CS 277: Control and

U CI University of
California, Irvine

Reinforcement Learning

Winter 2026

Lecture 4: Deep Q-Learning

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

%\/\/ILL PREsS 2
L EVER
FOR

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Logistics

_ e Exercise 1 due tomorrow

e Quiz 2 due next Monday

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Q function

» To approach V,_ when we update V(s) — r + yV(s’), we need on-policy data
> Roll out 7 to see transition (s, a) — s’ with reward r

 On-policy data is expensive: need more every time & changes

. Action-value function: Q_(s, a) = [R|sy=s,ay = al

—E~p,

» Compare: V (s) = E;., [R|s) = 5] = E ;). 1OQ,(s,a)]

. Action-value backward recursion: Q_(s,a) = r(s,a) +y [V.(s)]

» Broke down V (s) = ;) ..lr(s,a) +¥ [V_(s")]] into two parts DP

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

TD from off-policy data

e Backward recursion in two parts:

Vi(s) = £ Qa(s,)] Quls,a) =r(s,a) +y [Va(s)]

* This should hold in every state and action

> (s, a) can be sampled from any distribution p_. for any alternative z’

. Put together, we update Q(s,a) > r+vy C(d Sf)Nﬂ[Q(S ya)l

~ For any distribution of (s, @), giving reward r and following state s’ ~ p(- | s, a)
temporal difference

> In other words: Q(s,a) < Q(s,a) + a(r + vk, [OGS', a')] —ﬁs, a))

MF

DP

71_/

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

1D with function approximation

» With large state space: represent Vy : § = RorQy: S XA — |

» Instead of the update V(s) — r + yV(s') 3@3

» Descend on square loss &, = (r + yVi(s) — Vy(s))*

\ only learn VQ(S)

> On on-policy experience (s, a,r,s’) V4(s') is the target
= don't take its gradient!

. Instead of the update Q(s,a) - r+y = (] Sf)N,,[Q(S', a’)l

» Descend on square loss £y = (r+y = (4 S/)N,,[Qg(s', a’)] — Qy(s, Cl))z

\ only learn Q/(s, a)

Qs(s’, a’) is the target

. . /
» On off-policy experience (s, a, r, s’) ~, don't take its gradient!

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Today's lecture

Fitted Q-lteration

Deep Q-Learning
DQN tricks

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Special case: shortest path

» Deterministic dynamics: in state s, take action a to get to state s’ = f(s, a)

~ Example above: 5" = (s, dj.¢)

. Reward: (—1) in each step (until the goal Sy is reached)

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Shortest path: optimality principle

« Proposition: & is shortest from s to Sfthrough s’ = suffix of & is shortest from s’ to Sy

/

. Proof: otherwise, let £’ be a shorter path from s’ to S then take s —(’i s’ i St

» The proposition is “if” but not “only if’, because we don't know which s’ is best
|

> Try them all: for each a, try s" = f(s, a)

Sf

» Let V(s) be the shortest path length from s to s,

» For each candidate s’, the shortest path through itis 1 + V(s’) ¢ s

. Forall s # 55 we have V(s) = min(1 + V(f(s,a)))

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Bellman-Ford shortest path algorithm

, Foralls # S5 we have V(s) = min(1 + V(f(s,a)))

DP

Algorithm Bellman-Ford

V(S f) «— (
V(s) <« oo for each non-terminal state s
for | S| — 1 iterations

for each non-terminal state s ’

V(s) — mingea (1 +V(f(s,a))) _ _

. The optimal policy is 7(s) = arg min(1 + V(f(s, a)))

[Ford and Fulkerson, 1962]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Policy improvement

* A value function suggests the greedy policy:

n(s) = arg max Q(s,a) = arg max(r(s,a) +y _(s’|s,a)~p[V(S,)])

d a

. The greedy policy may not be the optimal policy #* = arg max J
T

> But is the greedy policy always an improvement?

» Proposition: the greedy policy for Q. (value of x) is never worse than z

o Corollary (Bellman optimality): if z is greedy for its value O then it is optimal

- . . evaluate reed . .
. In a finite MDP, the iteration > Q7r J X T converges, and then x is optimal

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

The RL scheme

policy evaluation

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Policy lteration

e |f we know the MDP (model-based), we can just alternate evaluate/greedy: @p

W max

Initialize some policy n

repeat
Evaluate the policy Q (s, a) « Eg., _|R|so = s,a0 = a]
Update to the greedy policy n(s) « arg max, Q(s, a)

» Upon convergence, 7 = 7 and 0 = O%*

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Value lteration

 We can also alternate evaluate/greedy inside the loop over states:

Algorithm Value Iteration

Initialize some value function V
repeat
for each state s
Update V(s) « max,(r(s,a)+y Ey5.0)~p [V (5)])

 Must update each state repeatedly until convergence

. Upon convergence, 77(s) = arg max(r(s, @) + yE 5 -, V(S)]
d

DP

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Generalized Policy lteration

