

CS 277: Control and Reinforcement Learning

Winter 2026

Lecture 8: Partial Observability

Roy Fox

Department of Computer Science

School of Information and Computer Sciences

University of California, Irvine

Logistics

assignments

- Exercise 2 and Quiz 4 due **Monday**

Today's lecture

Partially Observable MDPs

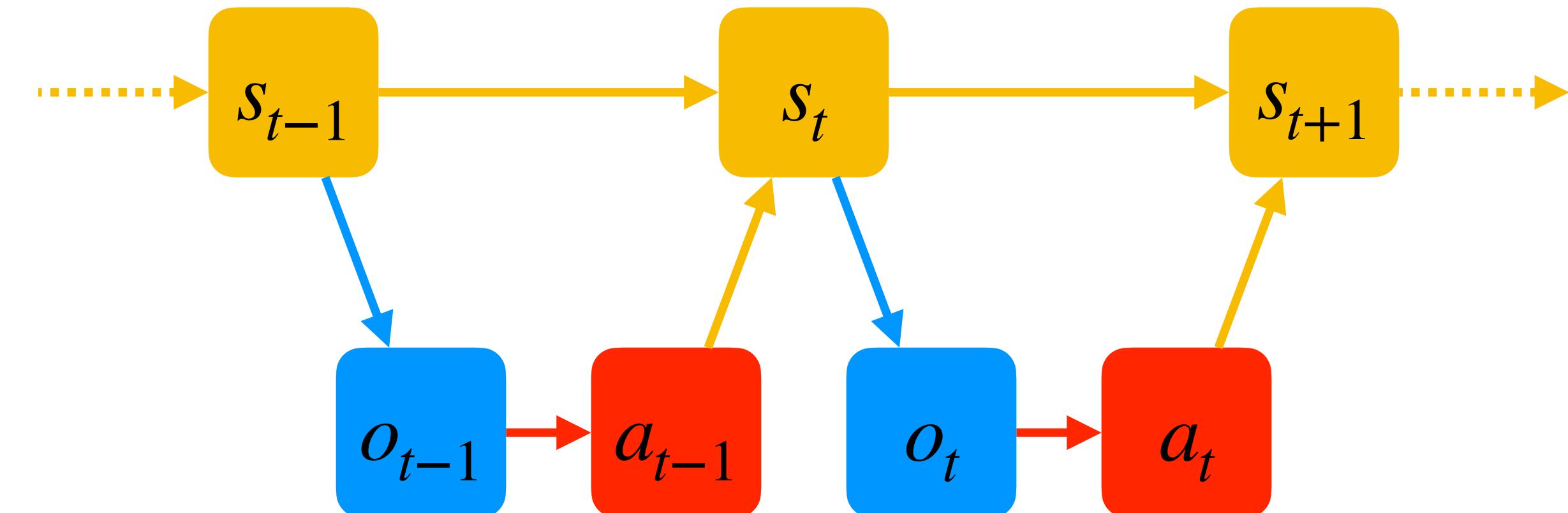
Belief-state MDPs

RNNs

What does the policy depend on?

- Minimally: **nothing**
 - ▶ Just an **open-loop** sequence of actions a_0, a_1, \dots
 - Except, even this depends on a **clock** $a_t = \pi(t)$
- Typically: the **current state** $\pi(a_t | s_t)$
- What if the state is not fully observable to the agent's **sensors**?
 - ▶ Completely **unobservable** → forced open loop
 - ▶ **Partially observable** → $\pi(a_t | o_t)?$

