbyZZ79AWn11aw=</latexit>

Algorithm MC model-free RL
Initialize some policy c
repeat

Initialize some value function &
repeat to convergence

Sample b ⇠ ?c
Update &(BC , 0C) ! '�C (b) for all C � 0

c(B) arg max0 &(B, 0) for all B

MF

θ

DP

π′￼

max

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Off-policy model-free reinforcement learning

• Value iteration is model-based:

• Action-value version:

• A model-free (data-driven) version — Q-Learning:

‣ On off-policy data , update

V(s) ← max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

Q(s, a) ← r(s, a) + γ𝔼(s′￼|s,a)∼p[max
a′￼

Q(s′￼, a′￼)]

(s, a, r, s′￼)

Q(s, a) → r + γ max
a′￼

Q(s′￼, a′￼)

MF

θ

DP

π′￼

max

[Watkins and Dayan, 1992]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Recap
• RL is a (policy evaluation ↔ policy improvement) loop

• Policy evaluation: model-based, Monte Carlo, or Temporal-Difference

‣ Temporal-Difference exploits the sequential structure using dynamic programming

• TD can be off-policy by considering the action-value Q function

‣ Off-policy data can be thrown out less often as the policy changes

• Policy improvement can be greedy

‣ Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)

• Many approaches can be made differentiable for Deep RL

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Today's lecture

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Policy Improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Fitted Value-Iteration (FVI)

• Fitted Value-Iteration (FVI):

‣ For some state distribution

‣ Can use losses other than square

θi+1 ← arg min
θ

𝔼s∼μ[(max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[Vθi(s′￼)]) − Vθ(s))2]

μ

MF

θ

DP

π′￼

max

<latexit sha1_base64="DGEtv0mwYqt1UtSPgerVWBQkTNg=">AAAJlHiczZRLb9NAEMfd8krCqwWJC5cRdVVHNFESAb2AVChBrQQobUhaqQ7WxtkkK9YP2Zs2wfXn4rNw4Apfg1nHcZ4VVZGge/Fqdh67v/l7mi5nvigUvi8tX7t+4+atVDpz+87de/dXVh/UfafnmbRmOtzxjprEp5zZtCaY4PTI9SixmpweNr/syPPDE+r5zLE/iYFLGxbp2KzNTCLQZKymKut6k3aYHVjMZi7p0PDYbASF/NZzXdC+OGUt0Q0zIyfCO47HRNcKj3cbaDWJK/MEH3ag7XhwQniP5to925RWoL5gVlRoQQZmSmNVEEGDPZsJRjj7SkGta34W9A4VPhTUKCvhHFQfdGZDVZVBB9SlRGTWAeL4KrFcjrF6n4HuMwtcQ3eZ9E1cam4LP1F6o4AFhAMHGvpno4w1WzCOX2q3Zm84ZRoZEliZzD/hB1rcRChlrxZLEbM0AqwDIhwyHdcSsj5WvyKUT9EMCWDiup7Tv4RGDV10qSCXJviW+ia+EPAOqo7luybhwfswTguvMK5nGUEMLwRtBjDkYHSHYQ+yn0tXAvEbyrlF7Nw7x2v9AWgkn/ZYn9MnIzsqtS0GQ0FRYnbBduycoB7eknDwRSREPwrGmoF6Vj3LFVVg6BJ11R9ix7MyRgfnRgMkzZkqj55GQOT/8jrUoPi0rrU1f5NkEXnc0bLdwuxYP9n8L/gVhzNzAHujt19c0b5jUXCH4Wos1nlhl+V8kshQeIn3PuIAkvAqo06ndB8ewwGcAU5dlLV0jTYEGotGCk4SmbvjUdoaTF5ooiPE6+Av0zcIxKX/VvgXQb+QfAK+Luf2JPdF2M+hHs388UhS6/icEfoJ4U5odUKqE5N4rFjJRgMv7stTtBPLIlFrNH9D9mLYsKhF2B4M3shCIxL0WM8x0XmgszxncBora4V8IVowvynGmzUlXhVjZRP/LrcngpZjym541KanpoNXxrxyxo1rBVH64myy+U29lC++yD/bL61t78aFUspj5YmiKUVlS9lWdpWKUlPM1LfUj9TP1K/0o/TL9E66PHRdXopjHipTK/3xNwxSN2A=</latexit>

