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Logistics

assignments
• Quiz 5 due next Monday


• Exercise 3 to be published soon, due next Friday

videos
• Last week’s lecture recordings posted


• Lecture 7 addendum on exploration in RL coming soon
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Today's lecture

Stability, reachability, stabilizability

Linear Quadratic Regulator

Hamiltonian
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Why Optimal Control?

• Optimal Control involves environments simple enough to solve directly


‣ Important applications


‣ Powerful and profound theory


‣ Useful insights / components for harder domains
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Linear Time-Invariant (LTI) systems

• Continuous state space: 


• Simplest system — linear: 


‣ Linear Time-Invariant (LTI):  does not depend on 


• How does the system evolve over time?


 


• Adding drift  doesn't add much insight, won't do it today (well, ok, once)

xt ∈ ℝn

xt+1 = Axt A ∈ ℝn×n

A t

xt = Atx0

b

xt xt+1xt−1
A A
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Stability

• To analyze: use eigenvectors 


• Consider a basis of eigenvectors 


 


• Instability: some , so that 


• Stability: all , so that 


‣ When , component never vanishes or explodes; still called unstable

λe = Ae

e1, …, en ∈ ℂn

x0 = ∑
i

αiei ⟹ x1 = Ax0 = ∑
i

αiλiei ⟹ xt = ∑
i

αiλt
iei

∥λi∥ > 1 lim
t→∞

∥xt∥ → ∞

∥λi∥ < 1 lim
t→∞

xt = 0

∥λi∥ = 1
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Linear control systems

• Continuous action (control) space: 


• Controlled LTI system: 


 


 

ut ∈ ℝm

xt+1 = Axt + But B ∈ ℝn×m

xt = Atx0 + At−1Bu0 + ⋯ + ABut−2 + But−1

xt = Atx0 + [B AB ⋯ At−1B]
ut−1
ut−2
⋮
u0

xt+1xtxt−1

ut−1 ut

A A

B B
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Reachability

• Can we reach a given state  at time ?


‣ If and only if 


• Cayley-Hamilton:  satisfies 


‣ Sufficient to take , controllability matrix: 


• Reachability: can we reach all states eventually?


‣ If and only if  ( = pseudo-inverse)


• To reach : control 

xt t

xt − Atx0 ∈ span [B AB ⋯ At−1B]
A pA(λ) = |λI − A |

t = n 𝒞n×nm = [B AB ⋯ An−1B]

span𝒞 = ℝn ⟺ rank𝒞 = n ⟹ 𝒞𝒞+ = I 𝒞+

x ⃗u = 𝒞+(x − Anx0)

xt = Atx0 + [B AB ⋯ At−1B]
ut−1
ut−2
⋮
u0

 has degree  
⇒  spanned by 
pA n

An I, A, …, An−1
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Stabilizability

• Can we reach  eventually?


• For each mode  (eigenvector of ):


‣ Is ? ⇒ stable, otherwise unstable


- Stable modes reach 0 on their own


‣ If unstable, is ? ⇒ stabilizable, otherwise unstabilizable


- Stabilizable modes = unstable, but controllable


• The system  is stabilizable if all modes are stable or stabilizable

x = 0

ei A

∥λi∥ < 1

ei ∈ span𝒞

(A, B)

xt = Atx0 + [B AB ⋯ At−1B]
ut−1
ut−2
⋮
u0
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Today's lecture

Stability, reachability, stabilizability

Linear Quadratic Regulator

Hamiltonian
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Quadratic costs
• Linear reward has no maximum ⇒ simplest of interest: concave quadratic


‣ Consider negative reward = cost: 


•  is positive semidefinite :  for all 


‣ No incentive to go to infinity in any direction


•  is positive definite :  for all 


‣ Incentive for finite control in all directions


• Usually, finite or infinite horizon, no discounting

c(xt, ut) = 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut

Q ∈ ℝn×n Q ⪰ 0 1
2 x⊺Qx ≥ 0 x

R ∈ ℝm×m R ≻ 0 1
2 u⊺Ru > 0 u
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Linear Quadratic Regulator (LQR)

• Linear Quadratic Regulation (LQR) optimization problem:


‣ Given LTI dynamics + quadratic cost 


‣ Find the control function 


‣ That minimizes 


‣ Such that  for all 

(A, B, Q, R)

ut = π(xt)

Jπ =
T−1

∑
t=0

c(xt, ut) = 1
2

T−1

∑
t=0

(x⊺
t Qxt + u⊺

t Rut)

xt+1 = Axt + But t

agent

environment
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Solving the LQR

• Bellman recursion: 


• Let's solve while also proving by induction that  is quadratic


‣ Base case: 


‣ Assume: 


‣ Solve: 

Vt(xt) = min
ut

c(xt, ut) + Vt+1(xt+1)

Vt

VT ≡ 0

Vt+1(xt+1) = 1
2 x⊺

t+1St+1xt+1 St+1 ⪰ 0

∇ut
(c(xt, ut) + Vt+1(xt+1)) = 0

xt+1 = Axt + But



Roy Fox | CS 277 | Winter 2026 | Lecture 9: Optimal Control

Bellman optimalityBellman optimality

 


 


• Plugging  into the Bellman recursion and rearranging terms:


 


• Ricatti equation: 

0 = ∇ut
(c(xt, ut) + Vt+1(xt+1))

