

CS 277: Control and Reinforcement Learning

Winter 2026

Lecture 4: Deep Q-Learning

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Logistics

assignments

- Exercise 1 due **tomorrow**
- Quiz 2 due **next Monday**

Q function

- To approach V_π when we update $V(s) \rightarrow r + \gamma V(s')$, we need **on-policy data**
 - ▶ Roll out π to see transition $(s, a) \rightarrow s'$ with reward r
- On-policy data is **expensive**: need more every time π changes
- **Action-value function**: $Q_\pi(s, a) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s, a_0 = a]$
 - ▶ Compare: $V_\pi(s) = \mathbb{E}_{\xi \sim p_\pi}[R \mid s_0 = s] = \mathbb{E}_{(a|s) \sim \pi}[Q_\pi(s, a)]$
- Action-value **backward recursion**: $Q_\pi(s, a) = r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]$
 - ▶ Broke down $V_\pi(s) = \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]]$ into two parts

MF

 θ

DP

TD from off-policy data

- Backward recursion in two parts:

$$V_\pi(s) = \mathbb{E}_{(a|s) \sim \pi}[Q_\pi(s, a)] \quad Q_\pi(s, a) = r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V_\pi(s')]$$

- This should hold in every state and action
 - (s, a) can be sampled from **any distribution** $p_{\pi'}$ for any alternative π'
- Put together, we **update** $Q(s, a) \rightarrow r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q(s', a')]$
- For any distribution of (s, a) , giving reward r and following state $s' \sim p(\cdot | s, a)$
 - In other words: $Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q(s', a')] - Q(s, a))$

MF

θ

DP

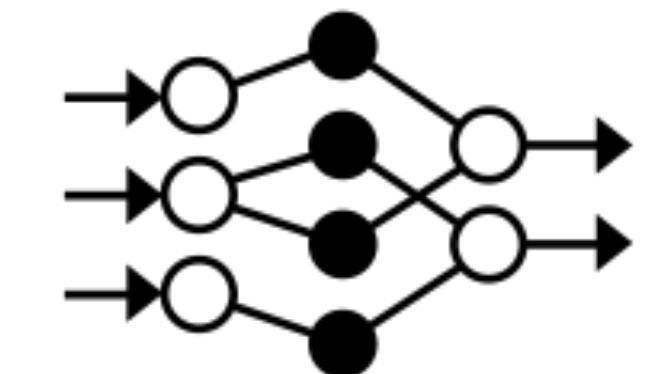
π'

temporal difference

TD with function approximation

- With large state space: represent $V_\theta : S \rightarrow \mathbb{R}$ or $Q_\theta : S \times A \rightarrow \mathbb{R}$

- Instead of the update $V(s) \rightarrow r + \gamma V(s')$



- Descend on **square loss** $\mathcal{L}_\theta = (r + \gamma V_{\bar{\theta}}(s') - V_\theta(s))^2$

- On **on-policy** experience (s, a, r, s')

only learn $V_\theta(s)$
 $V_{\bar{\theta}}(s')$ is the target
⇒ don't take its gradient!

- Instead of the update $Q(s, a) \rightarrow r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q(s', a')]$

- Descend on **square loss** $\mathcal{L}_\theta = (r + \gamma \mathbb{E}_{(a'|s') \sim \pi}[Q_{\bar{\theta}}(s', a')] - Q_\theta(s, a))^2$

- On **off-policy** experience (s, a, r, s')

only learn $Q_\theta(s, a)$
 $Q_{\bar{\theta}}(s', a')$ is the target
⇒ don't take its gradient!

MF

θ

DP

π'

MF

θ

DP

π'

