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Logistics

e Quiz 1 has been graded

e Quiz 3 due next Monday

 We'll discuss Exercise 1 after the grace days

* EXxercise 2 due next Friday
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Recap: policy evaluation

.4I|:

model-based model-free D

..............................................................................................................................................................................................................................................................................................................................................................................................................................................

Monte Carlo (MC) Va(so) = Ego)p [R]50] &~ Py V(sg) = R(S)

..............................................................................................................................................................................................................................................................................................................................................................................................................................................

Temporal Difference (TD) V (s)
(on-policy) 7

= Eufonal (50 + B0l Vel ssairs’~pr V) = r4 V()

..............................................................................................................................................................................................................................................................................................................................................................................................................................................

Temporal Difference (TD)
(off-policy)

0,(5.@) = 1(5,0) + 1 0a IO )] 5.0,7,5 ~ pr Q5,@) = 7+ 7E 0,1 O(s", )]

a'|ls' ~nx
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Recap: policy evaluyationr improvement

model-based model-free ‘
.............................................................................................................................................................................................................................................................................................................................................................................................................................................. ‘o
Monte Carlo (MC) Va(so) = Ego)p [R]50] S~ Dy V(sp) = R(S)

..............................................................................................................................................................................................................................................................................................................................................................................................................................................

Temporal Difference (TD)
(on-policy)

max

Vo(s) = Eglr(s, @) + YE 5 gopl Va(sH]] S,a, 1,8 ~p_ V(s) —
Value Iteration

r+ yV(s)

..............................................................................................................................................................................................................................................................................................................................................................................................................................................

Temporal Difference (TD)
(off-policy)

| max
0,(s,@) = r(s,a) + YEy 5.0~ pl Qs @) s,a,7,8"~py Qs,a) = 1+ yEgr=,10(s", )]
if,| i/ -
max Q-learning
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Deep Q-Learning (DQN)

Algorithm DQN

Initialize 6, set @ «— 0
s «— reset state
for each interaction step

Sample a ~ e-greedy for Qy(s, *)

Get reward r and observe next state s’
Add (s,a,r,s’) to replay buffer D
Sample batch (s,a,r,s’) ~ D

r; s: terminal
i ri + ymax, Qg(s.,a’) otherwise
l a AN

Descend Ly = (¥ — Qy(5,d))?
every Iiaroet Steps, set 6 «— 6
s « reset state 1f s’ terminal, else s <« s’

MF

DP

max

[Mnih et al., 2015]
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Today's lecture

Actor—Critic PG

Advantage estimation
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Value-based vs. policy-based methods

value-based policy-based

Qy(s, a) policy evaluation e R(S)]

arg max Qy(s, a)

my(a B
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Policy Gradient (PG)

o Gradient-based learning: @ — 0 — V, k.. | ZLy(x)]

> (Can estimate expectation with samples

o Policy-Gradient RL: @ — 0 + VyJy, with J, = E,_, |R]
> Can we also use samples & ~ py?

« The sampling distribution itself depends on ¢

> Data must be on-policy Ve

» Cannot backprop gradient through samples
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Score-function gradient estimation

., Log-derivative + chain rule: Vylog py(&) = Vopo(&)

Po(S)

e |Log-derivative / score-function / REINFORCE trick:

Voly= ) R(E) Vypy&)
S

= ) R©py(&) Volog py(&)
3

= [E;., [R(E) Vglog py(&)]

» Allows estimating V,J, using samples & ~ p,
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REINFORCE

o Tofind VyJ,y = ‘(ngg[R(f) Vylog py(&)], sample & ~ py, then:

Volog py(&) = V9<10gp(so) T Z log my(a,|s,) + 1log p(s,.11S, Clt))
t

= Vg Z log my(a,| s,)
f

> Model-free, but on-policy and high variance (like MC)
Algorithm REINFORCE

Initialize mg
repeat
Roll out & ~ py
Update with gradient g < R(&) )., Vg log mg(a;|s;)

MF

max

[Williams, 1992]
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PG example: Gaussian policy

 How to represent continuous-action policy?