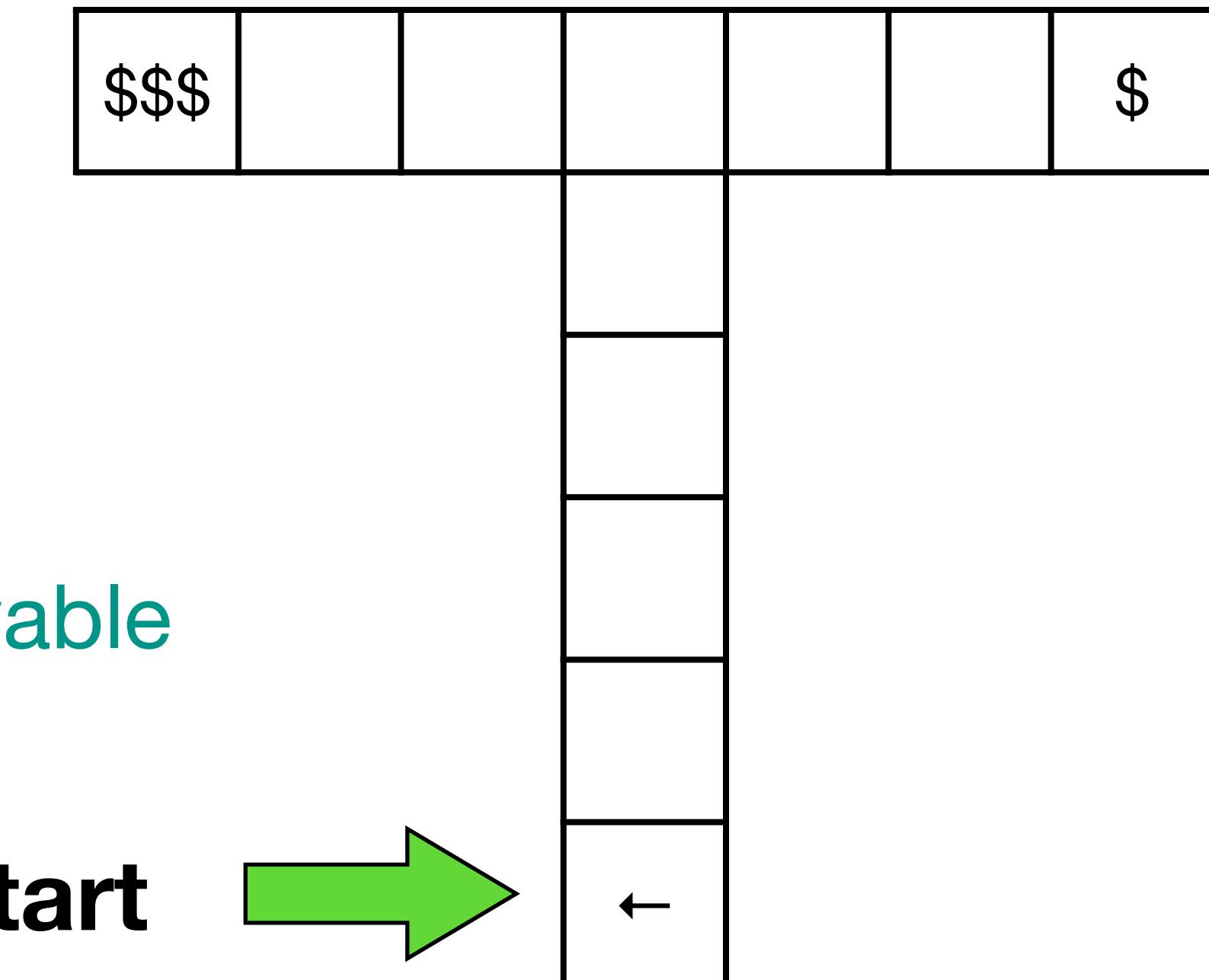
Partially Observable Markov Decision Process (POMDP)



- States \mathcal{S}
- Actions \mathcal{A}
- Observations \mathcal{O}
- Transitions $p(s_{t+1} | s_t, a_t)$
- Emissions (observation model) $p(o_t | s_t)$
- Rewards $r(s_t, a_t)$

