
Neural Inference of API Functions from
Input–Output Examples

Rohan Bavishi, Caroline Lemieux, Neel Kant, Roy Fox, Koushik Sen, Ion Stoica
Department of Computer Science

University of Califonia, Berkeley, USA
{rbavishi,clemieux,kantneel,royf,ksen,istoica}@cs.berkeley.edu

Abstract

Because of the prevalence of APIs in modern software development, an automated
interactive code discovery system to help developers use these APIs would be
extremely valuable. Program synthesis is a promising method to build such a
system, but existing approaches focus on programs in domain-specific languages
with much fewer functions than typically provided by an API. In this paper we focus
on 112 functions from the Python pandas library for DataFrame manipulation,
an order of magnitude more than considered in prior approaches. To assess the
viability of program synthesis in this domain, our first goal is a system that reliably
synthesizes programs with a single library function. We introduce an encoding of
structured input–output examples as graphs that can be fed to existing graph-based
neural networks to infer the library function. We evaluate the effectiveness of this
approach on synthesized and real-world I/O examples, finding programs matching
the I/O examples for 97% of both our validation set and cleaned test set.

1 Introduction
Program synthesis, the process of automatically generating a program conforming to a higher-level
specification, is a long-standing goal of computer science research. General synthesis remains elusive
due to the huge search problem it entails — for a language with n functions, taking an average
of m argument values, the number of sequential programs of length k grows as pnmqk. The most
successful approaches restrict the search space either by imposing user-specified structure, such
as program sketches [18], or by only considering programs in a small subset of a general-purpose
language or small domain-specific language (DSL) [9, 4, 5].

A practical application of program synthesis is the generation of programs in a particular application
programming interface (API). Nowadays, developers have to contend with a growing number of
APIs [2], whose development outpaces the completeness, clarity, and even correctness of the docu-
mentation. Thus, when trying to perform a particular operation in an API, developers often consult
API experts in online forums, such as StackOverflow, with a description of the operation in terms of
input–output (I/O) examples. Our motivation is to take a step towards automating this interaction.

Our goal is to build an I/O-based synthesis algorithm that can infer programs in large, real-world
libraries with hundreds of API functions, each taking in a variety of arguments from different domains,
that also have dependencies amongst themselves. In this setting, we observed that a purely algorithmic,
exhaustive approach, could, given the correct library function(s), efficiently find arguments to fit
the I/O example. But, it could not efficiently search for the function(s) to use. Instead of spending
years tuning the exhaustive approach’s search heuristics [18, 9], we decided to take a hybrid approach
[10, 15], which relies on a neural inference mechanism to predict the function(s) and on exhaustive
search to find argument values in the complex argument space. The library we target in this work is
pandas [1], a library of transformations of DataFrames, which are tabular data structures. pandas is
used extensively in machine learning and data science applications.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



(a) DataFrame I/O Example. White cells are data; pale
gray are row indices, and dark grey are column names.

(b) Graph Representation. Gray nodes come from the
input DataFrame, white nodes from the output.

Figure 1: A DataFrame input-output example and its graph abstraction, corresponding to the operation
output = input.stack(level=[1], dropna=True).1 From the graph, our network predicts stack
with 99% confidence.

In this work, we investigate the viability of synthesis in this domain by restricting ourselves to a
simpler problem: synthesize pandas programs consisting of a single function call. In order to do
this, we present a technique to encode the I/O example into a neural-network interpretable format and
a network which can predict the functions to use from this encoding. Unlike the domain elements of
prior work [16, 7, 4, 5], our I/O domain elements, DataFrames—2D structures which can contain
arbitrary Python objects—are not easily encodable into a fixed-size format. We propose a graph-based
encoding of DataFrame I/O examples and a network architecture based on GGNN [12] to predict the
pandas function. We will extend the system to synthesize longer pandas programs in future work.

We evaluate our technique by measuring its top-1 and top-5 prediction accuracy on a synthetic
validation set and a set of real-world I/O examples collected from StackOverflow, the book Python
for Data Analysis, and the pandas Data School video series. We find that our network achieves high
top-5 accuracy in both cases, but that generalizing to real-world data requires data cleaning. Finally,
we present an ablation study on the features of our graph-based abstraction.

