

CS 277 (W26): Control and Reinforcement Learning

Quiz 5: Exploration and Partial Observability

Due date: Monday, February 9, 2026 (Pacific Time)

Roy Fox

<https://royf.org/crs/CS277/W26>

Instructions: please solve the quiz in the marked spaces and submit this PDF to Gradescope.

Question 1 In Multi-Armed Bandits, the regret grows (asymptotically) sub-linearly (check all that hold):

- If and only if the probability of taking an optimal action converges to 1.
- If and only if every action is almost surely (with probability 1) taken infinitely many times.
- If in each time step we take the action that is most likely to be optimal.
- With ϵ -greedy exploration, if and only if ϵ converges to 0.

Question 2 The following variables always satisfy the Markov property, i.e. $x_{<t}$ and $x_{>t}$ are independent given x_t (and nothing else), where x_t is:

- The world state s_t in an MDP controlled by a history-based policy $\pi(a_t|s_{\leq t}, a_{<t})$.
- The observable history $h_t = (o_{\leq t}, a_{<t})$ in a POMDP controlled by a history-based policy $\pi(a_t|h_t)$.
- The Bayesian belief $b_t = p(s_t|o_{\leq t}, a_{<t})$ in a POMDP controlled by a belief-based policy $\pi(a_t|b_t)$.
- The agent's memory state $m_t = f(m_{t-1}, a_{t-1}, o_t)$ in a POMDP controlled by a memory-based policy $\pi(a_t|m_t)$.
- The full system state $x_t = (s_t, m_t)$ in a POMDP controlled by a memory-based policy $\pi(a_t|m_t)$ as above.

Question 3 In a Partially Observable Markov Decision Process (POMDP) (check all that hold):

- If the rewards are provided by an external mechanism available in deployment, they can potentially carry useful information, and should therefore be included as part of the observations.
- The optimal belief-value function $V^*(b_t)$ is weakly convex in the Bayesian belief b_t , i.e. if $b_t = \alpha b + (1 - \alpha)b'$ then $V^*(b_t) \geq \alpha V^*(b) + (1 - \alpha)V^*(b')$.
- The difficulty of policy optimization is due to the rewards depending on a hidden state: if rewards only depended on the observations $r(o_t, a_t)$, it would be as easy as in an MDP.

Question 4 Using RNNs in deep RL (check all that hold):

- The REINFORCE policy gradient with an RNN policy $\pi_\theta(a_t|m_t)$ using an RNN with cell $m_t = f_\phi(m_{t-1}, a_{t-1}, o_t)$, namely $g_\theta = \sum_t R(\xi) \nabla_\theta \log \pi_\theta(a_t|m_t)$, is unbiased regardless of ϕ .
- A2C with an actor as above, i.e. $\pi_\theta(a_t|m_t)$ with RNN f_ϕ , and a critic $V_\psi(m_t)$ has a policy gradient $g_\theta = \sum_t (R_{\geq t}(\xi) - V_\psi(m_t)) \nabla_\theta \log \pi_\theta(a_t|m_t)$ that is unbiased regardless of ϕ or ψ .
- In actor-critic algorithms as above, the optimal baseline $V_{\pi_\theta}(m_t) = \mathbb{E}_{\xi \sim p_\theta}[R_{\geq t}(\xi)|m_t]$ satisfies the recursion $V_{\pi_\theta}(m_t) = \mathbb{E}_{p_{\theta,\phi}}[r_t + \gamma V_{\pi_\theta}(m_{t+1})|m_t]$ regardless of θ and ϕ .
- In value-based algorithms, the optimal value network $Q_\theta(m_t, a_t)$ with RNN f_ϕ satisfies the Bellman recursion $Q_\theta(m_t, a_t) = \mathbb{E}[r_t + \gamma \max_{a_{t+1}} Q_\theta(m_{t+1}, a_{t+1})|m_t, a_t]$, regardless of ϕ .