T-maze domain

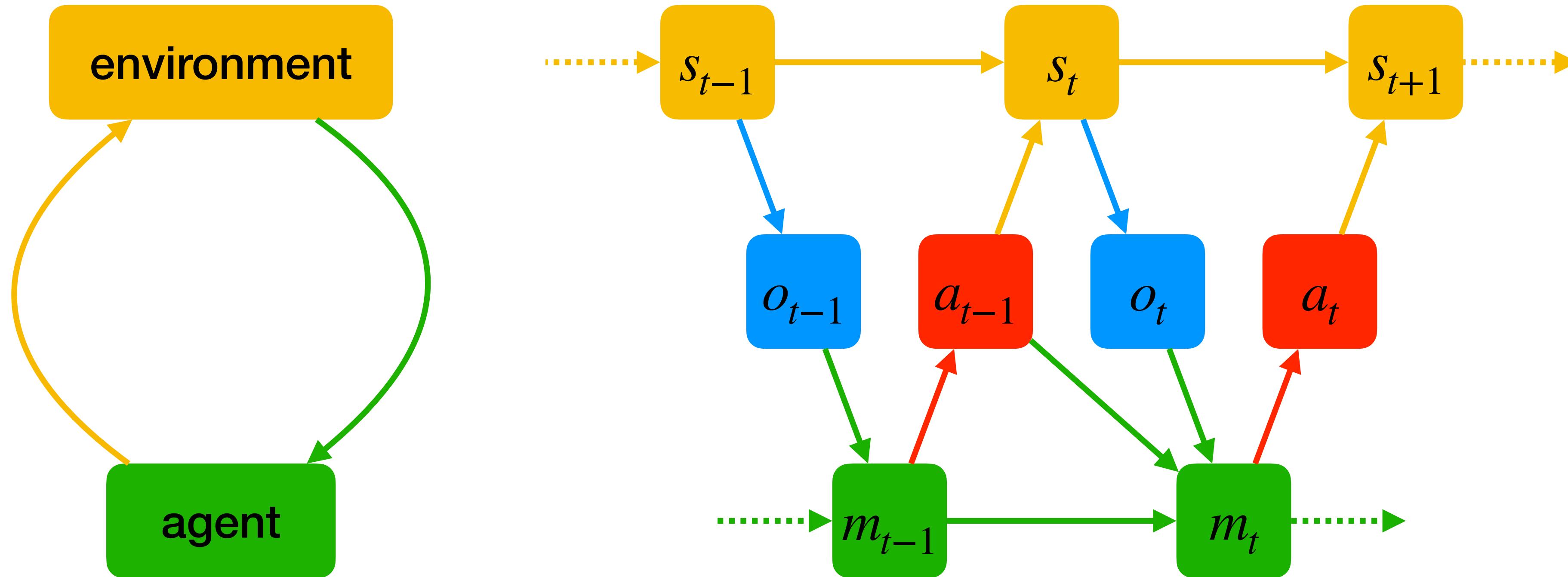
- **Observation:** current cell
- Observe **cue** at start
 - ▶ Decision at T-junction – cue no longer **observable**
- **Memory** is needed



What does the policy depend on? (revisited)

- Maximally: the entire **observable history** $\pi(a_t | h_t = (o_0, o_1, \dots, o_t))$
 - ▶ Should we remember past **actions**?
 - In a **stochastic policy** $\pi(a_t | h_t)$, yes: $h_t = (o_0, a_0, o_1, a_1, \dots, o_t)$
 - In a **deterministic policy** $\pi : h_t \mapsto a_t$, we could regenerate a_{t-1} from h_{t-1} (but can be hard)
- Problem: we can't have **unbounded memory** that grows with t
- Solution 1: keep a **window** of k last observations $\pi(a_t | o_{t-k+1}, \dots, o_t)$ (**frame stacking / attention**)
- Solution 2: keep a **statistic** $m_t = \pi(h_t)$ or $\pi(m_t | h_t)$ of the observable history, use $\pi(a_t | m_t)$
 - ▶ **Memory** must allow sequential updates: $m_t = f(m_{t-1}, o_t)$ or $m_t = f(m_{t-1}, a_{t-1}, o_t)$

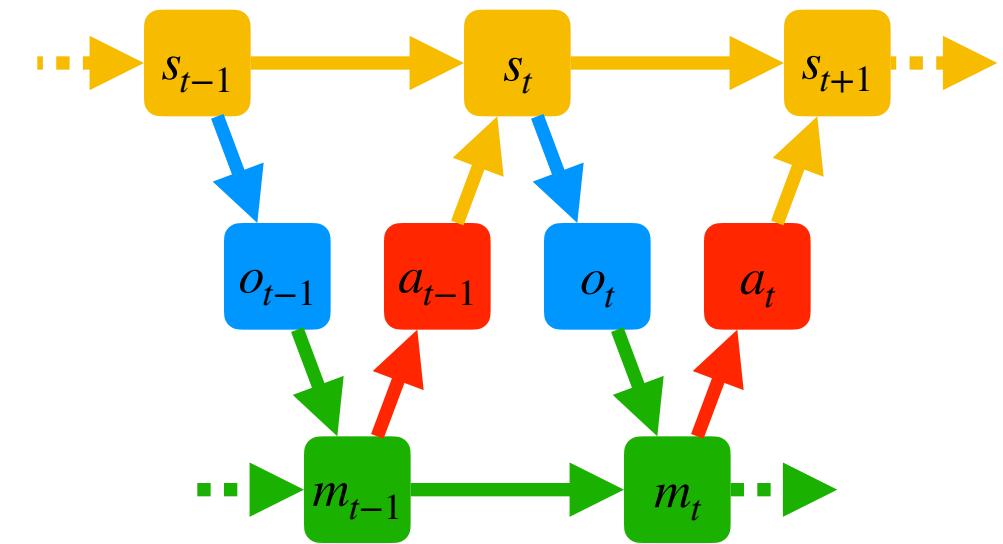
Agent–environment interaction



- Agent **policy**: $\pi(m_t, a_t | m_{t-1}, a_{t-1}, o_t) = \pi(m_t | m_{t-1}, a_{t-1}, o_t)\pi(a_t | m_t)$
- Memory process can generally be deterministic
 - Actions can still depend on it stochastically; action sequences jointly distributed

So what is memory?