Algorithm Value Iteration
Initialize some value function +
repeat

for each state B
Update+ (B) max0 (A (B, 0)+WE(B0 |B,0)⇠? [+ (B0)])

square error

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Fitted Q-Iteration (FQI)

• Fitted Value-Iteration (FVI):

• Action-value iteration:

• Fitted Q-Iteration (FQI):

‣ For some state-action distribution

θi+1 ← arg min
θ

𝔼s∼μ[(max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[Vθi(s′￼)]) − Vθ(s))2]

Q(s, a) ← r(s, a) + γ𝔼(s′￼|s,a)∼p[max
a′￼

Q(s′￼, a′￼)]

θi+1 ← arg min
θ

𝔼(s,a)∼μ[(r(s, a) + γ𝔼(s′￼|s,a)∼p[max
a′￼

Qθi(s′￼, a′￼)]) − Qθ(s, a))2]

μ

MF

θ

DP

π′￼

max

MF

θ

DP

π′￼

max

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

<latexit sha1_base64="Dh5J4Qw7EmT3dT7CY1s1Sa0A0Dk=">AAAI13ictVVbbxtFFN62QBZzS+GRlyOyi2OwIyei9AmpqGlIpQrqNm6LOsGanT22R92bZsZJzWrhDfGK+HX8FZ44s7ve2LFTtQjmxbMz53zn8n1zHGSR1Kbf/+va9Rtvvf3Olvtu6733P/jwo+2bHz/R6UwJHIo0StWzgGuMZIJDI02EzzKFPA4ifBq8uGvvn56h0jJNTsw8w9OYTxI5loIbOhrd3PqTBTiRSR7LRGZ8gsVzcZr3927fYgZfmnMZmmnRqm14NEmVNNO4eH582mKCZxYkH/QeIFeJTCbrllLQ2WPDDeb3E2kkj+TPCN7Aa449DWyCRnugUKMBbU/p9hFmyE0LoLY74S8QdBojcGHDgscJpLl+hALlGRLIOVcheGr58odAo6LLhEqqAoCn28sWwywsTwe7ugu8A8ykUNciqL3amtql4HPQ7bI3ORhU1DYeFcBYc/8llcPjmAOL+ctRztsFEGibUNsdcq5cUzNFdS41VrgMk7COs5zUxtaAHJfJN9G7gJG2BVXGUBbGhomRUasEXiVj5aT+bshvtfzX0YO/URB+o4jHPCbxJpOelWYIR9IY+hn07lPOpfA2QNjk/A1SYdQqY6n2F5LwmwaVcUgQEHAjpuDtsjMUuS66UG54QURqGRMVMwvQ+B0hpUMM090s4iZV9oOat4qjFji6aHdW/A9RC+obJRdzMxU8yh8UoypR+AYW3pelUOdkBUEfAVd55VIUi7zbTeKklR6ZVQYbyur8dFC2pKLZX+fZv0y0/78wfTj4/s257IJVs7fcglq7S2S/cjr47ChV97iY5jKxmqomgjaYFevy8HitAsy0jNLE600UCWAOYyLea5pMD5+JMDWrVH9HQS9mCnBiPb1qmlx4fRuSeTlKuqCoXNKPlZjCLOJzCGbjMVJodjc/LLwNGV8l53qzIkz4BdZxvPlILlq6MsX8ekzRtR1kI7lplC0ZbZpml8VrYa4cb/76fHuzdzQvXvkS6ofQQCL9283BO6Eky1QMV9SGovBKdejXkd5/MX99di8JSaP/6mmOtnf6e/1ywfpmv97sOPV6ONruMplkM5OHKeG3mMIEz0VKvBGuLewiWF7C718GW988Odjb/3rvq8HBzp3jOpDrfOp85uw6+85t545z7Dx0ho7Y+tsFt+N+4f7o/ur+5v5emV6/Vvt84qws949/AH3N8Fw=</latexit>

