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Logistics

assignments
• Exercise 1 due tomorrow


• Quiz 2 due next Monday
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Q function
• To approach  when we update , we need on-policy data


‣ Roll out  to see transition  with reward 


• On-policy data is expensive: need more every time  changes


• Action-value function: 


‣ Compare: 


• Action-value backward recursion: 


‣ Broke down  into two parts

Vπ V(s) → r + γV(s′￼)

π (s, a) → s′￼ r

π

Qπ(s, a) = 𝔼ξ∼pπ
[R |s0 = s, a0 = a]

Vπ(s) = 𝔼ξ∼pπ
[R |s0 = s] = 𝔼(a|s)∼π[Qπ(s, a)]

Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

Vπ(s) = 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]]

MF

θ

DP
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TD from off-policy data
• Backward recursion in two parts:


 


• This should hold in every state and action


‣  can be sampled from any distribution  for any alternative 


• Put together, we update 


‣ For any distribution of , giving reward  and following state 


‣ In other words: 

Vπ(s) = 𝔼(a|s)∼π[Qπ(s, a)] Qπ(s, a) = r(s, a) + γ𝔼(s′￼|s,a)∼p[Vπ(s′￼)]

(s, a) pπ′￼
π′￼

Q(s, a) → r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)]

(s, a) r s′￼ ∼ p( ⋅ |s, a)

Q(s, a) ← Q(s, a) + α(r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)] − Q(s, a))
temporal difference

MF

θ

DP

π′￼
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TD with function approximation

• With large state space: represent  or 


• Instead of the update 


‣ Descend on square loss 


‣ On on-policy experience 


• Instead of the update 


‣ Descend on square loss 


‣ On off-policy experience 

Vθ : S → ℝ Qθ : S × A → ℝ

V(s) → r + γV(s′￼)

ℒθ = (r + γVθ̄(s′￼) − Vθ(s))2

(s, a, r, s′￼)

Q(s, a) → r + γ𝔼(a′￼|s′￼)∼π[Q(s′￼, a′￼)]

ℒθ = (r + γ𝔼(a′￼|s′￼)∼π[Qθ̄(s′￼, a′￼)] − Qθ(s, a))2

(s, a, r, s′￼)

only learn  
 is the target 

⇒ don't take its gradient!

Vθ(s)
Vθ̄(s′￼)

only learn  
 is the target 

⇒ don't take its gradient!

Qθ(s, a)
Qθ̄(s′￼, a′￼)

MF

θ

DP

π′￼

MF

θ

DP

π′￼
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Today's lecture

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Policy Improvement
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Special case: shortest path

• Deterministic dynamics: in state , take action  to get to state 


‣ Example above: 


• Reward:  in each step (until the goal  is reached)

s a s′￼ = f(s, a)

s′￼ = f(s, aleft)

(−1) sf
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Shortest path: optimality principle
• Proposition:  is shortest from  to  through  ⇒ suffix of  is shortest from  to 


• Proof: otherwise, let  be a shorter path from  to , then take  


• The proposition is “if” but not “only if”, because we don't know which  is best


‣ Try them all: for each , try 


• Let  be the shortest path length from  to 


‣ For each candidate , the shortest path through it is 


‣ For all , we have 

ξ s sf s′￼ ξ s′￼ sf

ξ′￼ s′￼ sf s ξ s′￼

ξ′￼ sf

s′￼

a s′￼ = f(s, a)

V(s) s sf

s′￼ 1 + V(s′￼)

s ≠ sf V(s) = min
a

(1 + V( f(s, a)))
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Bellman-Ford shortest path algorithm

• For all , we have 


• The optimal policy is 

s ≠ sf V(s) = min
a

(1 + V( f(s, a)))

π(s) = arg min
a

(1 + V( f(s, a)))

<latexit sha1_base64="2ceCorMYHcOjntTPQ4ZjWLTwQYE="></latexit>

Algorithm Bellman-Ford
+ (B 5 )  0
+ (B)  1 for each non-terminal state B
for |( | � 1 iterations

for each non-terminal state B
+ (B)  min02� (1 ++ ( 5 (B, 0)))

MF

θ

DP

π′￼

max

[Ford and Fulkerson, 1962]
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Policy improvement
• A value function suggests the greedy policy:


 


• The greedy policy may not be the optimal policy 


‣ But is the greedy policy always an improvement?