- There's **no Markov property** in the observable process alone
 - ▶ All **past observations** may be informative of **future actions**
- **Filter** the observable past to provide more information about the hidden state
- No less important: **plan** for the future
- Previously, we needed to trade off **short-term** with **long-term** rewards
 - ▶ Now we also need to trade off with information-gathering = **active perception**
- In multi-agent: also model other agent's memory = **theory of mind**



Tiger domain

- 2 states: which door leads to a tiger (-100 reward) and which to \$\$\$ (+10)
- You can stop and listen: $p(o_t = s_t | s_t) = 0.8$

$$p(s_0 = s_{\text{left}}) = 0.5$$

$$\mathbb{E}[r(s_0, a_{\text{left}})] = -45$$

$$o_1 = o_{\text{right}}$$

$$p(s_1 = s_{\text{left}}) = 0.2$$

$$\mathbb{E}[r(s_1, a_{\text{left}})] = -12$$

$$o_2 = o_{\text{left}}$$

$$p(s_2 = s_{\text{left}}) = 0.5$$

$$\mathbb{E}[r(s_2, a_{\text{left}})] = -45$$

$$o_3 = o_{\text{right}}$$

$$p(s_3 = s_{\text{left}}) = 0.2$$

$$\mathbb{E}[r(s_3, a_{\text{left}})] = -12$$

$$o_4 = o_{\text{right}}$$

$$p(s_4 = s_{\text{left}}) = \frac{0.04}{0.04 + 0.64} \approx 0.06$$

$$\mathbb{E}[r(s_4, a_{\text{left}})] = -3.5$$

$$o_5 = o_{\text{right}}$$

$$p(s_5 = s_{\text{left}}) \approx 0.015$$

$$\mathbb{E}[r(s_5, a_{\text{left}})] = -8.3$$

Today's lecture

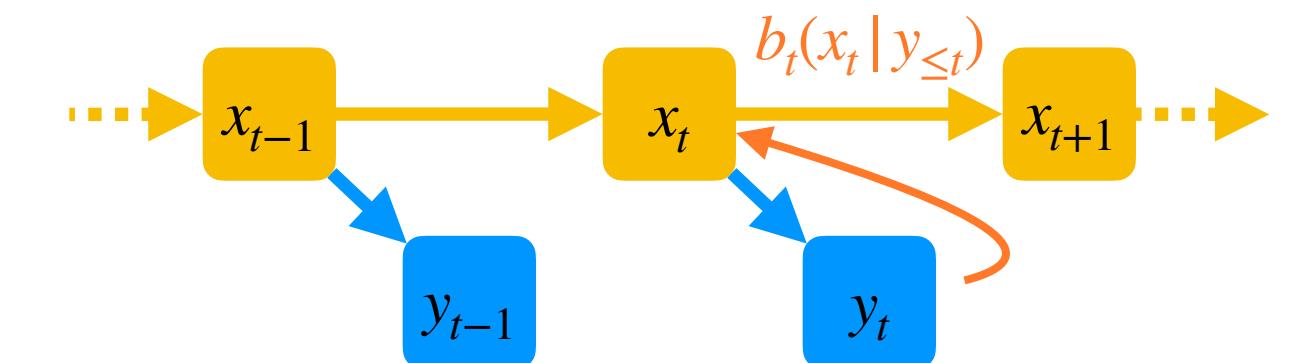
Partially Observable MDPs

Belief-state MDPs

RNNs

Belief

- **Belief** = distribution over the state $b(s)$
 - ▶ If the agent has belief b after history h , that **does not imply** $s | h \sim b$
- **Bayesian belief** $b_h(s) = p(s | h)$: a sufficient statistic of h for s
 - ▶ b_h is all the agent needs to know about h , because $s | h \sim b_h$
- **Subjective belief** $b_m(s) = p(s | m)$: the belief of an agent with memory m
 - ▶ May have $b_m \neq b_h$ if the agent has **imperfect memory**
- In the linear–Gaussian case: the **Kalman filter**
 - ▶ Bayesian belief is **Gaussian** $p(x_t | h_t = y_{\leq t}) = \mathcal{N}(x_t; \hat{x}_t, \Sigma_t)$, easy to compute



