

CS 277: Control and Reinforcement Learning

Winter 2026

Lecture 7: Exploration

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Logistics

assignments

- Exercise 2 and Quiz 4 due **next Monday**

Today's lecture

Trust-region methods

Multi-Armed Bandits

Exploration in Deep RL

Importance Sampling

- Suppose you want to estimate $\mathbb{E}_{x \sim p}[f(x)]$

- ▶ but only have samples $x \sim p'$

- Importance sampling:

$$\mathbb{E}_{x \sim p}[f(x)] = \mathbb{E}_{x \sim p'} \left[\frac{p(x)}{p'(x)} f(x) \right]$$

- ▶ Importance (IS) weights: $\rho(x) = \frac{p(x)}{p'(x)}$
- ▶ Estimate: $\rho(x)f(x)$ with $x \sim p'$

IS application 1: multi-step Q-Learning

MF
 θ
DP
 π'
max

- **n -step Q-Learning:** $Q(s_t, a_t) \rightarrow \sum_{\Delta t=0}^{n-1} \gamma^{\Delta t} r_{t+\Delta t} + \gamma^n \max_a Q(s_{t+n}, a)$
- Reminder: $Q^*(s_t, a_t)$ evaluates any a_t but optimal behavior afterward
 - ▶ We need data from $a_{t+\Delta t} = \arg \max_a Q(s_{t+\Delta t}, a)$ for RHS to estimate optimal target
- To be **off-policy**: update $Q(s_t, a_t) \rightarrow \sum_{\Delta t=0}^{n-1} \gamma^{\Delta t} \rho_t^{\Delta t} r_{t+\Delta t} + \gamma^n \max_a Q(s_{t+n}, a)$
 - ▶ with $\rho_t^{\Delta t} = \prod_{i=t+1}^{t+\Delta t} \frac{\pi(a_i | s_i)}{\pi'(a_i | s_i)}$ for data from π'

IS application 2: off-policy policy evaluation

- Estimate $J_\pi = \mathbb{E}_{\xi \sim p_\pi}[R(\xi)]$ off-policy: $J_\pi = \mathbb{E}_{\xi \sim p_{\pi'}}[\rho_\pi^\pi(\xi) R(\xi)]$

with $\rho_\pi^\pi(\xi) = \frac{p_\pi(\xi)}{p_{\pi'}(\xi)} = \prod_t \frac{\pi(a_t | s_t)}{\pi'(a_t | s_t)}$

$p(s' | s, a)$ cancels out

- $\rho(\xi)$ can be very large or small \Rightarrow high variance
- Some reduction: r_t is not affected by future actions

$$J_\pi = \sum_t \mathbb{E}_{\xi_{\leq t} \sim p_{\pi'}}[\gamma^t \rho_{\pi'}^\pi(\xi_{\leq t}) r_t] = \sum_t \mathbb{E}_{\xi_{\leq t} \sim p_{\pi'}} \left[\gamma^t r_t \prod_{t' \leq t} \frac{\pi(a_{t'} | s_{t'})}{\pi'(a_{t'} | s_{t'})} \right]$$

[Precup et al., 2000]

