
CS 277 (W22): Control and Reinforcement Learning
Assignment 4
Due date: Friday, March 4, 2022 (Pacific Time)
Roy Fox
https://royf.org/crs/W22/CS277

Instructions: In theory questions, a formal proof is not needed (unless specified otherwise).
instead, briefly explain informally the reasoning behind your answers.
In practice questions, include a printout of your code as a page in your PDF, and a screenshot of
TensorBoard learning curves (episode_reward_mean, unless specified otherwise) as another page.

Part 1 Model-based error accumulation (25 points + 5 bonus)

Consider a model-based reinforcement learning algorithm that estimates a model 𝑝 of the true
dynamics 𝑝, and then uses it for planning. In all parts of this question, we assume that we can plan
optimally in the estimated model, with the true non-negative reward function.

Question 1 (10 points + 5 bonus) Suppose that the estimated model is guaranteed, for some
𝜖 > 0, to be an 𝜖-approximation, i.e. have

∥𝑝(𝑠′|𝑠, 𝑎) − 𝑝(𝑠′|𝑠, 𝑎)∥1 ≤ 𝜖,

for all 𝑠 and 𝑎, and that the initial distribution 𝑝(𝑠0) is known exactly. Show that, for any policy 𝜋

E(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋
[𝑟 (𝑠𝑡 , 𝑎𝑡)] − E(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋

[𝑟 (𝑠𝑡 , 𝑎𝑡)] ≤ 𝜖𝑡𝑟max.

Hint: show by induction that, for any 𝑡 ≥ 0, and state 𝑠 ∥𝑝𝜋 (𝑠𝑡 = 𝑠) − 𝑝𝜋 (𝑠𝑡 = 𝑠)∥1 ≤ 𝜖𝑡.
Bonus: show the tighter bound

E(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋
[𝑟 (𝑠𝑡 , 𝑎𝑡)] − E(𝑠𝑡 ,𝑎𝑡)∼𝑝𝜋

[𝑟 (𝑠𝑡 , 𝑎𝑡)] ≤ 1
2𝜖𝑡𝑟max.

Question 2 (5 points) Conclude that planning with 𝑝 is near-optimal: if 𝜋 is optimal for 𝑝 and
�̂� is optimal for 𝑝, for discount factor 𝛾, then

E𝜉∼𝑝𝜋
[𝑅(𝜉)] − E𝜉∼𝑝 �̂�

[𝑅(𝜉)] ≤ 2 𝛾

(1−𝛾)2 𝜖𝑟max.

Or, given the bonus question above, halve the RHS.
Hint: recall that

∑
𝑡 𝛾

𝑡𝑡 =
𝛾

(1−𝛾)2 .

https://royf.org/crs/W22/CS277

Question 3 (10 points) Now suppose instead that the state space is R𝑛, and that both the true
dynamics 𝑓 : R𝑛 → R𝑛 and the model 𝑓 : R𝑛 → R𝑛 are deterministic, with a known initial state 𝑠0.
Determinism implies that there exists an optimal open-loop policy, i.e. a sequence of actions.
Suppose that the true dynamics, the model, and the reward function are all Lipschitz. That is, there
exists a real constant 𝐿 such that, for all states 𝑠 and 𝑠 and action 𝑎

∥ 𝑓 (𝑠, 𝑎) − 𝑓 (𝑠, 𝑎)∥2 ≤ 𝐿∥𝑠 − 𝑠∥2,

and similarly for 𝑓 and for 𝑟 , i.e. |𝑟 (𝑠, 𝑎) − 𝑟 (𝑠, 𝑎) | ≤ 𝐿∥𝑠 − 𝑠∥2. Suppose further that the estimated
model is guaranteed, for some 𝜖 > 0, to be an 𝜖-approximation, i.e have