Today's lecture

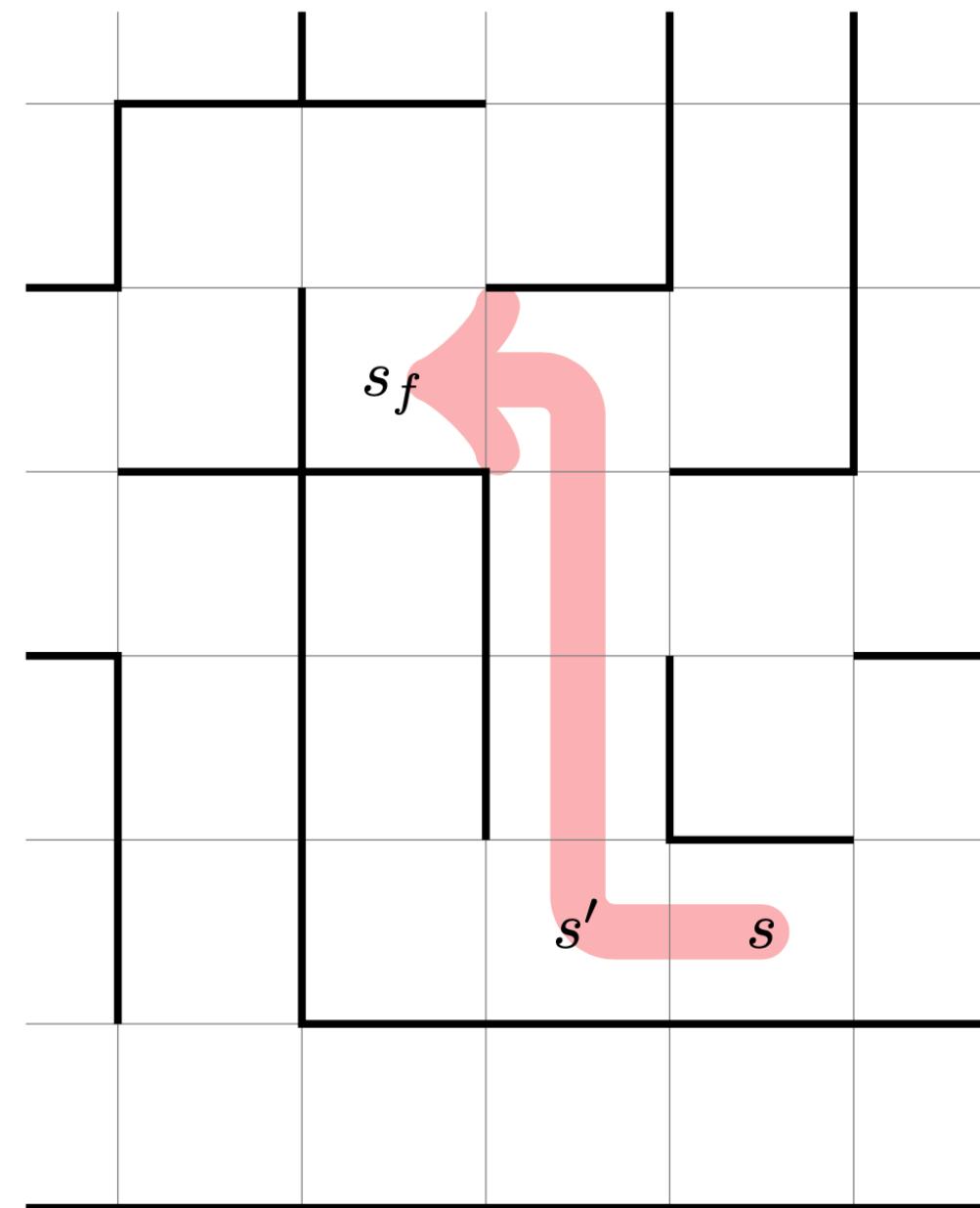
Policy Improvement

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

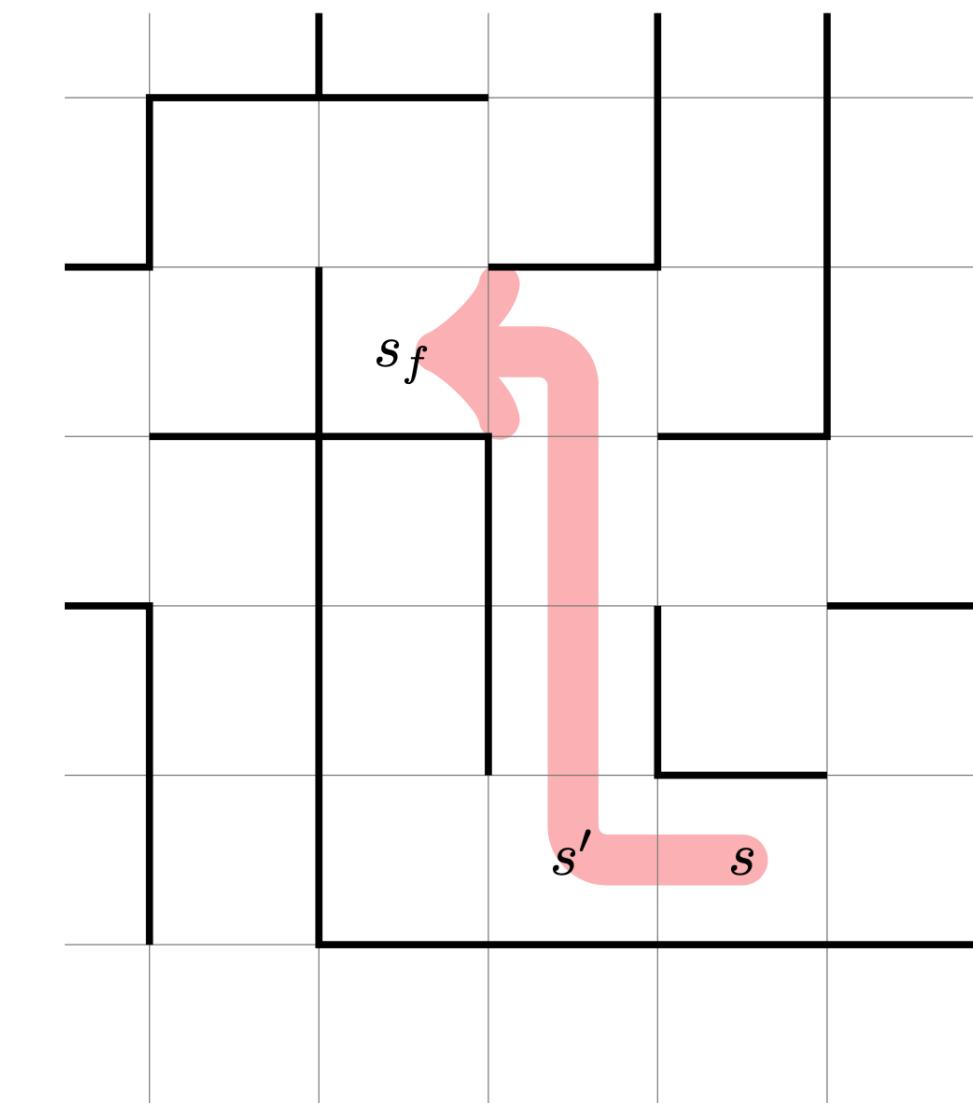
Special case: shortest path



- **Deterministic dynamics:** in state s , take action a to get to state $s' = f(s, a)$
 - ▶ Example above: $s' = f(s, a_{\text{left}})$
- **Reward:** (-1) in each step (until the goal s_f is reached)

Shortest path: optimality principle

- **Proposition:** ξ is shortest from s to s_f through $s' \Rightarrow$ suffix of ξ is shortest from s' to s_f
- **Proof:** otherwise, let ξ' be a shorter path from s' to s_f , then take $s \xrightarrow{\xi} s' \xrightarrow{\xi'} s_f$
- The proposition is “if” but not “only if”, because we don't know **which s'** is best
 - ▶ **Try them all:** for each a , try $s' = f(s, a)$
 - Let $V(s)$ be the shortest path length from s to s_f
 - ▶ For each candidate s' , the **shortest path** through it is $1 + V(s')$
 - ▶ For all $s \neq s_f$, we have $V(s) = \min_a (1 + V(f(s, a)))$