Computing the Bayesian belief

- Predict s_{t+1} from $h_t = (o_0, a_0, o_1, a_1, \dots, o_t)$ and a_t :

$$b'_t(s_{t+1} | h_t, a_t) = \sum_{s_t} p(s_t | h_t) p(s_{t+1} | s_t, a_t) = \sum_{s_t} b_t(s_t) p(s_{t+1} | s_t, a_t)$$

total probability over s_t previous belief b_t dynamics needs to be known

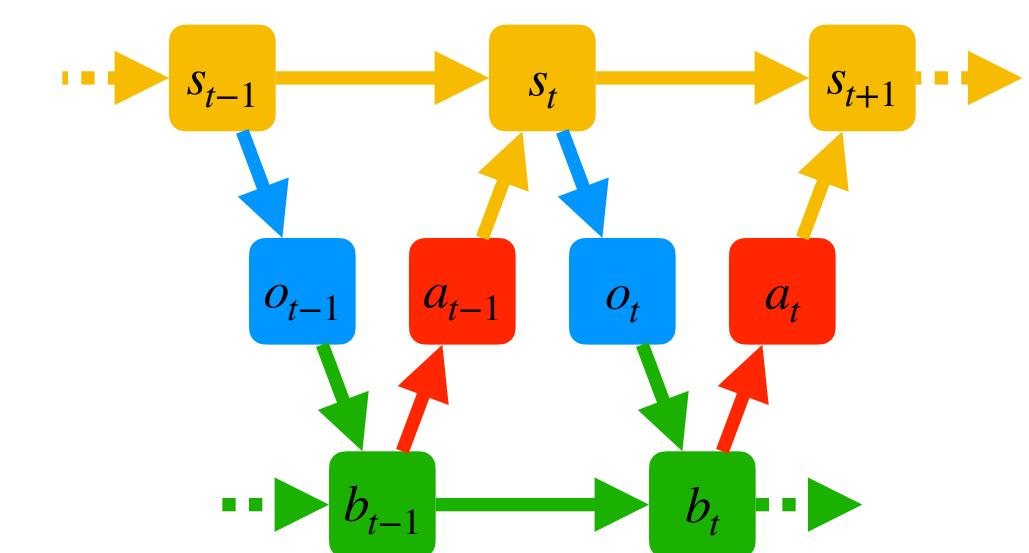
- Update belief of s_t after seeing $h_t = (h_{t-1}, a_{t-1}, o_t)$:

$$b_t(s_t | h_t) = \frac{p(s_t | h_{t-1}, a_{t-1}) p(o_t | s_t)}{p(o_t | h_{t-1}, a_{t-1})} = \frac{b'_{t-1}(s_t) p(o_t | s_t)}{\sum_{\bar{s}_t} b'_{t-1}(\bar{s}_t) p(o_t | \bar{s}_t)}$$

Bayes' rule on o_t $o_t - s_t - (h_{t-1}, a_{t-1})$ previous prediction observation model normalizer

- A deterministic, model-based update:

- $b_{t-1}(s_{t-1}) \rightarrow$ use a_{t-1} to predict $b'_{t-1}(s_t)$ \rightarrow use o_t to update $b_t(s_t)$