Algorithm Q-Learning

Initialize &
B reset state

repeat
Take some action 0
Receive reward A
Observe next state B0

Update&(B, 0) !
(
A B0 terminal

A + W max00 &(B0, 00) otherwise

B reset state if B0 terminal, else B B0

Q-Learning
MF

θ

DP

π′￼

max

[Watkins and Dayan, 1992]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

• FQI can be model-free by sampling from

‣ We can sample using environment interaction with some , if

‣ Or sample using a simulator we can reset to any state

‣ Anyway, this is off-policy from the greedy policy

p

π′￼ μ = pπ′￼

s ∼ μ

arg max
a

Qθ(s, a)
<latexit sha1_base64="4TJ00/wbZfeHlX1q8xELw3qvWX0=">AAAI33icrVVLb9tGEGbcR1j15aTHXgY1U1moZEhG05wKpIjjJkDQRomVBAgdYbkcSYuQS2J3ZUcl2GtvRa9Ff1n/TWdJijIltXaD7EXL2Xl/34yCNBLa9Pt/X9t57/0PPrzuftT6+JNPP/t898bNZzqZK44jnkSJehEwjZGQODLCRPgiVcjiIMLnwet79v35GSotEnliFimexmwqxURwZkg0vnH9r1t+gFMhs1hIkbIp5i/5adY/uHPbN/jGnIvQzPLWUolF00QJM4vzlw9OScpZav1kw94jZEoKOd2iK7gVPjXMYPZQCiNYJH5B8IbeSu5p8KdotAcKNRrQVmqfn2CKzLRuAVSaJ+w1gk5iBMZtbPCY9VO/P0GO4gzJzzlTIXiq8fpzoFHRq6TayiDg6XZDZZSGhXi4r7vAOuCbBKqSOHVaF7r2KPgadHssikZlYFBRD1mUg++vVL6hulgcM/Bj9macsXYO5LhNntsdsi9tEzNDdS40Vr59lGEVrJHa1i6BmBQ11Al0ASNt6yqVoazPH0kjIvq1vtewaYiWgpoQrdZVKLKVITVBnrKY6CynPUvWEI6FMfQz7D2kpAsqbjqwqW1hjU+9MhbyJTXq7hQxiBYQMMNn4O37Z8gznXehuLCcsNQiJiTmZF6bHSNlQhjT0zxiJlH2gxrXdKOWbnTe7lw0P0LNqV2UWMzMjLMoe5SPyyThe1gar/OgysiygT4CprLSJM+XWbfrtIkoPVIrFbYU1Xl1aNtR4rsJ7zq66+C+kwVwNPzpf0x+hWEXLIm9i+VXlK1BvnQ/HCfqPuOzTEjLpHIjaIPpxbGpiOGxCn9MtYgS6fWmirBfwIQw9+oG09T7PExMpzF6P1LQ1UoBRognl++SH0JSL/ZIFxSVS9Sx7FKYRmwBwXwyQQrt38uOmoNeZfxvRK4uDU7Cr7Dpx1uMxbKlW1cYPV++xEhp2xpbJ65183Z77SoztMj/cwrKIVi5RPrXW4B3QkkWqRimqA157hXs0Feh3rtZu/dlSBx9q7073t3rH/SLA5uXQXXZc6rzeLzb9YVM5yYLE27XtkKJ5zwh3MivLWwVLCvcD9adbV6eHR4Mvjv4dni4d/e4CuQ6XzpfOfvOwLnj3HUeOI+dkcPdHXffHbiHLnN/c393/yhVd65VNl84jeP++Q+AL/FR</latexit>

Algorithm Sampling-based Fitted Q-Iteration
Initialize \
repeat

Sample a batch (ÆB, Æ0) ⇠ `
Feed to simulator to get batch (ÆA, ÆB0)
Descend L\ = (ÆA + W maxÆ00 &\̄ (ÆB0, Æ00) �&\ (ÆB, Æ0))2

Sampling-based Fitted Q-Iteration
MF

θ

DP

π′￼

max

[Munos and Szepesvári, 2008]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Today's lecture

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Policy Improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Experience policy

• Which distribution should the training data have?

‣ The policy may not be good on other distributions / unsupported states

‣ ⇒ ideally, the test distribution for the final

• On-policy methods (e.g. MC): must use on-policy data (from the current

• Off-policy methods (e.g. Q) can use different policy (or even non-trajectories)

‣ But both should eventually use or suffer train–test distribution mismatch

pπ π

π)

pπ

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Exploration policies
• Example: I tried route 1: {40, 20, 30}; route 2: {30, 25, 40}

‣ Suppose route 1 really has expected time 30min, should you commit to it forever?