Bellman-Ford shortest path algorithm

- For all $s \neq s_f$, we have $V(s) = \min_a(1 + V(f(s, a)))$

Algorithm Bellman-Ford

$V(s_f) \leftarrow 0$

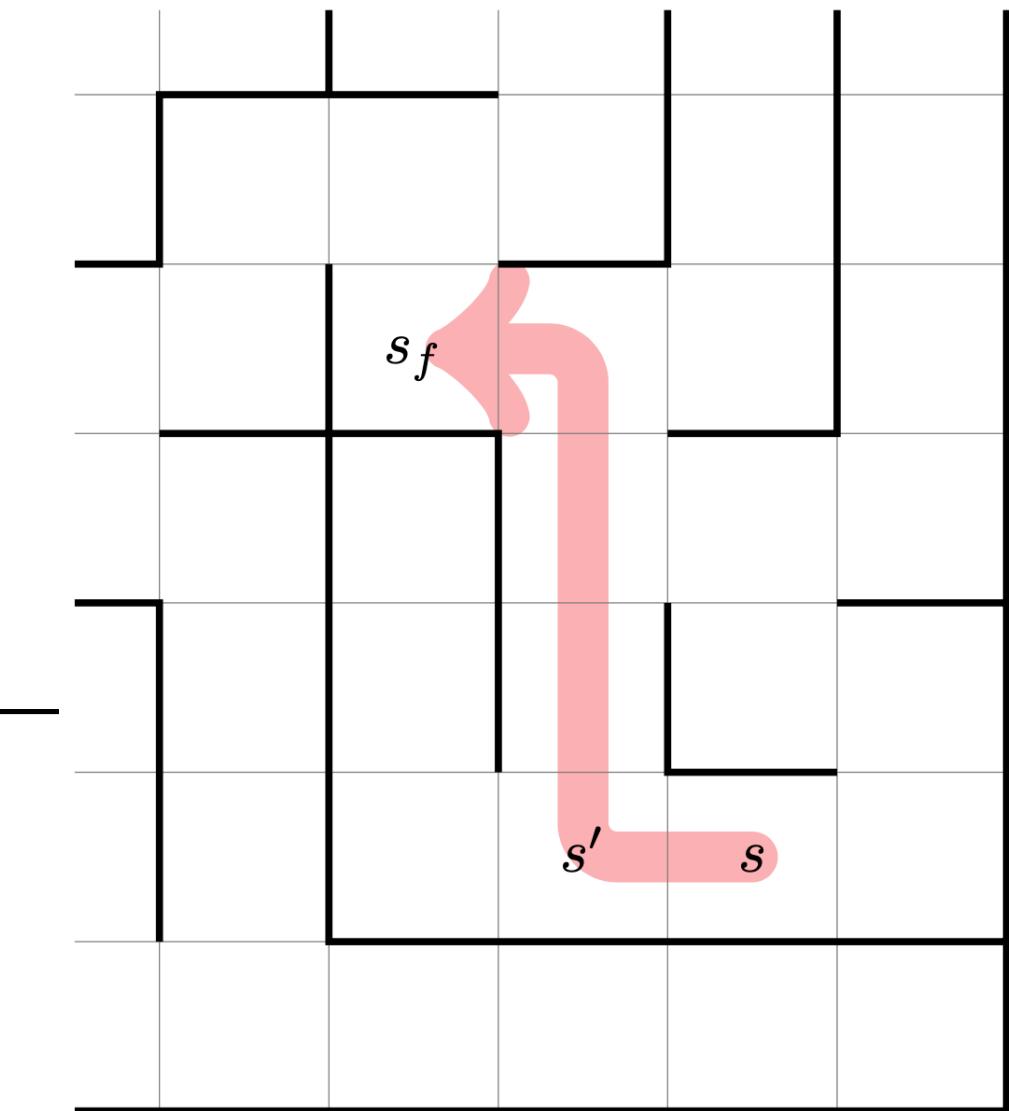
$V(s) \leftarrow \infty$ for each non-terminal state s

for $|S| - 1$ iterations

for each non-terminal state s

$V(s) \leftarrow \min_{a \in A}(1 + V(f(s, a)))$

- The **optimal policy** is $\pi(s) = \arg \min_a(1 + V(f(s, a)))$



[Ford and Fulkerson, 1962]

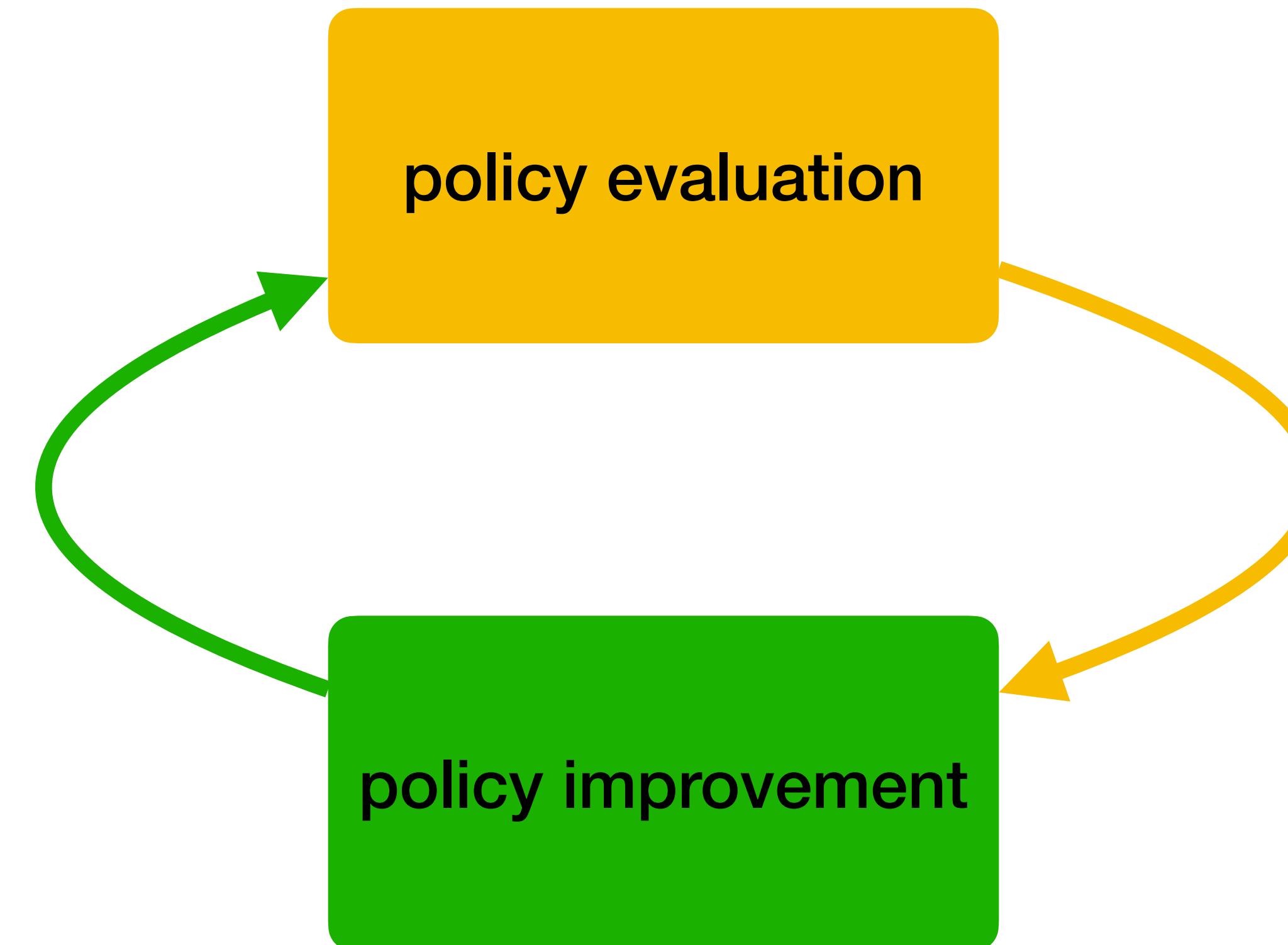
Policy improvement

- A value function suggests the **greedy policy**:

$$\pi(s) = \arg \max_a Q(s, a) = \arg \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$$

- The greedy policy **may not be the optimal policy** $\pi^* = \arg \max_{\pi} J_{\pi}$
 - ▶ But is the greedy policy always an **improvement**?
 - **Proposition:** the greedy policy for Q_{π} (value of π) is never worse than π
 - Corollary (**Bellman optimality**): if π is greedy for its value Q_{π} then it is optimal
 - ▶ In a finite MDP, the iteration $\pi \xrightarrow{\text{evaluate}} Q_{\pi} \xrightarrow{\text{greedy}} \pi$ **converges**, and then π is optimal

