UCI S ine
CS 277: Control and

Reinforcement Learning
Winter 2026

Lecture 8: Partial Observability

i
Roy Fox =N
. %\/\/ILL PREss &
Department of Computer Science LEVER |
School of Information and Computer Sciences FoFOcio
University of California, Irvine — -
I SN &

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Logistics

_ » Exercise 2 and Quiz 4 due Monday

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Today's lecture

Belief-state MDPs

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

What does the policy depend on?

 Minimally: nothing
> Just an open-loop sequence of actions a;, ay, ...

- Except, even this depends on a clock a, = z(r)

» Typically: the current state n(a, | s,)

 What if the state is not fully observable to the agent's sensors?

> Completely unobservable — forced open loop

» Partially observable = n(a,|0,)?

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Partially Observable Markov Decision Process (POMDP)

St—1 S St41

e States &

\ \
» Actions &f ._>. ’.

 Observations O
» Transitions p(s,,(|s, a,)
» Emissions (observation model) p(o; | s,)

» Rewards r(s,, a,)

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

T-maze domain

$$%

e Observation: current cell

e Observe cue at start

> Decision at T-junction — cue no longer observable

» Memory is needed start

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

What does the policy depend on? (revisited)

» Maximally: the entire observable history z(a, | h, = (0y, 04, ..., 0,))
> Should we remember past actions?
- In a stochastic policy n(a,| h,), yes: h, = (0y, ay, 01, a1 - .., 0,)
- In a deterministic policy z : h, = a,, we could regenerate a,_; from h,_; (but can be hard)

 Problem: we can't have unbounded memory that grows with ¢

» Solution 1: keep a window of k last observations #(a, | 0,_;_ 1, - .., 0,) (frame stacking / attention)

» Solution 2: keep a statistic m, = z(h,) or n(m, | h,) of the observable history, use z(a, | m,)

> Memory must allow sequential updates: m, = f(m,_,,0,) orm, = f(m,_,a,_,0,)

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Agent—-environment interaction

environment Si_q A i1

» Agent policy: n(m,, a,|m,_,,a,_y,0,) = n(m,|m,_,a,_,,o0)n(a,| m)
 Memory process can generally be deterministic

> Actions can still depend on it stochastically; action sequences jointly distributed

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

S0 what is memory?

\

\
 There's no Markov property in the observable process alone 1 a
..>

o

> All past observations may be informative of future actions
e Filter the observable past to provide more information about the hidden state
 No less important: plan for the future

* Previously, we needed to trade off short-term with long-term rewards

> Now we also need to trade off with information-gathering = active perception

* In multi-agent: also model other agent's memory = theory of mind

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Tiger domain

« 2 states: which door leads to a tiger (-100 reward) and which to $$$ (+10)

» You can stop and listen: p(o, = s,|s,) = 0.8 m

p(sy = Sieft) = 0.5 = [r(sg, Ajeft)] = —45 01 = Oright

p(s; = Sjeft) = 0.2 [(s, aleft)] = — 12 0y = Oleft

p(sy = Seft) = 0.3 ~[r(sy, areft)] = —45 03 = Oright

p(s3 = Sieft) = 0.2 ~[r(s3, aefp)] = — 12 04 = Oright
0.04

p(sy = Sjeft) = o 0.06 [E[r(sy, aeft)] = —3.5 05 = Oright

p(ss = S|eft) =~ 0.015 ~[r(sy, aleft)] = — 8.3

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Today's lecture

Partially Observable MDPs

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Belief

» Belief = distribution over the state b(s)
> |If the agent has belief b after history A, that does not imply s |/ ~ b
» Bayesian belief b,(s) = p(s | h): a sufficient statistic of / for s

~ b, is all the agent needs to know about A, because s |h ~ b,

» Subjective belief b, (s) = p(s|m): the belief of an agent with memory m

>~ May have b,, # b, if the agent has imperfect memory

Xt—1 Xt At+1
\. \.