> One way: Gaussian policy my(a|s) = N (a; uy(s), Z)

. Log-probability: log my(a|s) = —%Ha — //l@(S)”%_l + const

> Where H)CH%D = xTPx is the Mahalanobis norm

 Policy Gradient:

8o(&) = R(E) Vylog py(&) = R(&) ) Z71(a, — pg(s)) V ghg(s)

» Update py(s,) toward a,, more so the higher the return

Roy Fox | CS 277 | Winter 2026 | Lecture 5: Policy-Gradient Methods



PG: minimizing reward-surprisal

go(&) = R(&) ) Vylogmya,| s)

o Surprisal = —log my(a | s)
» Update 6 toward being less surprised by high return

o Surprisal can get very large for unlikely actions

~ Particularly if we try to converge my(a|s) — 0 for suboptimal actions

> = gradient estimator can have high variance

 Coming up: variance reduction through critics and baselines
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Today's lecture

Policy Gradient

Advantage estimation
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Don't let the past distract you

e In VyoJy =1L 5NPQ[R(§) V,log py(&)], both R and log p, are sums over time

e |n finite horizon:

-1
VQJH — V@ —5Np9[R(§)] — Z V@ _fgwpg[rt'] independent of the future
t'=0

only future return
= less variance

_fgwpg rt , z V ngg ﬂﬁ(at ‘ St) score-function trick
<t

.MLBZI(g ) V glOg ﬂg(at ‘ St)] switch summation order

=0
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PG with discounted returns

e |In discounted horizon:

Volo= )

_5Np9[}/t,rt/ V@log ﬂ@(at | St)]
<t
-y,
[

R, (&) Vylog mya,|s,) is discounted by y’; should it be?

= 5Np9[RZt(§ ) Vglog my(a,| s,)]

> Neglects data from t > 1/(1 — y); should it?

o |f discounting isn't real, just a computational / statistical trick

r

» Don't discount by ¥’ (most algorithms don't)
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Reducing variance through value estimation

» The past in R(&) is terms we can't control = ignore to reduce variance

» The future R, (&) is still high-variance = estimate with TD

» Replace R, (&) with O, (s, a) = E;_, [R5 (S) | s, a,]

e Butis it correct?

V,J, = Z Y'Ec., [Rs (&) Vglog my(a,| s,)]
[

?
— 2 }/t _(Staat)Npé’[Qﬂe(St’ al‘) Vgl()g ﬂg(at ‘ St)]
[
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Policy-Gradient Theorem

* Apply chain rule on the value gradient:

V@ VﬂH(S) —

Vg _(a\S)NﬂH[QﬂH(Sa a)]

2 Qﬂ'@(s’ a) V@”@(a ‘ s) + 71'(9(61 ‘ S) V@QEQ(S, a) product rule

_(a|S)~7z-9[Qﬂ-9(S, Cl) V@l()g 71'6,(61 ‘ S) -+ y

— (S"S,a)rvp[ VH V][Q(S /)]]

 Here back-propagating gradients is like a Bellman recursion

> With pseudo-reward 7(s, a) = Q, (s, a) Vylog my(a | $)

Vg = Z y'
[

_(St,at)Npe[Ft(Sta Clt)] — Z }/t _(st,at)NpH[QﬂH(Sta Clt) Velog ﬂe(at ‘ St)]
[

[Sutton et al., 2000]
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Actor-Critic (AC) methods

critic O,(s, a)
evaluates actor

policy evaluation

actor my(a | s)
uses critic to improve
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Actor—-Critic PG

Algorithm Actor—Critic PG (Q version) MF
Initialize 7y and Q4 0
repeat DP

Roll out & ~ pg
Update g with g < 3, Q4(ss, a;) Vo log mg(ay|s;) P

Update Q4 with MC or TD

Algorithm Actor—Critic PG (V version)

Initialize 7y and Vi

repeat
Roll out & ~ py
Update gy with g < >, (r; +yVy(s:41)) Vo log mg(a;|s;)
Update V4 with MC or TD
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Today's lecture