• Proposition: the greedy policy for  (value of ) is never worse than 


• Corollary (Bellman optimality): if  is greedy for its value  then it is optimal


‣ In a finite MDP, the iteration  converges, and then  is optimal

π(s) = arg max
a

Q(s, a) = arg max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

π* = arg max
π

Jπ

Qπ π π

π Qπ

π evaluate Qπ
greedy π π
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The RL scheme

policy evaluation

policy improvement
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Policy Iteration

• If we know the MDP (model-based), we can just alternate evaluate/greedy:


• Upon convergence,  and π = π* Q = Q*

<latexit sha1_base64="NXUHonx5Ea7TISsERDa9rT5s034="></latexit>

Algorithm Policy Iteration
Initialize some policy c
repeat

Evaluate the policy&(B, 0)  Eb⇠?c [' |B0 = B, 00 = 0]
Update to the greedy policy c(B)  arg max0 &(B, 0)

MF

θ

DP

π′￼

max
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Value Iteration

• We can also alternate evaluate/greedy inside the loop over states:


• Must update each state repeatedly until convergence


• Upon convergence, π*(s) = arg max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

<latexit sha1_base64="DGEtv0mwYqt1UtSPgerVWBQkTNg="></latexit>

Algorithm Value Iteration
Initialize some value function +
repeat

for each state B
Update+ (B)  max0 (A (B, 0)+WE(B0 |B,0)⇠? [+ (B0)])

MF

θ

DP

π′￼

max
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Generalized Policy Iteration

• We can even alternate in any order we wish:


 


• As long as each state gets each of the two update without starvation


‣ The process will eventually converge to  and 

V(s) ← 𝔼(a|s)∼π[r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)]]
π(s) ← arg max

a
(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

V* π*

MF

θ

DP

π′￼

max
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Model-free reinforcement learning
• We can be model-free using MC policy evaluation:


• On-policy policy evaluation in the inner loop — very inefficient


• We could also do this with function approximation

<latexit sha1_base64="TTD5tOCEvk/iNY53ngDh8yYGqAQ="></latexit>

Algorithm MC model-free RL
Initialize some policy c
repeat

Initialize some value function &
repeat to convergence

Sample b ⇠ ?c
Update &(BC , 0C) ! '�C (b) for all C � 0

c(B)  arg max0 &(B, 0) for all B

MF

θ

DP

π′￼

max

MF

θ

DP

π′￼

max
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Off-policy model-free reinforcement learning

• Value iteration is model-based: 


• Action-value version: 


• A model-free (data-driven) version — Q-Learning:


‣ On off-policy data , update


 

V(s) ← max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[V(s′￼)])

Q(s, a) ← r(s, a) + γ𝔼(s′￼|s,a)∼p[max
a′￼

Q(s′￼, a′￼)]

(s, a, r, s′￼)

Q(s, a) → r + γ max
a′￼

Q(s′￼, a′￼)

MF

θ

DP

π′￼

max

[Watkins and Dayan, 1992]
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Recap
• RL is a (policy evaluation ↔ policy improvement) loop


• Policy evaluation: model-based, Monte Carlo, or Temporal-Difference


‣ Temporal-Difference exploits the sequential structure using dynamic programming


• TD can be off-policy by considering the action-value Q function


‣ Off-policy data can be thrown out less often as the policy changes


• Policy improvement can be greedy


‣ Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)


• Many approaches can be made differentiable for Deep RL
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Today's lecture

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Policy Improvement
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Fitted Value-Iteration (FVI)

• Fitted Value-Iteration (FVI):


 


‣ For some state distribution 


‣ Can use losses other than square

θi+1 ← arg min
θ

𝔼s∼μ[(max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[Vθi(s′￼)]) − Vθ(s))2]