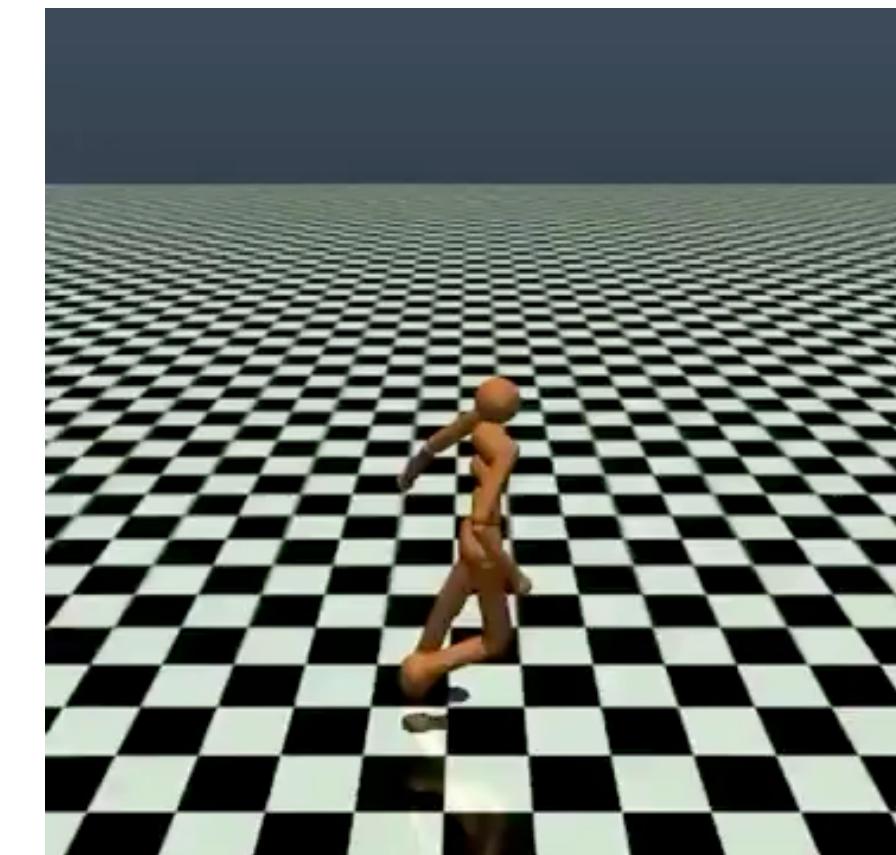
MF
 θ
DP
 π'
max

IS application 3: Off-policy Policy Gradient

- **Policy Gradient:** $\nabla_{\theta} J_{\theta} = \sum_t \gamma^t \mathbb{E}_{\xi \sim p_{\theta}} [R_{\geq t}(\xi) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$
- **Off-Policy PG:** $\nabla_{\theta} J_{\theta} = \sum_t \gamma^t \mathbb{E}_{\xi \sim p_{\theta'}} [\rho_{\theta'}^{\theta}(\xi_{\leq t}) R_{\geq t}(\xi) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)]$

• $R_{\geq t}(\xi)$ = future discounted rewards affected by $\pi_{\theta}(a_t | s_t)$

• $\rho_{\theta'}^{\theta}(\xi_{\leq t})$ = past probability ratios that affect $\pi_{\theta}(a_t | s_t)$



• Should we discount by γ^t ? Not if we care about evidence from later states

• $\rho_{\theta'}^{\theta}(\xi_{\leq t})$ has **high variance**, some methods just use $\rho_{\theta'}^{\theta}(a_t | s_t) = \frac{\pi_{\theta}(a_t | s_t)}{\pi_{\theta'}(a_t | s_t)}$

MF
 θ
DP
 π'
max

Performance Difference Lemma

- Policy gradient = small changes in policy; can we make **large changes?**
telescopic cancellation
- For any π, ξ :
$$\sum_t \gamma^t A_\pi(s_t, a_t) = \sum_t \gamma^t (r_t + \gamma V_\pi(s_{t+1}) - V_\pi(s_t)) = R(\xi) - V_\pi(s_0)$$

advantage of entire trajectory
- Expectation by different policy: **Performance Difference Lemma**

$$\sum_t \gamma^t \mathbb{E}_{(s_t, a_t) \sim p_\pi} [A_{\bar{\pi}}(s_t, a_t)] = \mathbb{E}_{\xi \sim p_\pi} [R(\xi) - V_{\bar{\pi}}(s_0)] = J_\pi - J_{\bar{\pi}}$$

$s_0 \sim p$ in both π and π'

- ▶ We want to **maximize over π** , with $\bar{\pi}$ fixed
- Compare: **PG Theorem**
$$\nabla_\theta J_\theta = \sum_t \gamma^t \mathbb{E}_{(s_t, a_t) \sim p_\theta} [A_{\pi_\theta}(s_t, a_t) \nabla_\theta \log \pi_\theta(a_t | s_t)]$$

[Kakade and Langford, 2002]