Belief-state MDP

- In the linear-quadratic-Gaussian case: **certainty equivalence**

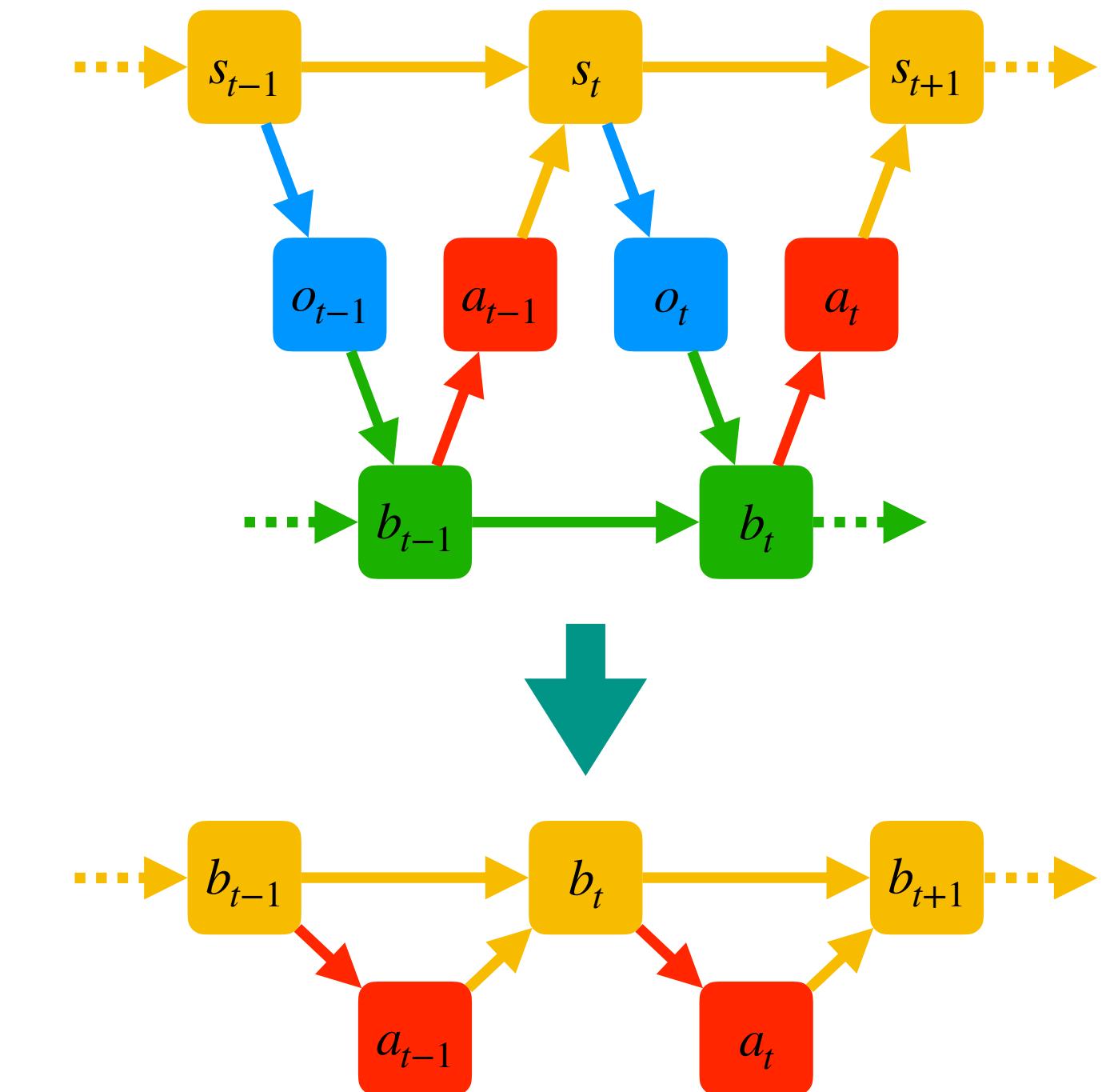
- ▶ Plan using \hat{x}_t as if it was x_t

- More generally (though vastly less useful): **belief-state MDP**

- ▶ **States:** $\Delta(\mathcal{S})$ **Actions:** \mathcal{A} **Rewards:** $r(b_t, a_t) = \sum_{s_t} b_t(s_t) r(s_t, a_t)$

- **Transitions:** each possible observation o_{t+1} contributes its probability

$$p(o_{t+1} | b_t, a_t) = \sum_{s_t, s_{t+1}} b_t(s_t) p(s_{t+1} | s_t, a_t) p(o_{t+1} | s_{t+1})$$



to the total probability that the belief that follows (b_t, a_t, o_{t+1}) is the **Bayesian belief**

$$b_{t+1}(s_{t+1}) = p(s_{t+1} | b_t, a_t, o_{t+1}) = \frac{\sum_{s_t} b_t(s_t) p(s_{t+1} | s_t, a_t) p(o_{t+1} | s_{t+1})}{p(o_{t+1} | b_t, a_t)}$$