The RL scheme



Policy Iteration

- If we know the MDP (model-based), we can just alternate evaluate/greedy:

Algorithm Policy Iteration

Initialize some policy π

repeat

 Evaluate the policy $Q(s, a) \leftarrow \mathbb{E}_{\xi \sim p_\pi}[R|s_0 = s, a_0 = a]$

 Update to the greedy policy $\pi(s) \leftarrow \arg \max_a Q(s, a)$

- Upon convergence, $\pi = \pi^*$ and $Q = Q^*$

MF
 θ
DP
 π'
max

Value Iteration

- We can also alternate evaluate/greedy **inside the loop** over states:

Algorithm Value Iteration

Initialize some value function V

repeat

for each state s

 Update $V(s) \leftarrow \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')])$

- Must update each state **repeatedly** until convergence
- Upon convergence, $\pi^*(s) = \arg \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')])$

MF
 θ
DP
 π'
max

Generalized Policy Iteration

MF
 θ
DP
 π'
max

- We can even alternate in **any order** we wish:

$$V(s) \leftarrow \mathbb{E}_{(a|s) \sim \pi}[r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')]]$$

$$\pi(s) \leftarrow \arg \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p}[V(s')])$$

- As long as each state gets each of the two update **without starvation**
 - ▶ The process will eventually **converge** to V^* and π^*

Model-free reinforcement learning

- We can be **model-free** using MC policy evaluation:

Algorithm MC model-free RL

Initialize some policy π

repeat

 Initialize some value function Q

repeat to convergence

 Sample $\xi \sim p_\pi$

 Update $Q(s_t, a_t) \rightarrow R_{\geq t}(\xi)$ for all $t \geq 0$

$\pi(s) \leftarrow \arg \max_a Q(s, a)$ for all s

- On-policy policy evaluation in the inner loop – **very inefficient**
- We could also do this with **function approximation**

MF
 θ
DP
 π'
max

MF
 θ

DP
 π'

max

Off-policy model-free reinforcement learning

- Value iteration is **model-based**:
$$V(s) \leftarrow \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')])$$
- **Action-value** version:
$$Q(s, a) \leftarrow r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[\max_{a'} Q(s', a')]$$
- A **model-free** (data-driven) version – **Q-Learning**:

- ▶ On **off-policy** data (s, a, r, s') , update

$$Q(s, a) \rightarrow r + \gamma \max_{a'} Q(s', a')$$

MFθDPπ'max

[Watkins and Dayan, 1992]

Recap

- RL is a (policy evaluation \leftrightarrow policy improvement) loop
- Policy evaluation: model-based, Monte Carlo, or Temporal-Difference
 - ▶ Temporal-Difference exploits the sequential structure using dynamic programming
- TD can be off-policy by considering the action-value Q function
 - ▶ Off-policy data can be thrown out less often as the policy changes
- Policy improvement can be greedy
 - ▶ Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)
- Many approaches can be made differentiable for Deep RL

Today's lecture

Policy Improvement

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Fitted Value-Iteration (FVI)

Algorithm Value Iteration

Initialize some value function V

repeat

for each state s

 Update $V(s) \leftarrow \max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V(s')])$

- Fitted Value-Iteration (FVI):

$$\theta^{i+1} \leftarrow \arg \min_{\theta} \mathbb{E}_{s \sim \mu} \left[\left(\max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p} [V_{\theta^i}(s')]) - V_{\theta}(s) \right)^2 \right]$$

square error

- ▶ For some state distribution μ
- ▶ Can use losses other than square

MF
 θ
DP
 π'
max

MF
 θ
DP
 π'
max

Fitted Q-Iteration (FQI)

- Fitted Value-Iteration (FVI):

$$\theta^{i+1} \leftarrow \arg \min_{\theta} \mathbb{E}_{s \sim \mu} \left[\left(\max_a (r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p} [V_{\theta^i}(s')]) - V_{\theta}(s) \right)^2 \right]$$

- Action-value iteration: $Q(s, a) \leftarrow r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p} [\max_{a'} Q(s', a')]$

- Fitted Q-Iteration (FQI):

$$\theta^{i+1} \leftarrow \arg \min_{\theta} \mathbb{E}_{(s, a) \sim \mu} \left[(r(s, a) + \gamma \mathbb{E}_{(s'|s, a) \sim p} [\max_{a'} Q_{\theta^i}(s', a')]) - Q_{\theta}(s, a) \right]^2$$

- ▶ For some state-action distribution μ

MF
 θ
DP
 π'
max

MF
 θ
DP
 π'
max

Q-Learning

MF

θ

DP

π'

max

Algorithm Q-Learning

Initialize Q

$s \leftarrow$ reset state

repeat

 Take some action a

 Receive reward r

 Observe next state s'

 Update $Q(s, a) \rightarrow \begin{cases} r & s' \text{ terminal} \\ r + \gamma \max_{a'} Q(s', a') & \text{otherwise} \end{cases}$

$s \leftarrow$ reset state if s' terminal, else $s \leftarrow s'$

[Watkins and Dayan, 1992]

Sampling-based Fitted Q-Iteration

- FQI can be **model-free** by sampling from p
 - ▶ We can sample using **environment interaction** with some π' , if $\mu = p_{\pi'}$
 - ▶ Or sample using a **simulator** we can reset to any state $s \sim \mu$
 - ▶ Anyway, this is **off-policy** from the greedy policy $\arg \max_a Q_{\theta}(s, a)$

MF
 θ
DP
 π'
max

Algorithm Sampling-based Fitted Q-Iteration

Initialize θ

repeat

 Sample a batch $(\vec{s}, \vec{a}) \sim \mu$

 Feed to simulator to get batch (\vec{r}, \vec{s}')

 Descend $\mathcal{L}_{\theta} = (\vec{r} + \gamma \max_{\vec{a}'} Q_{\bar{\theta}}(\vec{s}', \vec{a}') - Q_{\theta}(\vec{s}, \vec{a}))^2$

[Munos and Szepesvári, 2008]

Today's lecture

Policy Improvement

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Experience policy

- Which distribution should the **training data** have?
 - ▶ The policy may not be good on other distributions / unsupported states
 - ▶ \Rightarrow ideally, the **test** distribution p_π for the **final** π
- **On-policy methods** (e.g. MC): must use on-policy data (from the **current** π)
- **Off-policy methods** (e.g. Q) can use different policy (or even non-trajectories)
 - ▶ But both should eventually use p_π or suffer train–test distribution mismatch