Finding best next policy

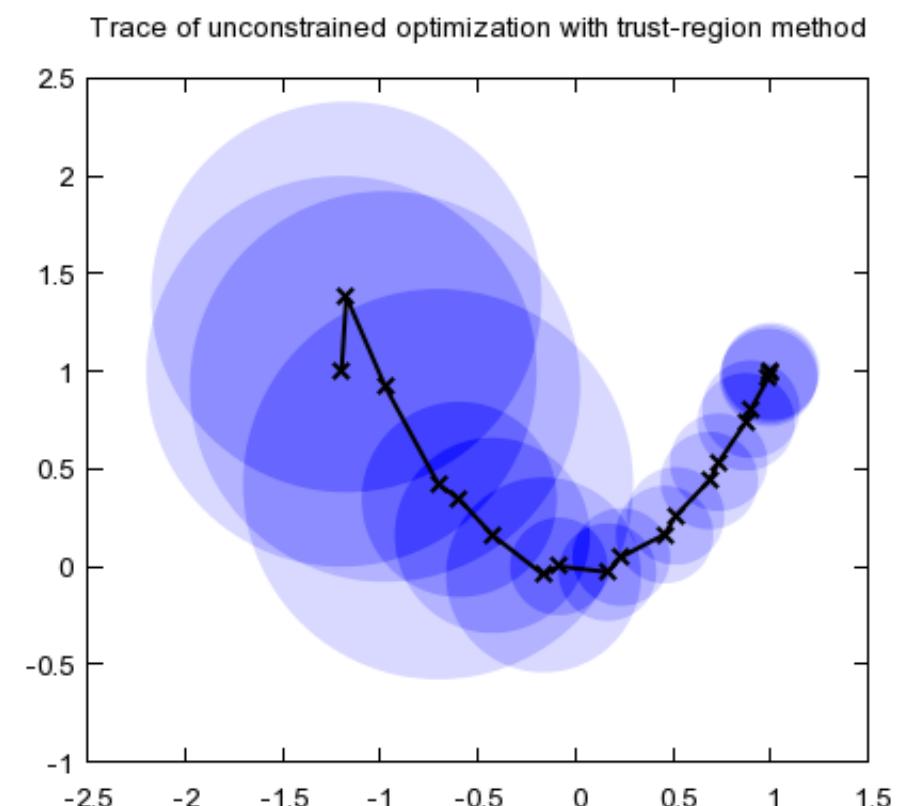
- With **current policy** $\bar{\pi}$: find $\max_{\pi} J_{\pi} - J_{\bar{\pi}} = \max_{\pi} \sum_t \gamma^t \mathbb{E}_{(s_t, a_t) \sim p_{\pi}} [A_{\bar{\pi}}(s_t, a_t)]$
 - Can use $\bar{\pi}$ to **evaluate** $A_{\bar{\pi}}$
- But we don't have data $(s_t, a_t) \sim p_{\pi}$; **idea**: sample from $\bar{\pi}$
 - Trick question**: is this on-policy or off-policy? **On-policy** data, but needs **IS weight**

$$\max_{\pi} \sum_t \gamma^t \mathbb{E}_{\xi_{\leq t} \sim p_{\bar{\pi}}} [\rho_{\bar{\pi}}^{\pi}(\xi_{\leq t}) A_{\bar{\pi}}(s_t, a_t)]$$

- Is it reasonable to use $\rho_{\bar{\pi}}^{\pi}(a_t | s_t) = \frac{\pi(a_t | s_t)}{\bar{\pi}(a_t | s_t)}$ instead? i.e. drop $\rho_{\bar{\pi}}^{\pi}(\xi_{\leq t})$

Trust-Region Policy Optimization (TRPO)

- Trust region = space around $\bar{\pi}$ where $\rho(\xi_{<t}) \approx 1$
 - ▶ Easier to consider $\mathbb{E}_{\xi_{<t} \sim p_{\bar{\pi}}}[\log \rho(\xi_{<t})] \approx 0$
- $-\mathbb{E}_{\xi_{<t} \sim p_{\bar{\pi}}}[\log \rho(\xi_{<t})] = \mathbb{D}[\bar{\pi}(\xi_{<t}) \parallel \pi(\xi_{<t})] = \sum_{t' < t} \mathbb{E}_{\xi_{<t'} \sim p_{\bar{\pi}}}[\mathbb{D}[\bar{\pi}(a_{t'} | s_{t'}) \parallel \pi(a_{t'} | s_{t'})]]$
- TRPO: $\max_{\theta} \mathbb{E}_{(s,a) \sim p_{\bar{\theta}}}[\rho_{\bar{\theta}}^{\theta}(a | s) A_{\bar{\theta}}(s, a)]$ s.t. $\mathbb{E}_{s \sim p_{\bar{\theta}}}[\mathbb{D}[\pi_{\bar{\theta}}(a | s) \parallel \pi_{\theta}(a | s)]] \leq \epsilon$
 - ▶ $A_{\bar{\theta}}$ estimated with **critic** A_{ϕ}
 - ▶ Computational tricks for **gradient-based optimization**



MF
 θ
DP
 π'
max

[Schulman et al., 2015]

Proximal Policy Optimization (PPO)