Policy Gradient

Actor—Critic PG
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Baselines

« Constant shift b in return doesn't matter for the policy gradient

‘ngg[(R(f) — b) Vglog py(S)] = Vy "5~p9[R(5) — bl = VyJy

N\

 But it can make a huge difference In its variance “[b] = b independent of &

> Consider E[xy] vs. E[x(y + 100)], with uniform (x,y) € {—1,1 12

» Making y — b zero-mean (minimum V]y — b]) is a good rule of thumb:

» Update b — R(&) (approaches the expected return)

> Estimate VpJy = (R(S) — b) Vylog py(<) ‘
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State-dependent baselines

» What can b depend on?

[bV plog ny(a,|s,)] =

_Sz"’Pe[ \/@ _(at‘st)’\’ﬂe[b]] =0

- (S»a)~Py

» As long as b is independent of a, given s, (i.e. not caused by ﬂe(at | St))

» Updating b(s,) = R (&) = we're learning Vo,

e Inthe TD PG version:

Vodo = Y V'Eisarpl(Qn(5p @) = V. (5)) Vglog my(a, | 5,)]
[
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Advantage estimation

» Advantage function: A_(s,a) = Q_(s,a) — V _(s)

~ AC PG with baseline: V,Jy = 2 y'[E (s.a)~p A (S @) Vglog my(a, | s)]
[

» How to estimate A(s, a) using a critic V,(5)?
> MC:

A(s, a) = R (8) — Vy(5)

A(s,a) ~ r+ yV¢(S’) — V¢(s)
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Advantage Actor—Critic (A2C)

MF

Algorithm Advantage Actor—Critic

Initialize g and Vi

repeat
Roll out & ~ pg
Update A8 « 2., (R>(&) — Vi (s1)) Vg log mg(ayls;)
Descend Ly = 3, (R/(€) — V(s1))?

[Mnih et al., 2016]
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Practical considerations: param sharing

A) > > V¢(S)
e Separate parameters: —
) > > my(als)
e Shared parameters: .
V(s)
¢
» Can be more data efficient s . —
T~ my(als)

» Can be less stable

critic

actor

critic

actor
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Practical considerations: distributed comp.

e Serial execution _
simulate to collect data

* Synchronous parallel execution take gradient step

e Asynchronous parallel execution (A3C)

[Mnih et al., 2016]
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Comparing advantage estimators

bias variance

e Constant baseline none high
one gradient
VoJy = (R, — b) Vylog my(a,| s,) per trajectory
e State-based baseline (MC) none
state-dependent
VQJQ ~ (th — V¢(St)) Vel()g ”e(at | Sz) baseline
e State-based baseline (TD) lower

V¢ is approximate

VoJog = (1 + yVy(s1) — Viy(s)) Vglog my(a, | s))
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Multi-step TD

e 1-step TD: At1 =r,+yV(s,.) — V(s)

e 2-step TD: At2 =r,+yr,+ }/2V(St 1) — V(s

e n-step TD: A" =r,+ - +y"lr, | +y"V(s,.,)— V(s)

o Inthe limit (MC): A = =V(s) + 1, +yr  + -
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TD(/)

e How to choose n?

> Any specific n is hard truncation of the window of evidence we consider

* Insteadq, use exponential window K

» Take n-step TD with weight proportional to A", where 0 < A <1 . \

Al=1 =Y 2TAN =Y Oy ar+ PV (Siamn) — VG, A;))\
n At

. Generalized Advantage Estimation (GAE(A)): VoJy &~ A2V glog my(a,| s,)

» GAE(1) = MC; GAE(O) = 1-step

[Schulman et al., 2015]
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Recap

 Policy Gradient = take the gradient of our objective w.r.t. policy parameters
> Model-free, but on-policy and high variance

e \ariance reduction:
» Past rewards are independent of future actions
> D value estimation

> Baselines, possibly state-dependent

» TD(/) to trade off bias and variance
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