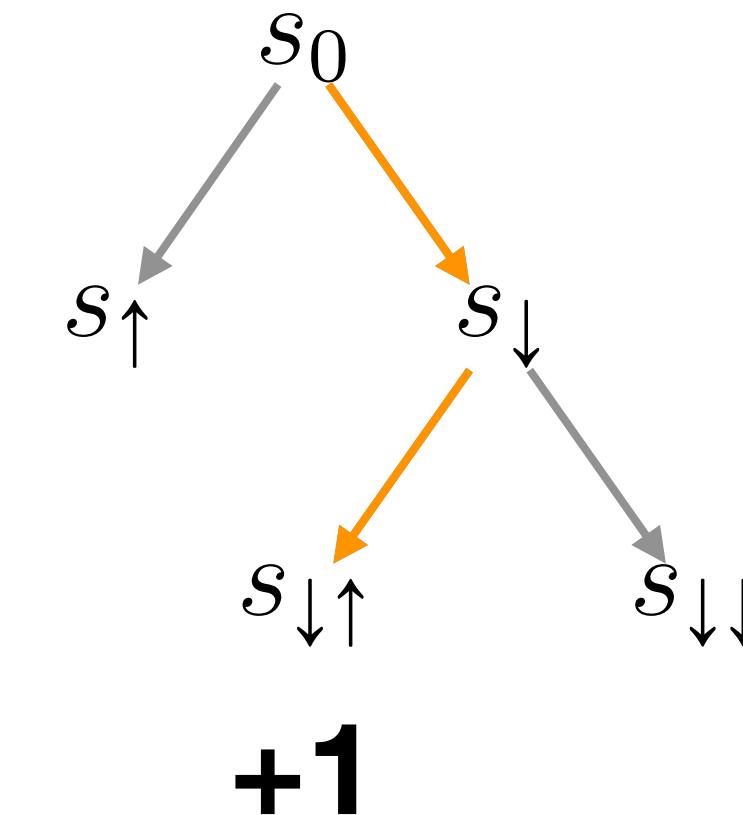
Learning to use memory is hard

- Belief space $b(s_t)$ is continuous and high-dimensional (dimension $|\mathcal{S}|$)
 - ▶ Curse of dimensionality
 - ▶ Beliefs are naturally multi-modal – how do we even represent them?
- The number of reachable beliefs may grow exponentially in t (one per h_t)
 - ▶ Curse of history
- Belief-value function can be very complex, hard to approximate
- There may not be optimal stationary deterministic policy \Rightarrow instability

Stationary deterministic policy counterexample

- Assume no observability
- Stationary deterministic policies gets no reward
- Non-stationary policy: \downarrow, \uparrow ; expected return: +1
 - ▶ But non-stationary = observability of a clock t
- Stationary stochastic policy: \downarrow / \uparrow with equal prob.; expected return: +0.25
- Open problem: Bellman optimality is inherently stationary and deterministic
 - no dependence on t
 - maximum achieved for some action

$$V(s) = \max_a r(s, a) + \gamma \mathbb{E}_{(s'|s,a) \sim p}[V(s')]$$



Today's lecture

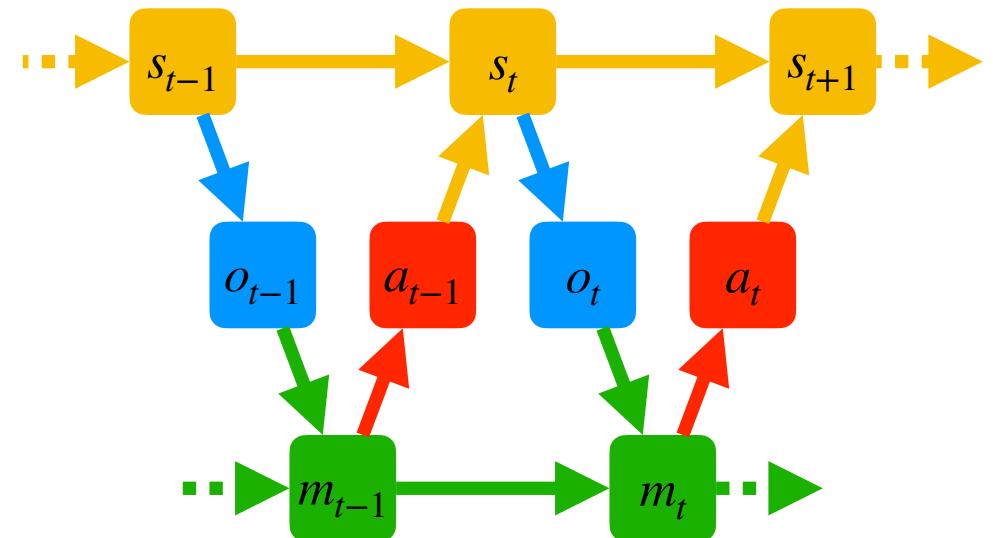
Partially Observable MDPs

Belief-state MDPs

RNNs

Filtering with function approximation

- Instead of Bayesian belief: **memory update** $m_t = f_\theta(m_{t-1}, o_t)$ (a_{t-1} optional)
 - ▶ **Action policy:** $\pi_\theta(a_t | m_t)$
 - ▶ Sequential structure = **Recurrent Neural Network (RNN)**
- **Training:** back-propagate gradients through the whole sequence
 - ▶ **Back-propagation through time (BPTT)**
- Unfortunately, gradients tend to **vanish** $\rightarrow 0$ / **explode** $\rightarrow \infty$
 - ▶ **Long term coordination** of memory updates + actions is challenging
 - ▶ RNN **can't use** information not remembered, but backup **no gradient** unless used