- Same motivation: ascend $\mathbb{E}_{(s,a) \sim p_{\bar{\theta}}}[\rho_{\bar{\theta}}^{\theta}(a | s)A_{\bar{\theta}}(s, a)]$ with π_{θ} staying near $\pi_{\bar{\theta}}$
 - ▶ PPO-Penalty: add a penalty term for $\mathbb{E}_{s \sim p_{\bar{\theta}}}[\mathbb{D}[\pi_{\bar{\theta}}(a | s) \| \pi_{\theta}(a | s)]]$
 - ▶ PPO-Clip: ascend $\mathbb{E}_{(s,a) \sim p_{\bar{\theta}}}[L_{\bar{\theta}}^{\theta}(s, a)]$ with

$$L_{\bar{\theta}}^{\theta}(s, a) = \min(\rho_{\bar{\theta}}^{\theta}(a | s)A_{\bar{\theta}}(s, a), A_{\bar{\theta}}(s, a) + |\epsilon A_{\bar{\theta}}(s, a)|)$$

- Positive / negative advantage \Rightarrow increase / decrease $\rho_{\bar{\theta}}^{\theta}(a | s) = \frac{\pi_{\theta}(a | s)}{\pi_{\bar{\theta}}(a | s)}$
 - ▶ But no incentive beyond $\rho_{\bar{\theta}}^{\theta}(a | s) = 1 \pm \epsilon$
 - no incentive \neq doesn't happen
 - PPO has lots more tricks to limit divergence

MF
 θ
DP
 π'
max

[Schulman et al., 2017]

Recap

- Model-based policy evaluation can be solved linearly
- Deep RL isn't just SGD
 - ▶ Exception: policy gradient on offline (batch) data
- Value-based methods struggle to max in continuous action spaces
 - ▶ DDPG: π_θ learns to maximize Q_ϕ (actor–critic method)
- Importance Sampling decouples expectation and sampling distributions
 - ▶ Optimize on-policy objectives with off-policy data
 - ▶ TRPO and PPO: sample from current policy to evaluate next policy, if it's close

State of the Course

- Model-Free RL: done!
- Up next:
 - ▶ Model-Based RL (related: Optimal Control)
 - ▶ Twists and turns!
 - Exploration, partial observability, non-reward feedback, structure
 - ▶ Advanced settings!
 - Inverse RL, Bounded RL, Offline RL, Multi-Agent RL & more

Today's lecture

Trust-region methods

Multi-Armed Bandits

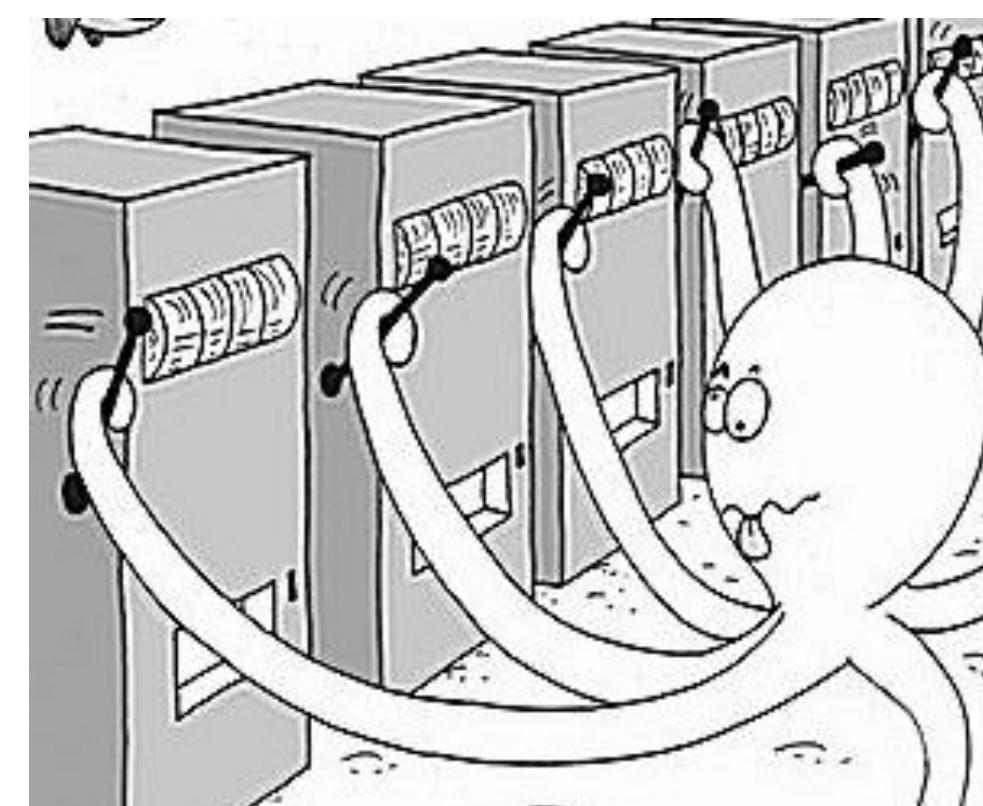
Exploration in Deep RL

Multi-Armed Bandits (MABs)