= 1
2 ∇ut

(x⊺
t Qxt + u⊺

t Rut + (Axt + But)⊺St+1(Axt + But))
= Rut + B⊺St+1(Axt + But)

u*t = − (R + B⊺St+1B)−1B⊺St+1Axt

u*t

Vt(xt) = 1
2 x⊺

t (Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A)xt

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A

 Vt+1(xt+1) = 1
2 x⊺

t+1St+1xt+1

xt+1 = Axt + But
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Optimal control: properties
• Linear control policy: 


‣ Feedback gain: 


• Quadratic value (cost-to-go) function 


‣ Cost Hessian  is the same for all 


• Ricatti equation for  can be solved recursively backward


 


‣ Without knowing any actual states or controls (!) = at system design time

ut = Ltxt

Lt = − (R + B⊺St+1B)−1B⊺St+1A

Vt(xt) = 1
2 x⊺

t Stxt

St = ∇2
xt
Vt xt

St

St = Q + A⊺(St+1 − St+1B(R + B⊺St+1B)−1B⊺St+1)A
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Infinite horizon

• Average cost: 


• For each finite  we solve with Bellman recursion, affected by end 


‣ In the limit, end effects go away ⇒ converge to time-independent


• Discrete-time algebraic Ricatti equation (DARE):


 


• Optimal cost-to-go function: ; optimal cost: 

J = lim
T→∞

1
T

T−1

∑
t=0

c(xt, ut)

T VT ≡ 0

S = Q + A⊺(S − SB(R + B⊺SB)−1B⊺S)A

V(x) = 1
2 x⊺Sx J = 1

2 x⊺
0Sx0
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Non-homogeneous case

• More generally, LQR can have lower-order terms


 


 


• More flexible modeling, e.g. tracking a target trajectory 


• Solved essentially the same way


‣ Cost-to-go  will also have lower-order terms

xt+1 = ft(xt, ut) = Atxt + Btut + bt

ct(xt, ut) = 1
2 x⊺

t Qtxt+
1
2 u⊺

t Rtut + u⊺
t Ntxt + q⊺

t xt + r⊺
t ut + st

1
2 (xt − x̃t)⊺Q(xt − x̃t)

Vt(xt)

x̃
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Today's lecture

Stability, reachability, stabilizability

Linear Quadratic Regulator

Hamiltonian
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• Consider the cost-to-go 


• To study its landscape over state space, consider its spatial gradient


 


‣ Jacobian of the dynamics: 


• Co-state  = direction of steepest increase in cost-to-go


‣ Linear backward recursion ; initialization: 

Vπ
t (xt) = c(xt, ut) + Vπ

t+1( f(xt, ut))

νπ
t = ∇xt

Vπ
t = ∇xt

ct + ∇xt+1
Vπ

t+1 ⋅ ∇xt
ft = ∇xt

ct + νπ
t+1 ⋅ ∇xt

ft

∇xt
ft ∈ ℝn×n

νπ
t (xt) ∈ ℝn

νt = ∇xt
ct + νt+1 ⋅ ∇xt

ft νT ≡ 0

Co-state
ft ∈ ℝnct ∈ ℝ
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Hamiltonian
• Cost-to-go recursion: (first-order approximation)


 


• Hamiltonian = first-order approximation of the cost-to-go


 


‣ Related to, but not the same as the Hamiltonian in physics


• The Hamiltonian is useful to get first-order conditions for optimal control


‣ Equivalent to Bellman optimality


‣ Even more useful in continuous time (equivalent to Hamilton–Jacobi–Bellman)

Vπ
t (xt) = c(xt, ut) + Vπ

t+1(xt+1) ≈ c(xt, ut) + f(xt, ut) ⋅ ∇xt+1
Vπ

t+1

ℋt(xt, νt+1, ut) = c(xt, ut) + νt+1 ⋅ f(xt, ut)

co-state νt+1

state xt+1
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Pontryagin's maximum principle

• Hamiltonian: 


• Necessary optimality conditions:


 


•  necessary for  to be the state for dynamics   


•  necessary for  to be a co-state


• Objective:  s.t. ; Lagrangian: 

ℋt(xt, νt+1, ut) = c(xt, ut) + νt+1 ⋅ f(xt, ut)

∇νt+1
ℋt = xt+1 ∇xt

ℋt = νt ∇ut
ℋt = 0

∇νt+1
ℋt = f(xt, ut) = xt+1 xt f

∇xt
ℋt = ∇xt

ct + νt+1 ⋅ ∇xt
ft = νt νt = ∇xt

Vπ
t

min
π

Jπ xt+1 = f(xt, ut) ℒ =
T−1

∑
t=0

ℋt − νt+1 ⋅ xt+1

Lev Pontryagin

independent of ut
optimal when ∇ut

ℋt = 0
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Hamiltonian in LQR
• The Hamiltonian is generally high-degree, global, hard to solve


• In LQR, the Hamiltonian is quadratic


 


• This suggests forward–backward recursions for , , and :


 


• The solution coincides with the Ricatti equations with 

ℋt = 1
2 x⊺

t Qxt+
1
2 u⊺

t Rut + νt+1(Axt + But)

x ν u

xt+1 = ∇νt+1
ℋt = Axt + But

νt = ∇xt
ℋt = νt+1A + x⊺

t Q

∇ut
ℋt = Rut + B⊺ν⊺

t+1 = 0

ν⊺
t = Stxt ut = Ltxt
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Recap

• LQR = simplest dynamics: linear; simplest cost: quadratic


• Can characterize stability, reachability, stabilizability, more.. in terms of 


• Can use Ricatti equation to find cost-to-go Hessian


• Equivalently: Hamiltonian gives state forward / co-state backward recursions

(A, B)