 \We can even alternate in any order we wish:

V(s) «
7(s) < argmax(r(s, a) + yE5.0~p V()]

d

* As long as each state gets each of the two update without starvation

» The process will eventually converge to V* and 7

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Model-free reinforcement learning

* \We can be model-free using MC policy evaluation:
Algorithm MC model-free RL

Initialize some policy
repeat
Initialize some value function Q
repeat to convergence
Sample & ~ p,
Update Q(s;,a;) = R>,(&) forallt > 0

(s) « argmax, Q(s,a) for all s

* On-policy policy evaluation in the inner loop — very inefficient

 We could also do this with function approximation

MF

MF

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Off-policy model-free reinforcement learning

. Value iteration is model-based: V(s) « max(r(s,a) + yE s o)~ [V(s)])
d

. Action-value version: 0(s,a) < r(s,a) +vy C (o) S,G)Np[max Q(s’,a’)]
a/

A model-free (data-driven) version — Q-Learning:

» On off-policy data (s, a, r, s’), update

O(s,a) > r+vy max O(s’,a’)

A

[Watkins and Dayan, 1992]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Recap

e RLisa(< policy improvement) loop

. model-based, Monte Carlo, or Temporal-Difference

> Temporal-Difference exploits the sequential structure using dynamic programming
 TD can be off-policy by considering the action-value Q function

> Off-policy data can be thrown out less often as the policy changes
e Policy iImprovement can be greedy

> Arbitrarily alternated with policy evaluation of any kind (MB, MC, or TD)

 Many approaches can be made differentiable for Deep RL

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Today's lecture

Policy Improvement

Deep Q-Learning
DQN tricks

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Fitted Value-lteration (FVI)

Algorithm Value Iteration

Initialize some value function V

repeat

for each state s
Update V (s) «— max,(r(s,a)+y Ey 5.0~ [V (5)])

e Fitted Value-lteration (FVI): square error

0! « arg min
0

S~ U

[(max(r(s,a) +y "(S'\S,a)Np[Vei(S N1 — VH(S))Z]

> For some state distribution

> (Can use losses other than square

DP

DP

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Fitted Q-Ilteration (FQI)

e Fitted Value-Ilteration (FVI):

0't! — arg mein —SNﬂ[(mjx(r(s, @) + YE (g5 aypl Voi(s)]) = V()] :

. Action-value iteration: Q(s, a) « r(s,a) + yE g S,a)Np[mz}X O(s’,a’)] ®
e Fitted Q-Iteration (FQI):

0! «— arg mgin = sl (7(s,a) + ¥ -(Sf‘s,a)Np[maé}X Q,(s",a))]) — Qyls, a))*] :

> For some state-action distribution y max

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Q-Learning

MF

Algorithm Q-Learning

DP

Initialize O
§ <— reset state
repeat
Take some action a
Receive reward r
Observe next state s’
r s’ terminal

max

Update O(s,a) —
P (s,) r+vymax, Q(s’,a’) otherwise

s «— reset state if s’ terminal, else s «— s’

[Watkins and Dayan, 1992]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Sampling-based Fitted Q-lteration

» FQI can be model-free by sampling from p MF

> We can sample using environment interaction with some 7', if u = p_ DP

> Or sample using a simulator we can reset to any state s ~ u max

. Anyway, this is off-policy from the greedy policy arg max Q,(s, a)

a

Algorithm Sampling-based Fitted Q-Iteration

Initialize 6
repeat
Sample a batch (5, a) ~ u
Feed to simulator to get batch (7, s”)
Descend Lg = (¥ + ymaxz Q(¥,d’) — Qo(5,d))?

[Munos and Szepesvari, 2008]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Today's lecture

Policy Improvement
Fitted Q-Ilteration

DQN tricks

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Experience policy

* Which distribution should the training data have®?

> The policy may not be good on other distributions / unsupported states

> = Iideally, the test distribution p_ for the final &

» On-policy methods (e.g. MC): must use on-policy data (from the current)

o Off-policy methods (e.g. Q) can use different policy (or even non-trajectories)

> But both should eventually use p_ or suffer train—test distribution mismatch

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Exploration policies

 Example: | tried route 1: , route 2:

» Suppose route 1 really has expected time , Should you commit to it forever?

* Jo avoid overfitting, we must try all actions infinitely often

e c-greedy exploration: select uniform action with prob. €, otherwise greedy

e Boltzmann exploration:

exp(pQ(s,a))

71'(61 ‘ S) = soft mjx(Q(s, Cl);ﬁ) — m

» Becomes uniform as the inverse temperature f — 0, greedy as f — o

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

EXperience replay

* On-policy methods are inefficient: throw out all data with each policy update

o Off-policy methods can keep the data = experience replay
> Replay buffer: dataset of past experience

> Diversifies the experience (beyond current trajectory)

e Variants differ on

> How often to add data vs. sample data
» How to sample from the buffer

> When to evict data from the buffer, and which

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Why use target network?