- Basic setting: single instance x , **multiple actions** a_1, \dots, a_k
 - ▶ Each time we take action a_i we see a **noisy reward** $r_t \sim p_i$
- Can we maximize the **expected reward** $\max_i \mathbb{E}_{r \sim p_i}[r]?$
 - ▶ We can use the mean as an estimate $\mu_i = \mathbb{E}_{r \sim p_i}[r] \approx \frac{1}{n(i)} \sum_{t \in \mathcal{T}_i} r_t$
- **Challenge:** is the best mean so far the best action?
 - ▶ Or is there another that's better than it appeared so far?

One-armed bandit

Multi-armed bandit



Exploration vs. exploitation

- **Exploitation** = choose actions that seems good (so far)
- **Exploration** = see if we're missing out on even better ones
- Naïve solution: learn r by **trying every action** enough times
 - ▶ Suppose we can't wait that long: we care about rewards **while we learn**
- **Regret** = how much worse our return is than an **optimal action**

$$\rho(T) = T\mu_{a^*} - \sum_{t=0}^{T-1} r_t$$

- ▶ Can we get the regret to grow **sub-linearly** with T ? \implies average goes to 0: $\frac{\rho(T)}{T} \rightarrow 0$

Let's play!

- <http://iosband.github.io/2015/07/28/Beat-the-bandit.html>

Simple exploration: ϵ -greedy

- With probability ϵ :
 - ▶ Select action **uniformly** at random
- Otherwise (w.p. $1 - \epsilon$):
 - ▶ Select **best** (on average) action so far
- **Problem 1:** all non-greedy actions selected with same probability
- **Problem 2:** must have $\epsilon \rightarrow 0$, or we keep accumulating regret
 - ▶ But at what rate should ϵ vanish?

Boltzmann exploration

- Keep an average of past rewards $\hat{\mu}_i = \frac{1}{n(i)} \sum_{t \in \mathcal{T}_i} r_t$
- Boltzmann (softmax) exploration: $\pi(a_i) = \text{softmax}_{\beta} \hat{\mu}_i = \frac{\exp(\beta \hat{\mu}_i)}{\sum_j \exp(\beta \hat{\mu}_j)}$
- Obviously bad actions $\hat{\mu}_i \ll \max_j \hat{\mu}_j$ are unlikely to be used (but can!)
 - ▶ Problem: still must have $\beta \rightarrow \infty$, or we keep accumulating regret
 - ▶ Some evidence that β should increase linearly

Optimism under uncertainty

- Tradeoff: **explore** less used actions, but don't be late to **start exploiting** what's known
 - ▶ Principle: **optimism under uncertainty** = explore to the extent you're uncertain, otherwise exploit
- By the **central limit theorem**, the mean reward $\hat{\mu}_i$ of arm i quickly $\rightarrow \mathcal{N}\left(\mu_i, O\left(\frac{1}{n(i)}\right)\right)$
- Be optimistic by slowly-growing number of **standard deviations**:
$$a = \arg \max_i \hat{\mu}_i + \sqrt{\frac{2 \ln T}{n(i)}}$$
 - ▶ **Upper confidence bound (UCB)**: likely $\mu_i \leq \hat{\mu}_i + c\sigma_i$; unknown variance \implies let c **grow**
 - ▶ But **not too fast**, or we fail to exploit what we do know
- **Regret**: $\rho(T) = O(\log T)$, provably optimal

Thompson sampling

- Consider a **model** of the reward distribution $p_{\theta_i}(r | a_i)$
- Suppose we start with some **prior** $q(\theta)$
 - ▶ Taking action a_t , see reward $r_t \implies$ **update posterior** $q(\theta | \{(a_{\leq t}, r_{\leq t})\})$
- **Thompson sampling:**
 - ▶ **Sample** $\theta \sim q$ from the posterior
 - ▶ Take the **optimal action** $a^* = \max_i \mathbb{E}_{r \sim p_{\theta_i}}[r]$
 - ▶ **Update** the belief (different methods for doing this)
 - ▶ Repeat

Other online learning settings

- What is the reward for action a_i ?
 - ▶ **MAB**: random variable with distribution $p_i(r)$
 - ▶ **Adversarial bandits**: adversary selects r_i for every action
 - The adversary knows our algorithm! And past action selection! But not future actions
 - Learner must be **stochastic** (= unpredictable), but we can still have guarantees
 - ▶ **Dueling bandits**: just 1 bit of feedback, is a_i better or a_j ?
- **Contextual bandits**: we also get instance $x \sim p$, make decision $\pi(a | x)$
 - ▶ Can we generalize to unseen instances?