» Bayesian belief is Gaussian p(x,| h, = y,) = N (x,; X,, 2,), easy to compute

 In the linear-Gaussian case: the Kalman filter

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Computing the Bayesian belief
» Predict s, from h, = (0, ay, 01, 4y, ..., 0,) and a;:

b/(s,.11h,a) = ZP(St | n)p(Siy1 18 a,) = 2 b(s)p(s;1 15, a)

/SN .\

total probability over s, previous belief b, dynamics needs to be known

 Update belief of s, after seeing h, = (h,_;,a,_,, 0,):
/ previous prediction

St41

P (St | ht—l? at—l)p (Ot | Sz) ;_1(St)p (Oz | Sz)/ observation model
b(s;| h) = — P .
\ pCo;| hy_y, a,_1) \ thbt—l(st)P(Ot‘St)
Bayes' rule on o, 0,—s,—(h_y,a_;) \ | o t
e A deterministic, model-based update: normalizer E. 3 »
) ‘.>

> b,_(s,_1) = use a,_; to predict b, ,(s,) = use o, to update b (s,)

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Belief-state MDP

* |n the linear—quadratic—-Gaussian case: certainty equivalence 51 s, Sit1
> Plan using X, as if it was x,

 More generally (though vastly less useful): belief-state MDP

>

States: A(&) Actions: & Rewards: r(b,, a,) = Z b(s)r(s, a,)
St

b, b, b,

 [ransitions: each possible observation o, ; contributes its probability

p(o,q11b,a) = Z b(S)P(Si1 |8 AP0, 1 |8141)

St9514+1

to the total probability that the belief that follows (b,, a,, 0,, ;) is the Bayesian belief

ZSI b(sPP(S11 155 AP0y [S141)

bt+1(St+1) — p(St+1 ‘ bt’ s 0t+1) —
P01 | by, ay)

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Learning to use memory Is hard

» Belief space b(s,) is continuous and high-dimensional (dimension | & |)
» Curse of dimensionality
> Beliefs are naturally multi-modal — how do we even represent them?

» The number of reachable beliefs may grow exponentially in (one per h,)
> Curse of history

o Belief-value function can be very complex, hard to approximate

 There may not be optimal stationary deterministic policy = instability

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Stationary deterministic policy counterexample

 Assume no observablility

S()
o Stationary deterministic policies gets no reward
51 ol
» Non-stationary policy: |, T; expected return: +1
S11 S11
> But non-stationary = observabillity of a clock +1

e Stationary stochastic policy: 1 / T with equal prob.; expected return: +0.25

 Open problem: Bellman optimality is inherently stationary and deterministic
no dependence on ¢ maximum achieved for some action

~ '
V(s) = max r(s,a) + yE 5.0~ pl V()]

A

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Today's lecture

Partially Observable MDPs

Belief-state MDPs

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Filtering with function approximation

» Instead of Bayesian belief: memory update m, = f,(m,_, 0,) (a,_; optional)

~ Action policy: my(a, | m,)

/Y
Q ar Q .
> Seqguential structure = Recurrent Neural Network (RNN) ..,‘_,‘..>

* [raining: back-propagate gradients through the whole sequence

» Back-propagation through time (BPTT)

e Unfortunately, gradients tend to vanish — 0 / explode — ©0

> Long term coordination of memory updates + actions is challenging

> RNN can't use information not remembered, but backup no gradient unless used

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

RNNs in on-policy methods

* Training RNNs with on-policy methods is straightforward (and backward)

> Roll out policy: parameters of a, distribution are determined by 7,(1m,) with

m, =f9(“‘f9(f9(0())a 01), **+0,)

~ Compute Vlog my(a,|m,) with BPTT all the way to initial observation o,
 Problems: computation graph > RAM; vanishing / exploding grads

» Solutions: stop gradients every k steps; use attention

R

St41
| |

VIR
Q an
- Problem: cannot learn longer memory — but that's hard anyway >

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

RNNs in off-policy methods

 Problem: RNN states in replay buffer disagree with current RNN params

o Solution 1: use n-step rollouts to reduce mismatch effect

—1
Oplo, my,a) > ri+yr g+ +y" " 7" max QO s My s @)
a

 Solution 2: "burn in” m, from even earlier stored steps

~ Same target, but m, is initialized from (o0, ;. ..., 0, ;)
* |n practice: RNNs not often used, and rarely for long horizons

» Stacking k frames every step (0,_;.1, - - ., 0,) may help with short-term memory

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Deep RL as partial observability

e Memory-based policies fail us in Deep RL, where we need them most:

> Deep RL is inherently partially observable

 Consider what deeper layers get as input:

> High-level / action-relevant state features are not Markov!

 Memory management is a huge open problem in Deep RL

> Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

Recap and further considerations

» Let policies depend on observable history through memory
 NMemory update: Bayesian, approximate, or learned

» Learning to update memory is one of the biggest open problems in all of ML
* Let policy be stochastic

> Should memory be stochastic? interesting research question...

e Let policies be non-stationary if possible, otherwise learning may be unstable
> Time-dependent policies for finite-horizon tasks

> Periodic policies for periodic tasks

Roy Fox | CS 277 | Winter 2026 | Lecture 8: Partial Observability