μ

MF

θ

DP

π′￼

max

<latexit sha1_base64="DGEtv0mwYqt1UtSPgerVWBQkTNg="></latexit>

Algorithm Value Iteration
Initialize some value function +
repeat

for each state B
Update+ (B)  max0 (A (B, 0)+WE(B0 |B,0)⇠? [+ (B0)])

square error

MF

θ

DP

π′￼

max
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Fitted Q-Iteration (FQI)

• Fitted Value-Iteration (FVI):


 


• Action-value iteration: 


• Fitted Q-Iteration (FQI):


 


‣ For some state-action distribution 

θi+1 ← arg min
θ

𝔼s∼μ[(max
a

(r(s, a) + γ𝔼(s′￼|s,a)∼p[Vθi(s′￼)]) − Vθ(s))2]

Q(s, a) ← r(s, a) + γ𝔼(s′￼|s,a)∼p[max
a′￼

Q(s′￼, a′￼)]

θi+1 ← arg min
θ

𝔼(s,a)∼μ[(r(s, a) + γ𝔼(s′￼|s,a)∼p[max
a′￼

Qθi(s′￼, a′￼)]) − Qθ(s, a))2]

μ

MF

θ

DP

π′￼

max

MF

θ

DP

π′￼

max



Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

<latexit sha1_base64="Dh5J4Qw7EmT3dT7CY1s1Sa0A0Dk="></latexit>

Algorithm Q-Learning

Initialize &
B reset state

repeat
Take some action 0
Receive reward A
Observe next state B0

Update&(B, 0) !
(
A B0 terminal

A + W max00 &(B0, 00) otherwise

B reset state if B0 terminal, else B B0

Q-Learning
MF

θ

DP

π′￼

max

[Watkins and Dayan, 1992]
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• FQI can be model-free by sampling from 


‣ We can sample using environment interaction with some , if 


‣ Or sample using a simulator we can reset to any state 


‣ Anyway, this is off-policy from the greedy policy 


p

π′￼ μ = pπ′￼

s ∼ μ

arg max
a

Qθ(s, a)
<latexit sha1_base64="4TJ00/wbZfeHlX1q8xELw3qvWX0=">AAAI33icrVVLb9tGEGbcR1j15aTHXgY1U1moZEhG05wKpIjjJkDQRomVBAgdYbkcSYuQS2J3ZUcl2GtvRa9Ff1n/TWdJijIltXaD7EXL2Xl/34yCNBLa9Pt/X9t57/0PPrzuftT6+JNPP/t898bNZzqZK44jnkSJehEwjZGQODLCRPgiVcjiIMLnwet79v35GSotEnliFimexmwqxURwZkg0vnH9r1t+gFMhs1hIkbIp5i/5adY/uHPbN/jGnIvQzPLWUolF00QJM4vzlw9OScpZav1kw94jZEoKOd2iK7gVPjXMYPZQCiNYJH5B8IbeSu5p8KdotAcKNRrQVmqfn2CKzLRuAVSaJ+w1gk5iBMZtbPCY9VO/P0GO4gzJzzlTIXiq8fpzoFHRq6TayiDg6XZDZZSGhXi4r7vAOuCbBKqSOHVaF7r2KPgadHssikZlYFBRD1mUg++vVL6hulgcM/Bj9macsXYO5LhNntsdsi9tEzNDdS40Vr59lGEVrJHa1i6BmBQ11Al0ASNt6yqVoazPH0kjIvq1vtewaYiWgpoQrdZVKLKVITVBnrKY6CynPUvWEI6FMfQz7D2kpAsqbjqwqW1hjU+9MhbyJTXq7hQxiBYQMMNn4O37Z8gznXehuLCcsNQiJiTmZF6bHSNlQhjT0zxiJlH2gxrXdKOWbnTe7lw0P0LNqV2UWMzMjLMoe5SPyyThe1gar/OgysiygT4CprLSJM+XWbfrtIkoPVIrFbYU1Xl1aNtR4rsJ7zq66+C+kwVwNPzpf0x+hWEXLIm9i+VXlK1BvnQ/HCfqPuOzTEjLpHIjaIPpxbGpiOGxCn9MtYgS6fWmirBfwIQw9+oG09T7PExMpzF6P1LQ1UoBRognl++SH0JSL/ZIFxSVS9Sx7FKYRmwBwXwyQQrt38uOmoNeZfxvRK4uDU7Cr7Dpx1uMxbKlW1cYPV++xEhp2xpbJ65183Z77SoztMj/cwrKIVi5RPrXW4B3QkkWqRimqA157hXs0Feh3rtZu/dlSBx9q7073t3rH/SLA5uXQXXZc6rzeLzb9YVM5yYLE27XtkKJ5zwh3MivLWwVLCvcD9adbV6eHR4Mvjv4dni4d/e4CuQ6XzpfOfvOwLnj3HUeOI+dkcPdHXffHbiHLnN/c393/yhVd65VNl84jeP++Q+AL/FR</latexit>