Today's lecture

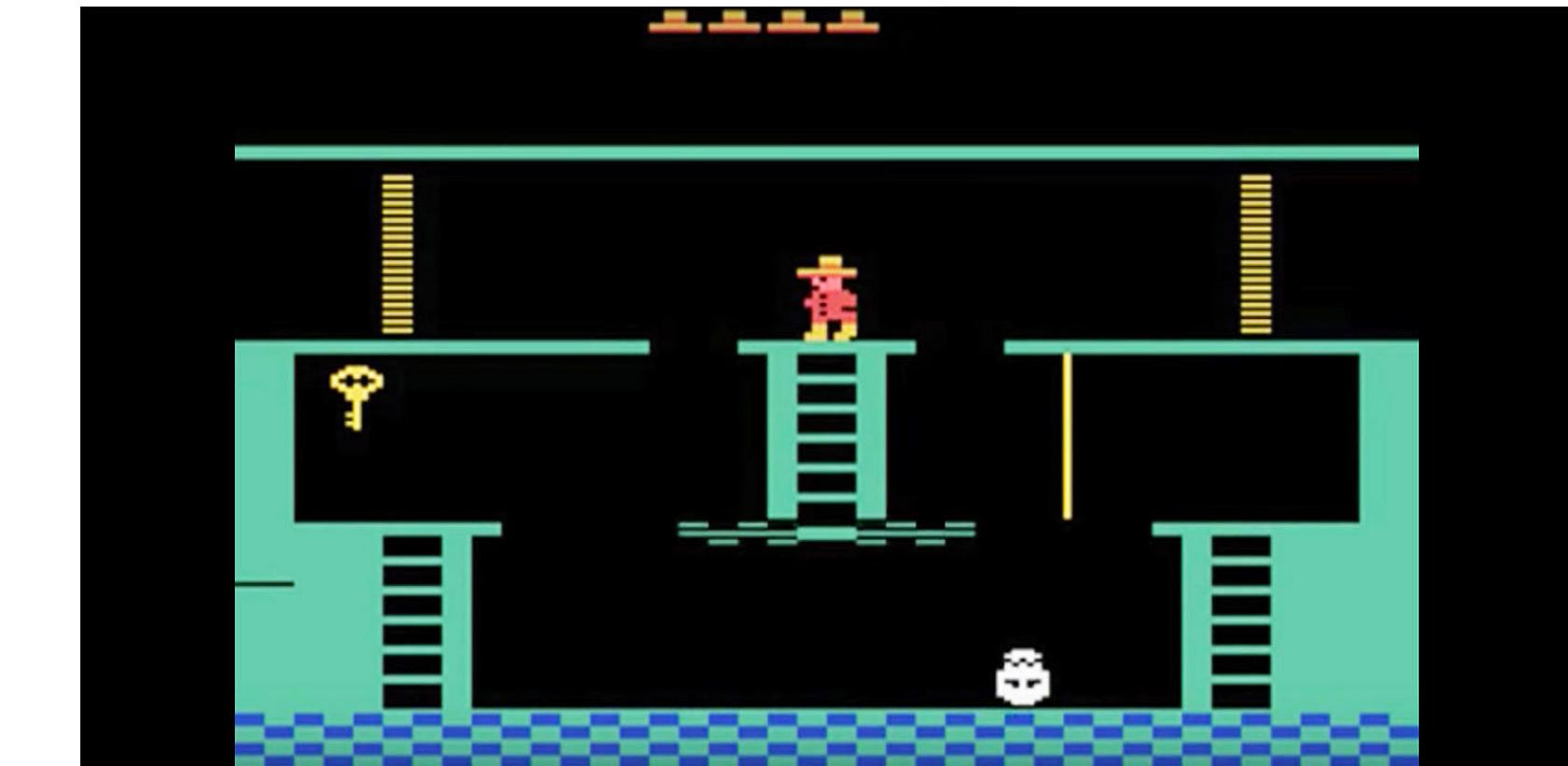
Trust-region methods

Multi-Armed Bandits

Exploration in Deep RL

Learning with sparse rewards

- Montezuma's Revenge
 - ▶ Key = 100 points
 - ▶ Door = 500 points
 - ▶ Skull = 0 points
 - Is it good? Bad? Affects something off-screen? Opens up an easter egg?
 - ▶ Humans have a head start with transfer from known objects
- Exploration before learning:
 - ▶ Random walk until you get some points – could take a while!