Exploration policies

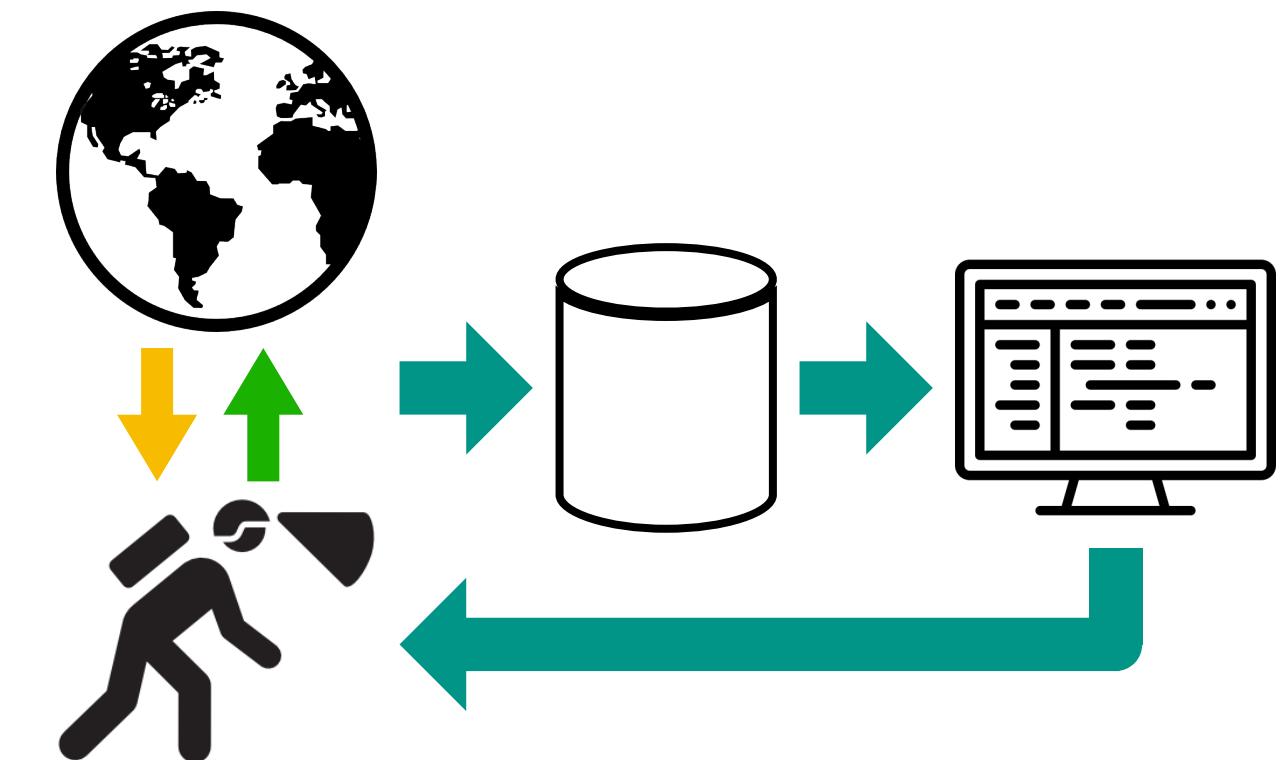
- Example: I tried route 1: {40, 20, 30}; route 2: {30, 25, 40}
 - ▶ Suppose route 1 really has expected time 30min, should you commit to it forever?
- To avoid overfitting, we must try all actions infinitely often
- ϵ -greedy exploration: select uniform action with prob. ϵ , otherwise greedy
- Boltzmann exploration:

$$\pi(a | s) = \underset{a}{\text{soft max}}(Q(s, a); \beta) = \frac{\exp(\beta Q(s, a))}{\sum_{\bar{a}} \exp(\beta Q(s, \bar{a}))}$$

- ▶ Becomes uniform as the inverse temperature $\beta \rightarrow 0$, greedy as $\beta \rightarrow \infty$