Algorithm Sampling-based Fitted Q-Iteration
Initialize \
repeat

Sample a batch (ÆB, Æ0) ⇠ `
Feed to simulator to get batch (ÆA, ÆB0)
Descend L\ = (ÆA + W maxÆ00 &\̄ (ÆB0, Æ00) �&\ (ÆB, Æ0))2

Sampling-based Fitted Q-Iteration
MF

θ

DP

π′￼

max

[Munos and Szepesvári, 2008]
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Experience policy

• Which distribution should the training data have?


‣ The policy may not be good on other distributions / unsupported states


‣ ⇒ ideally, the test distribution  for the final 


• On-policy methods (e.g. MC): must use on-policy data (from the current 


• Off-policy methods (e.g. Q) can use different policy (or even non-trajectories)


‣ But both should eventually use  or suffer train–test distribution mismatch

pπ π

π)

pπ
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Exploration policies
• Example: I tried route 1: {40, 20, 30}; route 2: {30, 25, 40}


‣ Suppose route 1 really has expected time 30min, should you commit to it forever?


• To avoid overfitting, we must try all actions infinitely often


• -greedy exploration: select uniform action with prob. , otherwise greedy


• Boltzmann exploration:


 


‣ Becomes uniform as the inverse temperature , greedy as 

ϵ ϵ

π(a |s) = soft max
a

(Q(s, a); β) =
exp(βQ(s, a))

∑ā exp(βQ(s, ā))

β → 0 β → ∞
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Experience replay
• On-policy methods are inefficient: throw out all data with each policy update


• Off-policy methods can keep the data = experience replay


‣ Replay buffer: dataset of past experience


‣ Diversifies the experience (beyond current trajectory)


• Variants differ on


‣ How often to add data vs. sample data


‣ How to sample from the buffer


‣ When to evict data from the buffer, and which
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Why use target network?
• Fitted-Q loss: 


• Target network = lagging copy of 


‣ Periodic update:  every  steps


‣ Exponential update: 


•  is more stable


‣ Less of a moving target


‣ Less sensitive to data ⇒ less variance


• But  introduces bias

ℒθ = (r + γ max
a′￼

Qθ̄(s′￼, a′￼) − Qθ(s, a))2

Qθ(s, a)

θ̄ ← θ Ttarget

θ̄ ← (1 − η)θ̄ + ηθ

Qθ̄

θ̄ ≠ θ

no gradient from the target term

Qθ(s, a)

r + γ max
a′￼

Qθ̄(s′￼, a′￼)

square lossupdate

s′￼

s
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Putting it all together: DQN

policy evaluation

policy improvement

fitted-Q loss 
ℒθ = (r + γ max

a′￼

Qθ̄(s′￼, a′￼) − Qθ(s, a))2

greedy policy 
π(s) = arg max

a
Q(s, a)

exploration 
e.g. -greedyϵ
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<latexit sha1_base64="ivZhiA3FiKZDfZXNKOLLTQwENgo="></latexit>

Algorithm DQN
Initialize \, set \̄  \

B reset state
for each interaction step

Sample 0 ⇠ n-greedy for &\ (B, ·)
Get reward A and observe next state B

0

Add (B, 0, A, B0) to replay buffer D
Sample batch (ÆB, Æ0, ÆA, ÆB0) ⇠ D

H8  
(
A8 B

0
8
terminal

A8 + W max00 &\̄
(B0

8
, 0
0) otherwise

Descend L\ = (ÆH �&\ (ÆB, Æ0))2

every )target steps, set \̄  \

B reset state if B0 terminal, else B B
0

Deep Q-Learning (DQN)
MF

θ

DP

π′￼

max

[Mnih et al., 2015]
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Value estimation bias
• Q-value estimation is optimistically biased


• Jensen's inequality: for a random vector 


 


• While there's uncertainty in  ,  is positively biased


• So how can this converge?