RL exploration is more complicated...

- Need to consider **states** and **dynamics**
- Need **coordinated behavior** to get *anywhere*
 - ▶ E.g., cross a bridge to get the game started...
 - ▶ **Random exploration** will kill us with high probability
 - **Structured exploration**: noise over time has joint distribution, temporal structure
- How to define **regret**?
 - ▶ With respect to **constant action**? We can outperform it
 - ▶ With respect to **optimal policy**? May be too hard to learn \implies linear regret
 - ▶ Most approaches are **heuristic**, no regret guarantees; often train-time rewards don't matter

Count-based exploration

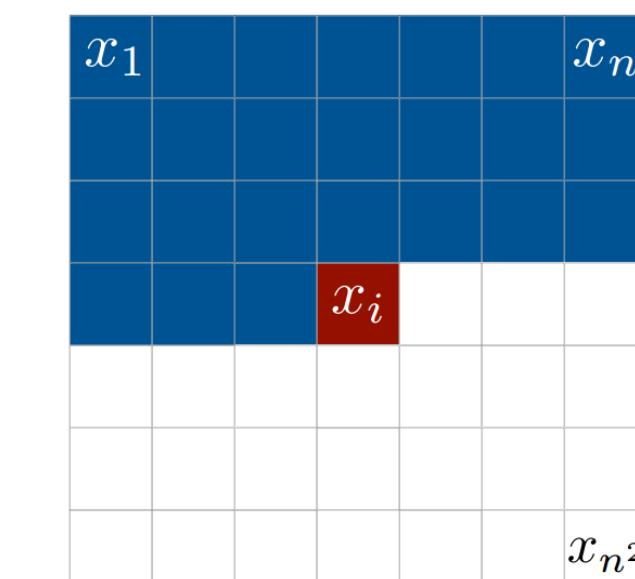
- Generalizing **UCB exploration** $a = \arg \max_i \hat{\mu}_i + \sqrt{\frac{2 \ln T}{n(i)}}$ from MAB to RL
- Count **visitations** to each state $n(s)$ (or state-action $n(s, a)$)
- Optimism under uncertainty: add **exploration bonus** to scarcely-visited states

$$\tilde{r} = r + r_e(n(s))$$

- ▶ r_e should be **monotonic decreasing** in $n(s)$
- ▶ Need to **tune** its weight

Density model for count-based exploration

- How to represent “counts” in large state spaces?
 - ▶ We may never see the same state twice
 - ▶ If a state is very similar to ones we've seen often, is it new?
- Train a density model $p_\phi(s)$ over past experience
- Unlike generative models, we care about getting the density correctly
 - ▶ But we don't care about the quality of samples
- Density models for images:
 - ▶ CTS, PixelRNN, PixelCNN, etc.



Pseudo-counts

- How to infer **pseudo-counts** from a density model?

$$p_\phi(s) = \frac{n(s)}{N}$$

- After **another visit**:

$$p_\phi(s) = \frac{n(s) + 1}{N + 1}$$

- To **recover** the pseudo-count:

- ▶ $p_{\phi'} \leftarrow$ **mock-update** the density model with another visit of s
- ▶ **Compute**

$$\hat{N} = \frac{1 - p_{\phi'}(s)}{p_{\phi'}(s) - p_\phi(s)} p_\phi(s) \quad \hat{n}(s) = \hat{N} p_\phi(s)$$