. Fitted-Q loss: &, = (r + ymax Q4(s’, a’) — Qu(s, a))*
TN

no gradient from the target term

» Target network = lagging copy of Qy(s, a)
- Periodic update: 0 « 0 every Ttarget steps
» Exponential update: 8 < (1 —)0 + 1o

e (Jjis more stable

> Less of a moving target

» Less sensitive to data = less variance

. But @ # 6 introduces bias

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Putting it all together: DQN

|' o fitted-Q loss

olicy evaluation I

P y 39 — (r+;/m£}X Qé(saa) _ QH(Sa a))z
da

exploration
e.g. €-greedy

greedy policy

n(s) = arg max Q(s, a)

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Deep Q-Learning (DQN)

Algorithm DQN

Initialize 6, set @ «— 0
s «— reset state
for each interaction step

Sample a ~ e-greedy for Qy(s, *)

Get reward r and observe next state s’
Add (s,a,r,s’) to replay buffer D
Sample batch (s,a,r,s’) ~ D

r; s: terminal
i ri +ymax, Qs(s’,a’) otherwise
l a AN

Descend Ly = (¥ — Qy(5,d))?
every Iiaroet Steps, set 6 «— 6
s « reset state 1f s’ terminal, else s <« s’

MF

DP

max

[Mnih et al., 2015]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Today's lecture

Policy Improvement
Fitted Q-Ilteration

Deep Q-Learning

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Value estimation bias

e Q-value estimation is optimistically biased

« Jensen's inequality: for a random vector O

“[max Q,] =2 max E[Q,]

A A

. While there's uncertainty in Q5 , max Qg(s’, a’) is positively biased
a/

 So how can this converge?

> As certainty increases, the bias of each update decreases

> EXisting bias attenuates with repeated discounting by y

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Double Q-Learning

» |dea: keep two value estimates (), and (),

. Update: Q(s,a) = r+yQ_.(s’,argmax Q.(s’,a’))
W a

—1 = the other
e How to use this with DQN?

* |dea 1: use target network as the other estimate

T~
squarTe loss

r+ yQs(s’, argmax Qy(s’,a’))

X Qy(s', @)

Qy(s,a) = r+ymin Qz(s’,argm
l i=12 a’

e |dea 2: Clipped Double Q-Learning

[van Hasselt, 2010]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Prioritized Experience Replay

. Bellman error (= TD error): 6(s,a, r,s’) = r +ymax Q(s’,a’) — O(s, a)
al

» Optimality: & = 0; that's why we usually descend the square loss 8~

* EXperience with high error = more important to see

* Prioritized Experience Replay:
> Sample instance i with prob. p; « 0; e.g. ® = 0.6
» Update with Importance Sampling (IS) weight (7 -pl-)_ﬁ; eg. /=04

. 0 is computed during the updates; new experience is weighted max 51.“)
i [Schaul et al., 2016]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Dueling Networks
» Advantage function: A_(s,a) = Q_(s,a) — V_(s)

» A_(s,a) can be more consistent across states with similar effect of actions

> Even if their value V_(s) is very different . [4(] = 0,(s, +)
» V () is a scalar, which can be easier to learn V)
0
5 >-| Oyfs, -
Ays, -

e |ssue: 0 = (V+)+ (A — ¢) is underdetermined

_ Stabilize with Q(s,a) = V(s) + (A(S, a) — mean A(s, 67))
a [Wang et al., 2016]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Multi-step Q Learning

MC is high variance but unbiased: Q(s,, a,) = R, = Z yt/_trt,
I'>1

. D is lower variance but biased: Q(s,,a,) = r,+ymax Q(s,,(, d,,)
Ay

Because max (J(s,, |, d,,) isn't really the next-step value, while still learning
i1

>

o Let's trade them off, n-step Q-Learning:

O@s,a) > r+yr g+ + Vn_lrt:n (+ " max Qs ., d;y)

Uin

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Rainbow DQN

 Rainbow DQN = DQN + a powerful combination of tricks
> Double Q-Learning
> Prioritized Experience Replay
> Dueling Networks
> Multi-step Q-Learning

» Distributional RL

> Noisy Nets

[Hessel et al., 2018]

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Recap

 RL algorithms can be implemented with function approximation
 There are (at least) 2 important policies
> The learner policy — should be the best possible (e.g. greedy)
> The experience policy — should explore (e.g. €-greedy)
 Replay buffer: store data for longer (off-policy), diversify
e Jarget network: reduce variance, stabilize the target

* |In practice, add lots of tricks and heuristics to the theory

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

Logistics

_ e Exercise 1 due tomorrow

e Quiz 2 due next Monday

Roy Fox | CS 277 | Winter 2026 | Lecture 4: Deep Q-Learning