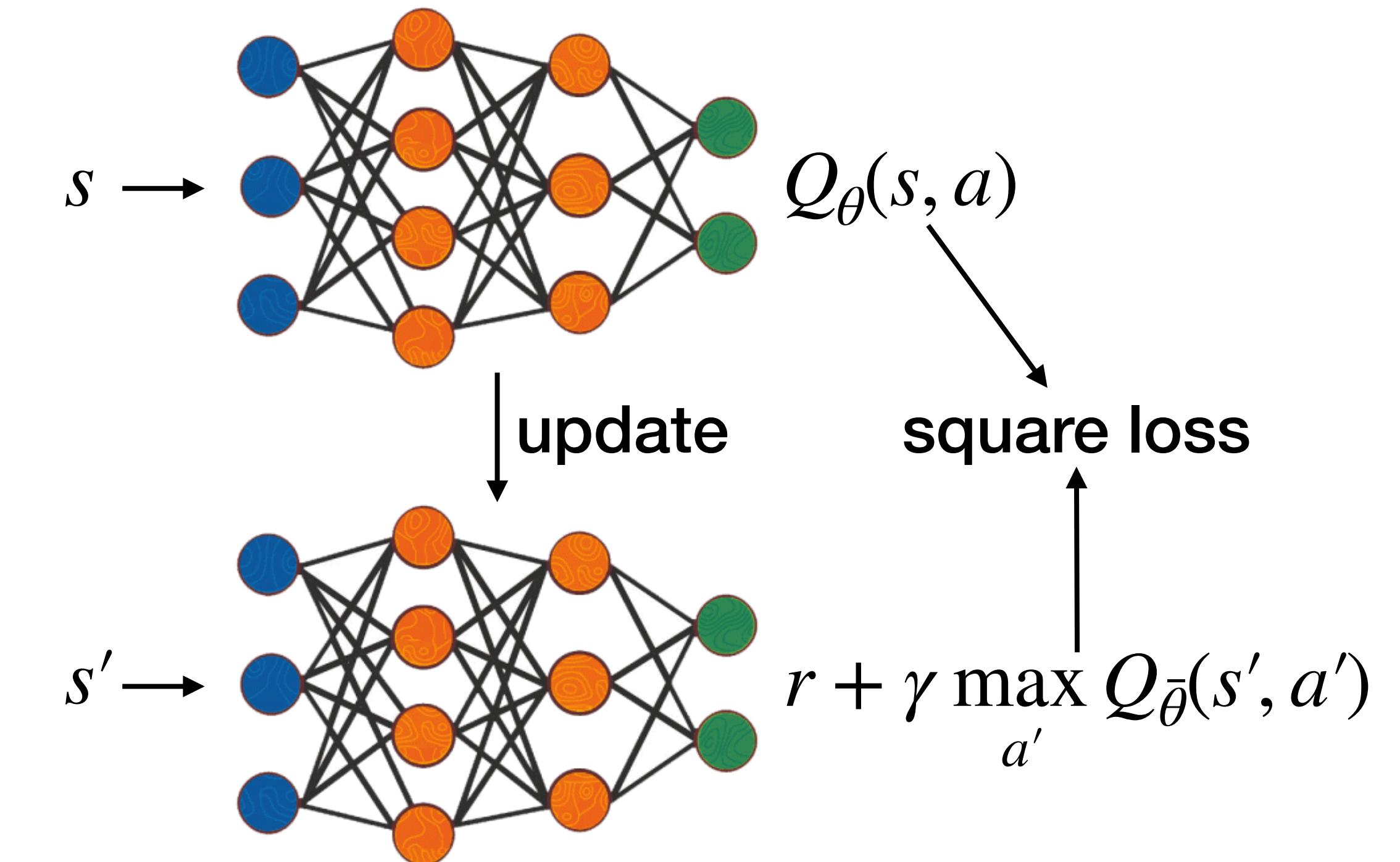
Experience replay

- On-policy methods are **inefficient**: throw out all data with each policy update
- Off-policy methods can keep the data = **experience replay**
 - ▶ **Replay buffer**: dataset of past experience
 - ▶ **Diversifies** the experience (beyond current trajectory)
- Variants differ on
 - ▶ **How often** to add data vs. sample data
 - ▶ How to **sample** from the buffer
 - ▶ When to **evict** data from the buffer, and which

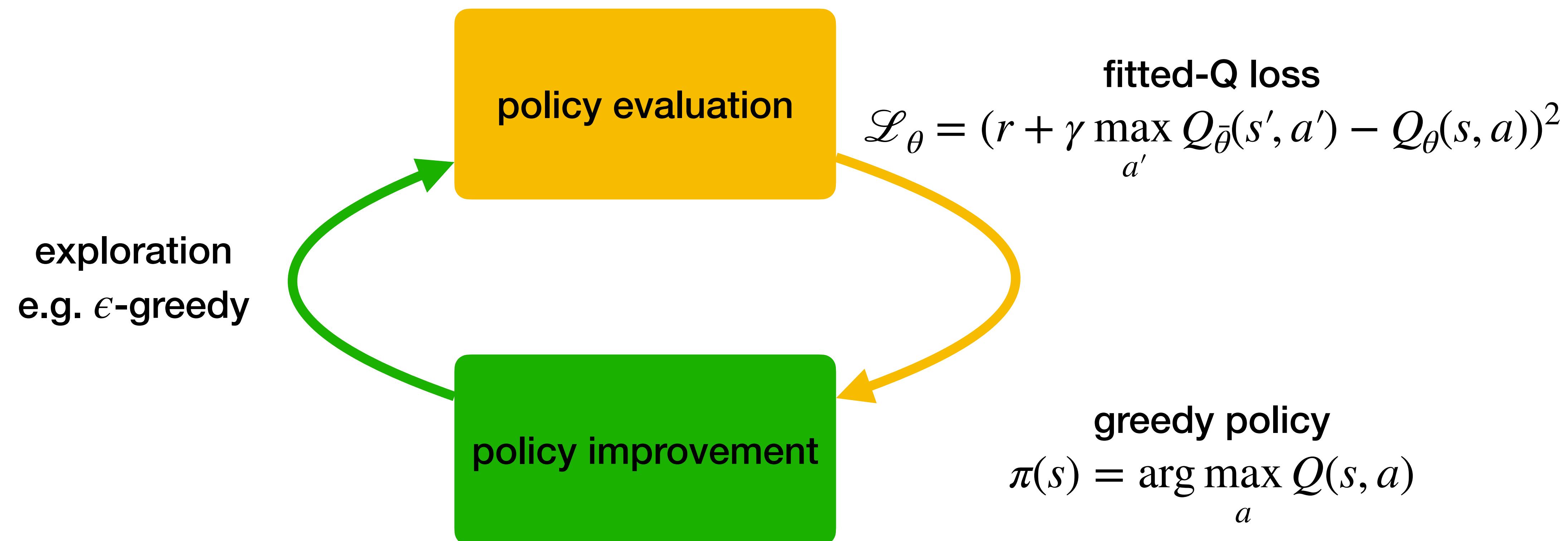


Why use target network?

- Fitted-Q loss: $\mathcal{L}_\theta = (r + \gamma \max_{a'} Q_{\bar{\theta}}(s', a') - Q_\theta(s, a))^2$
 no gradient from the target term
- Target network = lagging copy of $Q_\theta(s, a)$
 - ▶ Periodic update: $\bar{\theta} \leftarrow \theta$ every T_{target} steps
 - ▶ Exponential update: $\bar{\theta} \leftarrow (1 - \eta)\bar{\theta} + \eta\theta$
- $Q_{\bar{\theta}}$ is more stable
 - ▶ Less of a moving target
 - ▶ Less sensitive to data \Rightarrow less variance
- But $\bar{\theta} \neq \theta$ introduces bias



Putting it all together: DQN



Deep Q-Learning (DQN)

Algorithm DQN

Initialize θ , set $\bar{\theta} \leftarrow \theta$

$s \leftarrow$ reset state

for each interaction step

 Sample $a \sim \epsilon$ -greedy for $Q_\theta(s, \cdot)$

 Get reward r and observe next state s'

 Add (s, a, r, s') to replay buffer \mathcal{D}

 Sample batch $(\vec{s}, \vec{a}, \vec{r}, \vec{s}') \sim \mathcal{D}$

$$y_i \leftarrow \begin{cases} r_i & s'_i \text{ terminal} \\ r_i + \gamma \max_{a'} Q_{\bar{\theta}}(s'_i, a') & \text{otherwise} \end{cases}$$

 Descend $\mathcal{L}_\theta = (\vec{y} - Q_\theta(\vec{s}, \vec{a}))^2$

 every T_{target} steps, set $\bar{\theta} \leftarrow \theta$

$s \leftarrow$ reset state if s' terminal, else $s \leftarrow s'$

MF

θ

DP

π'

max

Today's lecture

Policy Improvement

Fitted Q-Iteration

Deep Q-Learning

DQN tricks

Value estimation bias

- Q-value estimation is optimistically **biased**
- Jensen's inequality: for a random vector Q

$$\mathbb{E}[\max_a Q_a] \geq \max_a \mathbb{E}[Q_a]$$

- While there's **uncertainty** in $Q_{\bar{\theta}}$, $\max_{a'} Q_{\bar{\theta}}(s', a')$ is positively biased
- So how can this **converge**?
 - As certainty increases, the bias of each update decreases
 - Existing bias attenuates with repeated discounting by γ

Double Q-Learning

- Idea: keep two value estimates Q_1 and Q_2

- Update: $Q_i(s, a) \rightarrow r + \gamma Q_{-i}(s', \arg \max_{a'} Q_i(s', a'))$