• To avoid overfitting, we must try all actions infinitely often

• -greedy exploration: select uniform action with prob. , otherwise greedy

• Boltzmann exploration:

‣ Becomes uniform as the inverse temperature , greedy as

ϵ ϵ

π(a |s) = soft max
a

(Q(s, a); β) =
exp(βQ(s, a))

∑ā exp(βQ(s, ā))

β → 0 β → ∞

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Experience replay
• On-policy methods are inefficient: throw out all data with each policy update

• Off-policy methods can keep the data = experience replay

‣ Replay buffer: dataset of past experience

‣ Diversifies the experience (beyond current trajectory)

• Variants differ on

‣ How often to add data vs. sample data

‣ How to sample from the buffer

‣ When to evict data from the buffer, and which

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Why use target network?
• Fitted-Q loss:

• Target network = lagging copy of

‣ Periodic update: every steps

‣ Exponential update:

• is more stable

‣ Less of a moving target

‣ Less sensitive to data ⇒ less variance

• But introduces bias

ℒθ = (r + γ max
a′￼

Qθ̄(s′￼, a′￼) − Qθ(s, a))2

Qθ(s, a)

θ̄ ← θ Ttarget

θ̄ ← (1 − η)θ̄ + ηθ

Qθ̄

θ̄ ≠ θ

no gradient from the target term

Qθ(s, a)

r + γ max
a′￼

Qθ̄(s′￼, a′￼)

square lossupdate

s′￼

s

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Putting it all together: DQN

policy evaluation

policy improvement

fitted-Q loss
ℒθ = (r + γ max

a′￼

Qθ̄(s′￼, a′￼) − Qθ(s, a))2

greedy policy
π(s) = arg max

a
Q(s, a)

exploration
e.g. -greedyϵ

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

<latexit sha1_base64="ivZhiA3FiKZDfZXNKOLLTQwENgo=">AAAI13icrVVLb9tGEGYerVn15STHXgY1U1mtZMhGHqcCKeI4CRC0UWIlKUJXWC5H0iLkkthd2VEJIrei16K/Ln+lp86SFFVKcpCg2YuWs7PfPL5vR0EaCW36/bcXLl66/MmnW+5nrc+/+PKrr7evXH2mk5niOORJlKgXAdMYCYlDI0yEL1KFLA4ifB68umvPn5+i0iKRx2ae4knMJlKMBWeGTKMrW39f9wOcCJnFQoqUTTB/yU+y/t7tm77B1+ZMhGaatxZOLJokSphpnL98cEJWzlKLkw16j5ApKeRkg6/g1vjUMIPZQymMYJH4HcEbeEu7p8GfoNEeKNRoQFurPX6CKTLTug5QeR6zVwg6iREYt7HBYxanPn+CHMUpEs4ZUyF4qnH6S6BR0amk2sog4Ol2w2WYhoV5sKu7wDrgmwSqkjh1Whe+din4DnS7aFMGBhV1kEU5+P7S4QeqisUxAz9mr0cZa+dAsG3CbXfodnk3MVNUZ0JjheyjDKtQjcQ29gjEuKigTqALGGlbVekMZXX+UBoR0a/FXmGmYVoYajm0Wh9FIU9ZTHqWk55VawhHwhj6GfQeUt6FFj9AOD41zBSsr8ujiEPagIAZPgVv1z9Fnum8C8WG5USoFjERMms09wgpHWKazmYRM4myH9TAJo5a4Oi83WncP0TNqW+UXMzMlLMoe5SPykThR1jcXhVElZOVBX0ETGXllTxf5N2uEyfF9MitdNhQVue3g//L9PsQvZHnmubDwc/rLjb4+TR2wYrZ+2/1lXRrnt89JPyjRN1jfJoJacVUTgVtMM1bq7LwWMU+plpEifR6E0XEz2FMhHt1c+nh+zxMjKW4hrhPEZdDBRiRnZw3TepLP4XkXQySLiiqlFRjhaUwjdgcgtl4jBTYv5sd5t56uudpuNo01FgVtorkzUdi0c7GEKtGFJ3aKTYSm+bY0mfTIFtVrEU5d7KtD7YPejrz/J3iL7VfIyL95c3BO6YMizwMU9SBPPcKWej3UNzHGLr+PRmSNFvrL3H1Ia68w9H2Tn+vXyxY3+xXmx2nWo9H211fyHRmsjDh9hkrlHjGE+KLcG1Ny1hZAb+/Cra+eXawt39r78bgYOfOURXIdb5xvnV2nX3ntnPHeeA8doYO3/rHBbfjfu/+6r5x/3D/LF0vXqjuXHMay/3rXxLv8RI=</latexit>