Related Work Neuro-Symbolic Program Synthesis [16] and RobustFill [7] both use neural infer-
ence in the FlashFill scenario of string transformations in a DSL. Bunel et al. [5] synthesize programs
in the Karel DSL. DeepCoder [4] uses neural inference to determine the program elements most likely
to solving an input-output example. They focus on a small functional language with 17 higher-order
functions and 17 other program elements. In all these cases, the neural inference technique gives
a ranking or probability over the entire set of program features — functions and arguments. This
cannot scale in our case where the pool of valid arguments for the 112 pandas functions can be of
size 5000 for a 4x4 input DataFrame.

While Morpheus [8] targets the same space as our work—DataFrame transformations—, it considers
only 10 R functions, and since it uses an SMT solver to prune the search space, it does not provide a
way to encode the I/O examples. The cross-correlational networks, LSTMs, and LSTMs with attention
used to encode string-based examples and lists of bounded integers do not apply to DataFrames [16,
10, 7, 4]. Since the DataFrames are not of a fixed size, the CNNs used to encode fixed-size grid-based
examples [5] also do not apply.

2 Method
The goal of the method described here is to map a given I/O example to a pandas function which
performs the transformation specified by the example. At a high-level, our method works by (1)
preprocessing I/O examples into a graph, (2) feeding these examples into a trainable neural network
which learns a high-dimensional representation for each node of the graph, and (3) pooling to output
of the neural network and applying softmax to select a pandas function. After this, we use exhaustive
search to find the correct arguments; those details are beyond the scope of this paper.

2.1 Graph Abstraction

The input-output domain of pandas transformations is the set of DataFrames, 2D structures which
can contain arbitrary Python objects as primitive elements. We noticed that the operation used in an

1https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html

2

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.stack.html


I/O example is often captured by the relationships amongst the elements, rather than the concrete data
itself. Therefore, we use a graph-based abstraction of an I/O example pair which does not bound
the space of primitive components which make up the DataFrame. Figure 1 shows an I/O example
(Figure 1a) and the graph outputted by the process (Figure 1b). The graph is constructed as follows.

Nodes. Every data cell in the input and output DataFrame is represented as a single node. The
schemas are represented by nodes for each row index and column name of the DataFrame. Multiple
levels of column names or row indices appear as additional nodes—in Figure 1, note that the two
layers of column names in the input DataFrame become four distinct nodes in the graph.

Instead of containing concrete values, a node is labeled with a type tuple (data type, is input) which
designates its data type and whether it belongs to the input. The data type is either the concrete type
of the value (integer, float, string, etc.) for cells, or a special data type for row indices and column
names. In Figure 1, the shaded nodes represent nodes from input DataFrames and the white nodes
represent nodes from output DataFrame, with the string label designating the data type of the node.

Edges. Since we abstract away the concrete values, we add edges to represent the relationships
between them, which are key to identifying the transformation applied. First we add equality edges
between any nodes with the same value: we hypothesize that these edges are enough to distinguish a
large subset of pandas functions. These can exist between column name, row index, and data nodes.
For example, in Figure 1b, an edge exists between the kg column name from the input and the two kg
row indices in the output.

We also add edges that represent the basic structural characteristics of the DataFrames. We add
adjacency edges, thin solid lines in Figure 1b, between two data cells, column name cells, or row
index cells are adjacent to each other (diagonals do not count). We add indexing edges, thin dotted
lines in Figure 1b, between a column name (resp. row index) and all the data nodes that belong to
that column (resp. row).

2.2 Network
To predict the function label associated with the I/O example, we use a gated graph neural network,
introduced by Li et al. [12]. We adjust the implementation by Microsoft [14, 3] to output label class
probabilities rather than estimates for regression. The input to our network is a directed graph G =
(V , E , X ) where V is the set of nodes and X is a mapping from nodes to node features X : V Ñ RD

for hyper-parameter D. Our X maps nodes to the one-hot encoding of a label from a defined set of
labels. An edge e P E is a 3-tuple (vs, vt, te) where vs and vt are the source and target nodes and te
is the type of the edge. In our setting, te P tadjacency, indexing, equalityu.

Every node v has a corresponding state vector hpvq P RD, initialized as the feature vector of that node.
Information is propagated using message passing across k rounds. For any edge (vs, vt, te), vs sends
to vt the message mvs = fkph

pvsq, teq. In our case, fk is a single linear layer. For each node vt, the
incoming messages are aggregated as mt “ gptmvs |pvs, vt, teq P Euq. We use an element-wise mean
for g. The new node state vector ĥpvtq, for the next round is computed as ĥpvtq “ GRUpmt, h

pvtqq

where GRU is the gated recurrent unit [6]. We use two rounds of message passing, as we noticed that
increasing the number of message passing rounds did not increase validation accuracy.

