

CS 277 (W26): Control and Reinforcement Learning

Quiz 2: Introduction to Control Learning, Imitation Learning

Due date: Monday, January 19, 2026 (Pacific Time)

Roy Fox

<https://royf.org/crs/CS277/W26>

Instructions: please solve the quiz in the marked spaces and submit this PDF to Gradescope. Please mark your solutions on the original PDF, not a new document.

Question 1 Control Learning is interesting because (check all that hold):

- Control Learning is a good choice for modeling almost any learning problem.
- Control Learning can use data to train an agent to make good sequential decisions.
- A control-learning agent can learn from very weak supervision.
- A control-learning agent can decide how to collect its training data.

Question 2 Control Learning is hard because (check all that hold):

- Learning from weak supervision requires large amounts of data.
- Data for Control Learning is often scarce, particularly data that provides stronger supervision.
- Even with big training data, a deployed agent may need to make decisions in situations never seen in training.
- In most Control Learning settings, it is unclear what it means for an agent to be optimal.

Question 3 Check all settings that exhibit train–test mismatch (a.k.a covariate shift):

- Training a dog–cat classifier on photos and using it to classify drawings.
- Training a self-driving car on expert driver demonstrations and then taking it for a test drive.
- Training a goal-conditioned robot policy to arrange colored blocks in a random sample of goal arrangements and then evaluating it on a new goal.
- Training a drone via DAgger by repeating the following until convergence: rolling out the drone’s current policy, having an expert provide corrections, and training on this new data.

Question 4 Check all that hold in Imitation Learning:

- If a demonstrator is good but not perfect, BC can also learn a good (but not perfect) policy.
- If a demonstrator is good but not perfect, a goal-conditioned policy trained with hindsight BC cannot be good because a trajectory leading to s_t may now be a really bad way to reach s_t .
- It may be impossible, with any amount of data, to successfully imitate a demonstrator with a different state observability (different sensors) than the learner.
- Both DAgger and DART can overcome inconsistent demonstrations more easily than BC.