‣ As certainty increases, the bias of each update decreases


‣ Existing bias attenuates with repeated discounting by 

Q

𝔼[max
a

Qa] ≥ max
a

𝔼[Qa]

Qθ̄ max
a′￼

Qθ̄(s′￼, a′￼)

γ



Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Double Q-Learning
• Idea: keep two value estimates  and 


‣ Update:  


• How to use this with DQN?


• Idea 1: use target network as the other estimate


• Idea 2: Clipped Double Q-Learning


 

Q1 Q2

Qi(s, a) → r + γQ−i(s′￼, arg max
a′￼

Qi(s′￼, a′￼))

Qθi
(s, a) → r + γ min

i=1,2
Qθ̄i

(s′￼, arg max
a′￼

Qθi
(s′￼, a′￼))

 = the other−i

Qθ(s, a)

r + γQθ̄(s′￼, arg max
a′￼

Qθ(s′￼, a′￼))

square loss

[van Hasselt, 2010]
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Prioritized Experience Replay

• Bellman error (= TD error): 


‣ Optimality: ; that's why we usually descend the square loss 


• Experience with high error ⇒ more important to see


• Prioritized Experience Replay:


‣ Sample instance  with prob. ; e.g. 


‣ Update with Importance Sampling (IS) weight ; e.g. 


•  is computed during the updates; new experience is weighted 

δ(s, a, r, s′￼) = r + γ max
a′￼

Q(s′￼, a′￼) − Q(s, a)

δ ≡ 0 δ2

i pi ∝ δω
i ω = 0.6

(m ⋅ pi)−β β = 0.4

δ max
i

δω
i

[Schaul et al., 2016]
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Dueling Networks
• Advantage function: 


•  can be more consistent across states with similar effect of actions


‣ Even if their value  is very different


•  is a scalar, which can be easier to learn


• Issue:  is underdetermined


‣ Stabilize with 

Aπ(s, a) = Qπ(s, a) − Vπ(s)

Aπ(s, a)

Vπ(s)

Vπ(s)

Q = (V + c) + (A − c)

Q(s, a) = V(s) + (A(s, a) − mean
ā

A(s, ā))

s

s

Qθ(s, ⋅ )

Vθ(s)

Aθ(s, ⋅ )

Qθ(s, ⋅ )

[Wang et al., 2016]
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Multi-step Q Learning

• MC is high variance but unbiased: 


• TD is lower variance but biased: 


‣ Because  isn't really the next-step value, while still learning


• Let's trade them off, -step Q-Learning:


 

Q(st, at) → R≥t = ∑
t′￼≥t

γt′￼−trt′￼

Q(st, at) → rt + γ max
at+1

Q(st+1, at+1)

max
at+1

Q(st+1, at+1)

n

Q(st, at) → rt + γrt+1 + ⋯ + γn−1rt+n−1 + γn max
at+n

Q(st+n, at+n)
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Rainbow DQN

• Rainbow DQN = DQN + a powerful combination of tricks


‣ Double Q-Learning


‣ Prioritized Experience Replay


‣ Dueling Networks


‣ Multi-step Q-Learning


‣ Distributional RL


‣ Noisy Nets

[Hessel et al., 2018]
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Recap

• RL algorithms can be implemented with function approximation


• There are (at least) 2 important policies


‣ The learner policy — should be the best possible (e.g. greedy)


‣ The experience policy — should explore (e.g. -greedy)


• Replay buffer: store data for longer (off-policy), diversify


• Target network: reduce variance, stabilize the target


• In practice, add lots of tricks and heuristics to the theory

ϵ
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Logistics

assignments
• Exercise 1 due tomorrow


• Quiz 2 due next Monday