∥ 𝑓 (𝑠, 𝑎) − 𝑓 (𝑠, 𝑎)∥2 ≤ 𝜖,

for all 𝑠 and 𝑎.
Fix an action sequence ®𝑎 = 𝑎0, 𝑎1, Denote the resulting state sequence when rolling out ®𝑎 in 𝑓

by 𝑠0, 𝑠1, . . ., and in 𝑓 by 𝑠0, 𝑠1, . . . (note that 𝑠0 = 𝑠0). Show by induction that, for any 𝑡 ≥ 0

|𝑟 (𝑠𝑡 , 𝑎𝑡) − 𝑟 (𝑠𝑡 , 𝑎𝑡) | ≤
𝐿𝑡 − 1
𝐿 − 1

𝐿𝜖,

assuming 𝐿 ≠ 1.

Part 2 Finite-state controllers (25 points)

A finite-state controller (FSC) 𝜋 is a finite-state machine with: (1) a finite set M of memory states;
(2) an memory state update distribution 𝜋(𝑚𝑡 |𝑚𝑡−1, 𝑜𝑡), giving the probability of updating from
internal state 𝑚𝑡−1, upon observing 𝑜𝑡 , to 𝑚𝑡 ; and (3) an action distribution 𝜋(𝑎𝑡 |𝑚𝑡).

Question 1 (10 points) Given a POMDP with dynamics 𝑝(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) and observation model
𝑝(𝑜𝑡 |𝑠𝑡), and an FSC 𝜋, write down a forward recursion for computing the joint distribution of 𝑚𝑡−1
and 𝑠𝑡 . That is, show how to compute 𝑝𝜋 (𝑚𝑡 , 𝑠𝑡+1) using 𝑝, 𝜋, and 𝑝𝜋 (𝑚𝑡−1, 𝑠𝑡).

Question 2 (5 points) Given the joint distribution of (𝑚𝑡−1, 𝑠𝑡), show how to compute the
Bayesian predictive belief 𝑏′ = 𝑝(𝑠𝑡 |𝑚𝑡−1).

Question 3 (10 points) Given also a reward function 𝑟 (𝑠𝑡 , 𝑎𝑡), write down a backward recursion
for evaluating 𝑉𝜋 (𝑠𝑡 , 𝑚𝑡). That is, show how to compute 𝑉𝜋 (𝑠𝑡 , 𝑚𝑡) using 𝑝, 𝜋, 𝑟 , and 𝑉𝜋 (𝑠𝑡+1, 𝑚𝑡+1).

Part 3 RNN policies (50 points)

Question 1 (15 points) In the LunarLander environment (https://gym.openai.com/envs/
LunarLander-v2/), the observation is:

https://gym.openai.com/envs/LunarLander-v2/
https://gym.openai.com/envs/LunarLander-v2/

[𝑥 position, 𝑦 position, 𝑥 velocity, 𝑦 velocity, orientation, angular velocity,
left leg contact (Boolean), right leg contact (Boolean)].

In the Pong environment (https://gym.openai.com/envs/Pong-v0/), the observation is the
image that the Atari console would render to the screen (usually 84 × 84 grayscale pixels, after
cropping, rescaling, and gray-scaling) . Alternatively, Atari environments are often “wrapped” to
provide in every step the 4 most recent images, i.e. an observation shaped 4 × 84 × 84 (this is called
frame-stacking).
In which of these 3 environments (LunarLander, Pong, and frame-stacked Pong) would you expect
an agent to benefit the most and the least from having memory, compared with a memoryless policy?

Question 2 (35 points) Test your hypothesis. Use any algorithm implemented in RLlib (https:
//docs.ray.io/en/latest/rllib-toc.html#algorithms) with a memoryless policy, and
with an RNN policy (by setting use_lstm to True). Report your findings.

https://gym.openai.com/envs/Pong-v0/
https://docs.ray.io/en/latest/rllib-toc.html#algorithms
https://docs.ray.io/en/latest/rllib-toc.html#algorithms

	Model-based error accumulation (25 points + 5 bonus)
	Finite-state controllers (25 points)
	RNN policies (50 points)