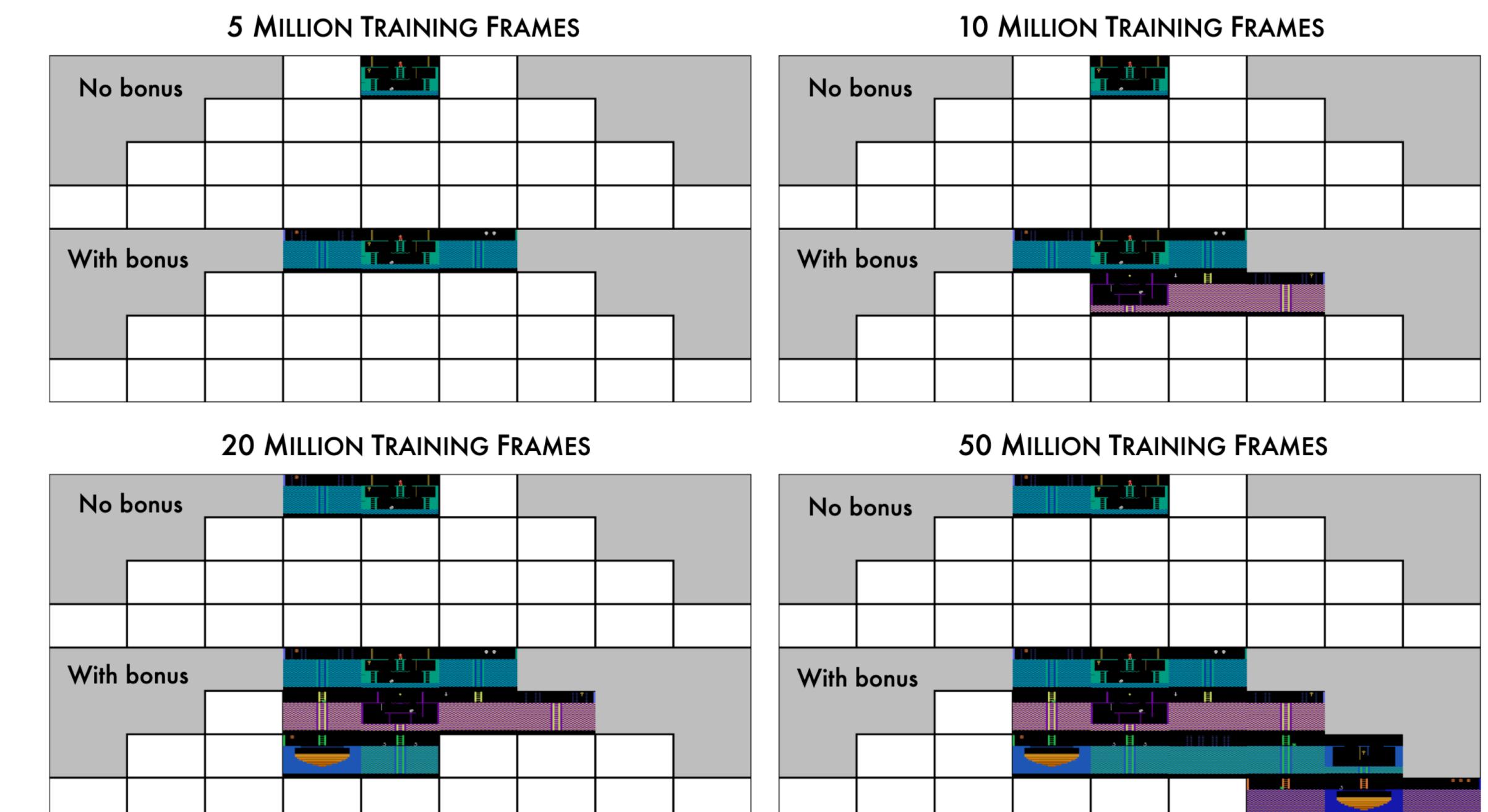
Exploration bonus

- What's a good **exploration bonus**?
- In bandits: **Upper Confidence Bound (UCB)**

► $r_e(n(s)) = \sqrt{\frac{2 \ln N}{n(s)}}$

- In RL, often:

► $r_e(n(s)) = \sqrt{\frac{1}{n(s)}}$



[Bellemare et al., 2016]

Thompson sampling for RL

- Keep a distribution over models $p_\theta(\phi)$
- What's our “model”? Idea 1: MDP; Idea 2: Q-function
- Thompson sampling over Q-functions:
 - ▶ Sample $Q \sim p_\theta$
 - ▶ Roll out an episode with the greedy policy $\pi(s) = \arg \max_a Q(s, a)$
 - ▶ Update p_θ to be more likely for Q' that gives low empirical Bellman error
 - ▶ Repeat

Optimal exploration: simple settings

- Multi-Armed Bandits (MAB): single state, one-step horizon
 - ▶ Exploration–exploitation tradeoff very well understood
- Contextual bandits: random state, one-step horizon
 - ▶ Also has good theory (Online Learning)
- Tabular RL
 - ▶ Some good heuristics, recent theoretical guarantees
- Deep RL
 - ▶ Only few exploratory ideas and heuristics

Recap

- **Online learning** = getting good rewards while learning
 - In contrast: learn however, but **deploy** good policy
- Online learning requires trading off **exploration–exploitation**
 - Don't **overfit** to too little data
 - Don't be **late** to use what you've learned
- Optimism under uncertainty: **exploration bonus** for novelty
- **Thompson sampling**: coordinated exploration actions
- Same principles hold in **RL**