Algorithm DQN
Initialize \, set \̄ \

B reset state
for each interaction step

Sample 0 ⇠ n-greedy for &\ (B, ·)
Get reward A and observe next state B

0

Add (B, 0, A, B0) to replay buffer D
Sample batch (ÆB, Æ0, ÆA, ÆB0) ⇠ D

H8
(
A8 B

0
8
terminal

A8 + W max00 &\̄
(B0

8
, 0
0) otherwise

Descend L\ = (ÆH �&\ (ÆB, Æ0))2

every)target steps, set \̄ \

B reset state if B0 terminal, else B B
0

Deep Q-Learning (DQN)
MF

θ

DP

π′￼

max

[Mnih et al., 2015]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Today's lecture

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Policy Improvement

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Value estimation bias
• Q-value estimation is optimistically biased

• Jensen's inequality: for a random vector

• While there's uncertainty in , is positively biased

• So how can this converge?

‣ As certainty increases, the bias of each update decreases

‣ Existing bias attenuates with repeated discounting by

Q

𝔼[max
a

Qa] ≥ max
a

𝔼[Qa]

Qθ̄ max
a′￼

Qθ̄(s′￼, a′￼)

γ

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Double Q-Learning
• Idea: keep two value estimates and

‣ Update:

• How to use this with DQN?

• Idea 1: use target network as the other estimate

• Idea 2: Clipped Double Q-Learning

Q1 Q2

Qi(s, a) → r + γQ−i(s′￼, arg max
a′￼

Qi(s′￼, a′￼))

Qθi
(s, a) → r + γ min

i=1,2
Qθ̄i

(s′￼, arg max
a′￼

Qθi
(s′￼, a′￼))

 = the other−i

Qθ(s, a)

r + γQθ̄(s′￼, arg max
a′￼

Qθ(s′￼, a′￼))

square loss

[van Hasselt, 2010]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Prioritized Experience Replay

• Bellman error (= TD error):

‣ Optimality: ; that's why we usually descend the square loss

• Experience with high error ⇒ more important to see

• Prioritized Experience Replay:

‣ Sample instance with prob. ; e.g.

‣ Update with Importance Sampling (IS) weight ; e.g.

• is computed during the updates; new experience is weighted

δ(s, a, r, s′￼) = r + γ max
a′￼

Q(s′￼, a′￼) − Q(s, a)

δ ≡ 0 δ2

i pi ∝ δω
i ω = 0.6

(m ⋅ pi)−β β = 0.4

δ max
i

δω
i

[Schaul et al., 2016]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Dueling Networks
• Advantage function:

• can be more consistent across states with similar effect of actions

‣ Even if their value is very different

• is a scalar, which can be easier to learn

• Issue: is underdetermined

‣ Stabilize with

Aπ(s, a) = Qπ(s, a) − Vπ(s)

Aπ(s, a)

Vπ(s)

Vπ(s)

Q = (V + c) + (A − c)

Q(s, a) = V(s) + (A(s, a) − mean
ā

A(s, ā))

s

s

Qθ(s, ⋅)

Vθ(s)

Aθ(s, ⋅)

Qθ(s, ⋅)

[Wang et al., 2016]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Multi-step Q Learning

• MC is high variance but unbiased:

• TD is lower variance but biased:

‣ Because isn't really the next-step value, while still learning

• Let's trade them off, -step Q-Learning:

Q(st, at) → R≥t = ∑
t′￼≥t

γt′￼−trt′￼

Q(st, at) → rt + γ max
at+1

Q(st+1, at+1)

max
at+1

Q(st+1, at+1)

n

Q(st, at) → rt + γrt+1 + ⋯ + γn−1rt+n−1 + γn max
at+n

Q(st+n, at+n)

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Rainbow DQN

• Rainbow DQN = DQN + a powerful combination of tricks

‣ Double Q-Learning

‣ Prioritized Experience Replay

‣ Dueling Networks

‣ Multi-step Q-Learning

‣ Distributional RL

‣ Noisy Nets

[Hessel et al., 2018]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Recap

• RL algorithms can be implemented with function approximation

• There are (at least) 2 important policies

‣ The learner policy — should be the best possible (e.g. greedy)

‣ The experience policy — should explore (e.g. -greedy)

• Replay buffer: store data for longer (off-policy), diversify

• Target network: reduce variance, stabilize the target

• In practice, add lots of tricks and heuristics to the theory

ϵ

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Logistics

assignments
• Exercise 1 due tomorrow

• Quiz 2 due next Monday