RNNs in on-policy methods

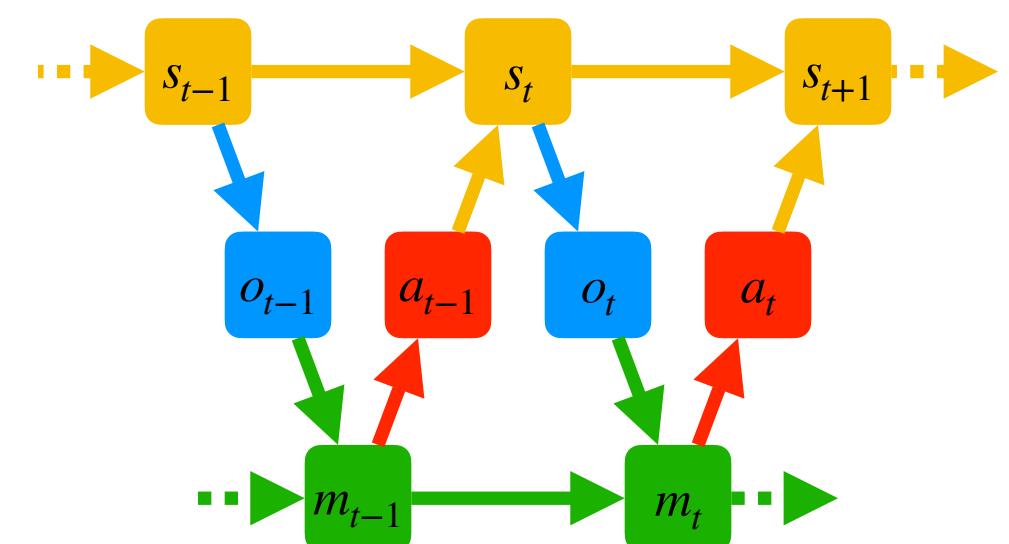
- Training RNNs with **on-policy methods** is straightforward (and backward)
 - ▶ **Roll out policy**: parameters of a_t distribution are determined by $\pi_\theta(m_t)$ with

$$m_t = f_\theta(\dots f_\theta(f_\theta(o_0), o_1), \dots o_t)$$

- **Problems**: computation graph > **RAM**; **vanishing** / **exploding** grads

- **Solutions**: stop gradients every k steps; use **attention**

- **Problem**: cannot learn longer memory – but that's hard anyway



RNNs in off-policy methods

- **Problem:** RNN states in replay buffer disagree with current RNN params
- **Solution 1:** use n -step rollouts to reduce mismatch effect

$$Q_\theta(o_t, m_t, a_t) \rightarrow r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n \max_{a'} Q_\theta(o_{t+n}, m_{t+n}, a')$$

- **Solution 2:** “burn in” m_t from even earlier stored steps
 - ▶ Same target, but m_t is initialized from $(o_{t-k}, \dots, o_{t-1})$
- **In practice:** RNNs not often used, and rarely for long horizons
 - ▶ **Stacking k frames** every step (o_{t-k+1}, \dots, o_t) may help with short-term memory

Deep RL as partial observability

- Memory-based policies fail us in Deep RL, where we need them most:
 - ▶ Deep RL is inherently partially observable
- Consider what deeper layers get as input:
 - ▶ High-level / action-relevant state features are not Markov!
- Memory management is a huge open problem in Deep RL
 - ▶ Actually, in other areas of ML too: NLP, time-series analysis, video processing, ...

Recap and further considerations

- Let policies depend on **observable history** through **memory**
- **Memory update**: Bayesian, approximate, or learned
 - ▶ **Learning to update memory** is one of the biggest open problems in all of ML
- Let policy be **stochastic**
 - ▶ Should memory be stochastic? interesting research question...
- Let policies be **non-stationary** if possible, otherwise learning may be unstable
 - ▶ **Time-dependent** policies for finite-horizon tasks
 - ▶ **Periodic** policies for periodic tasks