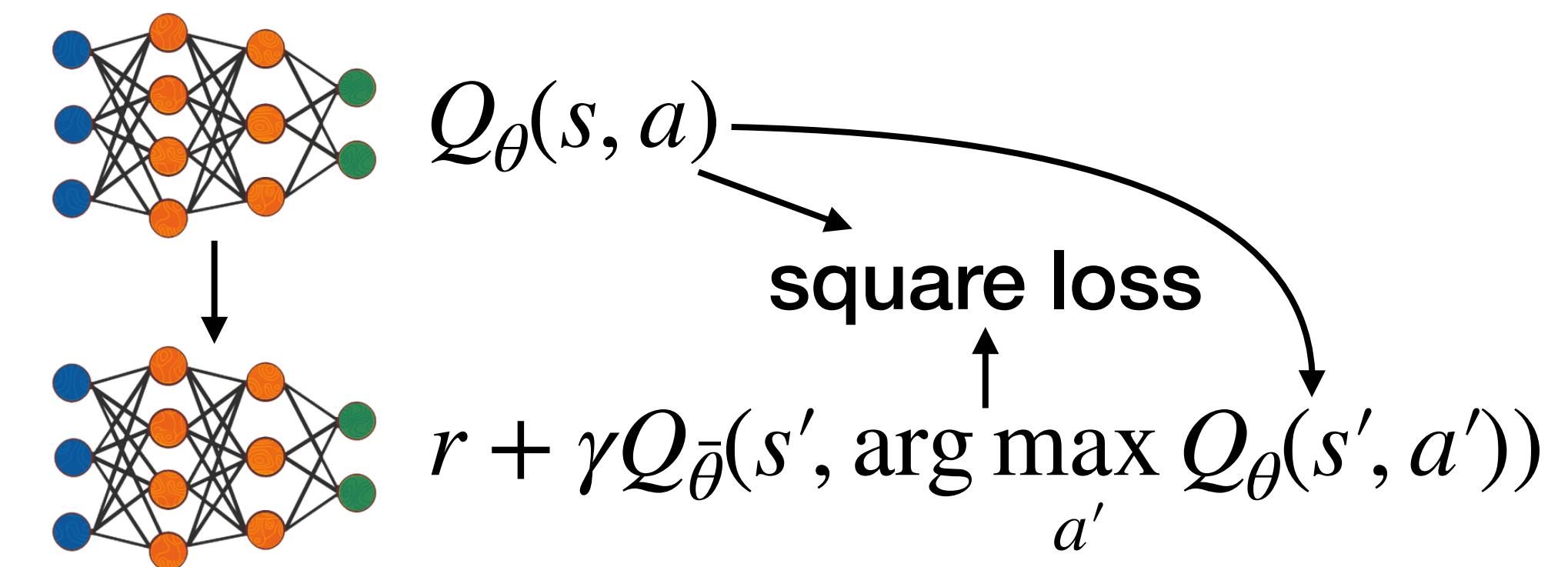
$-i = \text{the other}$

- How to use this with DQN?

- Idea 1: use target network as the other estimate

- Idea 2: Clipped Double Q-Learning

$$Q_{\theta_i}(s, a) \rightarrow r + \gamma \min_{i=1,2} Q_{\bar{\theta}_i}(s', \arg \max_{a'} Q_{\theta_i}(s', a'))$$



[van Hasselt, 2010]

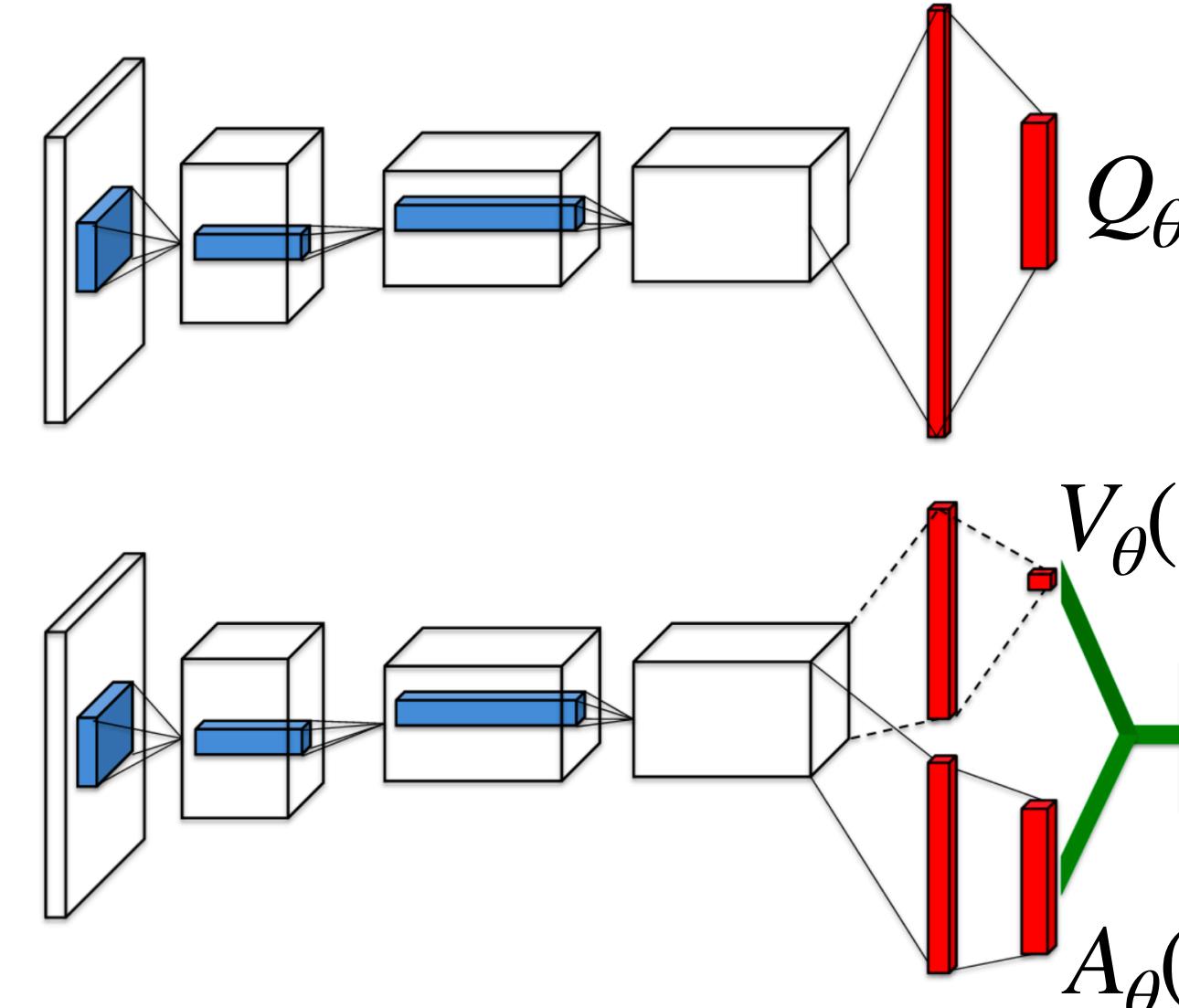
Prioritized Experience Replay

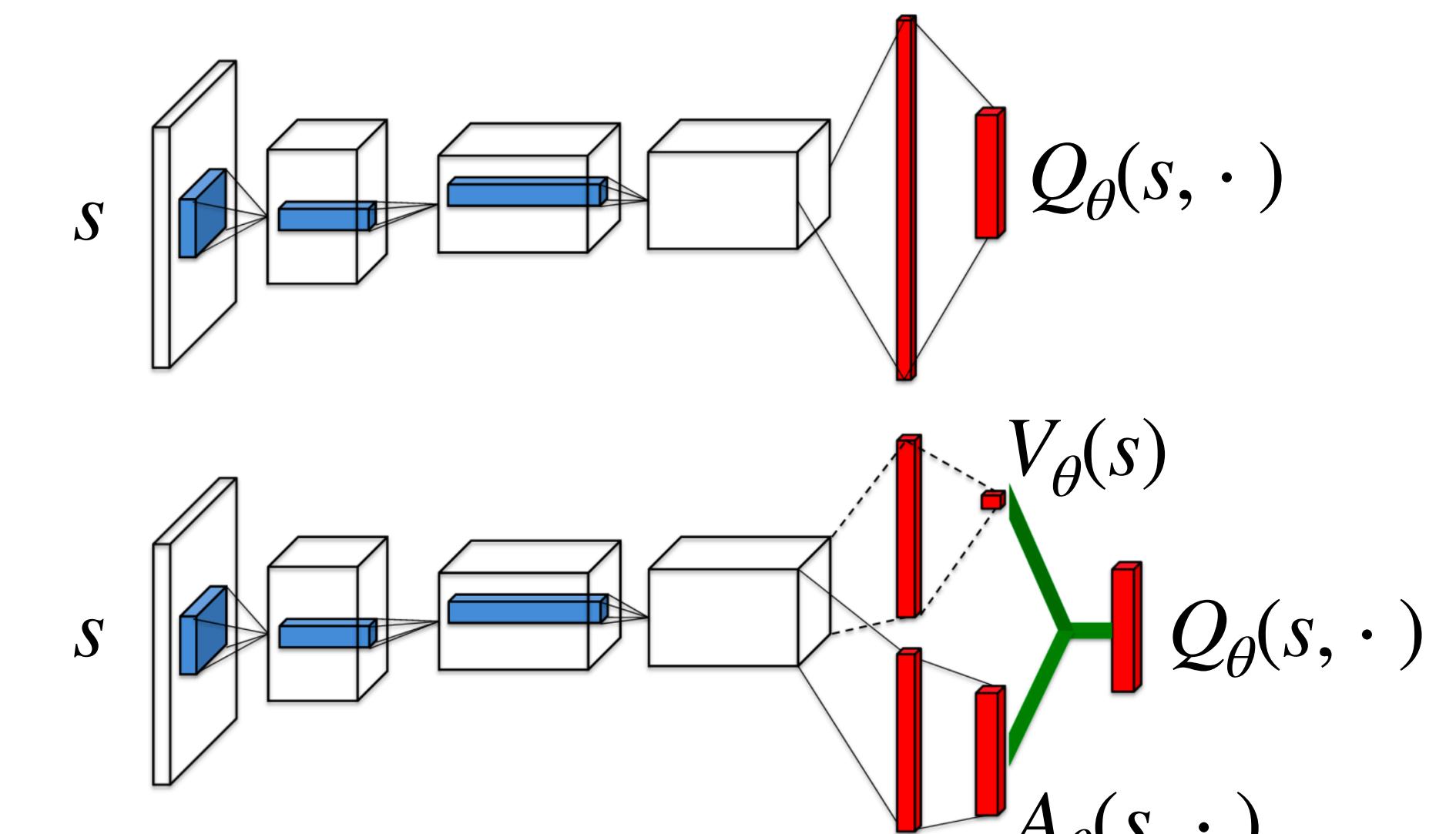
- Bellman error (= TD error): $\delta(s, a, r, s') = r + \gamma \max_{a'} Q(s', a') - Q(s, a)$
 - ▶ Optimality: $\delta \equiv 0$; that's why we usually descend the square loss δ^2
- Experience with high error \Rightarrow more important to see
- Prioritized Experience Replay:
 - ▶ Sample instance i with prob. $p_i \propto \delta_i^\omega$; e.g. $\omega = 0.6$
 - ▶ Update with Importance Sampling (IS) weight $(m \cdot p_i)^{-\beta}$; e.g. $\beta = 0.4$
- δ is computed during the updates; new experience is weighted $\max_i \delta_i^\omega$

[Schaul et al., 2016]

Dueling Networks

- Advantage function: $A_\pi(s, a) = Q_\pi(s, a) - V_\pi(s)$
- $A_\pi(s, a)$ can be more consistent across states with similar effect of actions
 - ▶ Even if their value $V_\pi(s)$ is very different
- $V_\pi(s)$ is a scalar, which can be easier to learn
- Issue: $Q = (V + c) + (A - c)$ is underdetermined





- ▶ **Stabilize** with $Q(s, a) = V(s) + \left(A(s, a) - \frac{\text{mean } A(s, \bar{a})}{\bar{a}} \right)$

[Wang et al., 2016]

Multi-step Q Learning

- MC is **high variance** but **unbiased**: $Q(s_t, a_t) \rightarrow R_{\geq t} = \sum_{t' \geq t} \gamma^{t'-t} r_{t'}$
- TD is **lower variance** but **biased**: $Q(s_t, a_t) \rightarrow r_t + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$
 - ▶ Because $\max_{a_{t+1}} Q(s_{t+1}, a_{t+1})$ isn't really the next-step value, while still learning
- Let's trade them off, ***n*-step Q-Learning**:

$$Q(s_t, a_t) \rightarrow r_t + \gamma r_{t+1} + \cdots + \gamma^{n-1} r_{t+n-1} + \gamma^n \max_{a_{t+n}} Q(s_{t+n}, a_{t+n})$$

Rainbow DQN

- Rainbow DQN = DQN + a powerful combination of tricks
 - ▶ Double Q-Learning
 - ▶ Prioritized Experience Replay
 - ▶ Dueling Networks
 - ▶ Multi-step Q-Learning
 - ▶ Distributional RL
 - ▶ Noisy Nets

[Hessel et al., 2018]

Recap

- RL algorithms can be implemented with **function approximation**
- There are (at least) 2 important policies
 - ▶ The **learner policy** – should be the best possible (e.g. greedy)
 - ▶ The **experience policy** – should explore (e.g. ϵ -greedy)
- **Replay buffer**: store data for longer (off-policy), diversify
- **Target network**: reduce variance, stabilize the target
- In practice, add lots of **tricks** and heuristics to the theory

Logistics

assignments

- Exercise 1 due **tomorrow**
- Quiz 2 due **next Monday**