After the message passing, we element-wise sum-pool the node state vectors hpvq into a graph state
vector h. We pass h though a multi-layer perceptron with one hidden layer, and apply softmax
activation on the output layer to produce a probability distribution over the target classes: the pandas
functions. We train the network with the ADAM optimizer [11] on cross-entropy loss.

3 Evaluation
In order to train our network, we require a large amount of (I/O example, function) pairs. In the
absence of a large, standardized dataset of such pairs, we synthesize a training set of size N “ 106

and a validation set N “ 105. To have class-balanced training and validation data, we select each
function N{k number of times where k is the total number of functions.

For each function, we create its DataFrame arguments by generating a random DataFrame generator.
This generator chooses a random DataFrame size, column names, and row indices, then populates
each column with random values of either the integer, float, or string type. It allows some amount
of duplication of values to model categorical columns or otherwise repeated values. For the other
arguments, we rely on the hand-built argument generators which are used in the exhaustive argument

3



Table 1: Accuracy in predicting the ground-truth or a
correct function for I/O examples.

Ground-Truth Success Rate
Top-1 Top-5 Top-1 Top-5

Validation 65% 94% 82% 97%
Test 59% 83% 69% 83%
Clean Test 66% 97% 83% 97%

Table 2: Effect of graph abstraction fea-
tures on Top-1 validation accuracy.

Control Acc.
No Node Features 57%
No Edge Features 63%
No Structural Edges 61%
No Equality Edges 46%

search part of the synthesis task. These argument generators are programs which return values
in the space of valid argument combinations; we built these generators by consulting the pandas
documentation, and, when it was lacking, observing the dynamic behavior the the given function on
some arbitrary DataFrames.

With the function and the synthesized arguments in hand, we create the I/O example by running the
function to produce the output. We discard the example if there are execution errors. We then trained
the network on 106 examples generated in this manner, with encoding of the input/output DataFrames
(Section 2.1) as the input to the network, and the name of the function as the output class/label.

3.1 Accuracy Results
We compute the accuracy of our network in predicting the function used for (1) our synthesized vali-
dation set and (2) I/O examples taken from real-world sources, including questions on StackOverflow
and examples taken from an introductory pandas book [13] and video series [17]. Table 1 presents
the accuracy for the prediction task. Overall, we see that the correct function is generally in the top-5
predictions, a very good result for the synthesis task over 112 functions.

The ground-truth accuracy, on the left-hand-side of Table 1, is conservative in that the higher-ranked
predictions may in fact fit the I/O example. This is especially common in pandas — a number
of functions have overlapping semantics. Therefore we also present the Success Rate—calculated
by checking whether some argument combination of a top-k predicted function can produce the
output—in right-hand columns of Table 1. The top-1 accuracy using this metric is significantly higher
for both the datasets, suggesting that many “misclassifications” by our network are in fact correct
classifications from a functional standpoint.

Additionally, we noticed a large gap in accuracy between our validation set and our test set. We
hypothesized that the issue was, in many cases, due to the presence of a large number of spurious
equality edges. These are equality edges that exist between nodes whose values do not actually
influence each other. For example, in Figure 1b, the edge between the data cell (0,1) from the input
and the data cell (2,0) in the output. So, we manually edited the test set examples to remove spurious
equality edges. The last row of Table 1 presents the accuracy on this cleaned test set. The results
are much better, in line with the numbers on the validation dataset. This suggests that the network
generalizes to real-world examples, but is sensitive to the noise introduced by our graph abstraction.

3.2 Ablation Study
We also evaluate the effects of removing node features, edge features, structural edges and equality
edges on the accuracy on our validation set. Table 2 shows the results. We see that the presence of
equality edges has the largest impact on the accuracy, while that of structural edges or edge types is
small. This suggests that the behavior of a function is primarily characterized by the connections
between nodes introduced by equality edges, as they transcend the boundary between input and
output nodes. The removal of node features has a relatively smaller but significant impact on the
accuracy, suggesting that data-type information is also vital in distinguishing between functions.

4 Conclusion & Future Work
We presented promising results on a model for predicting pandas API functions given an I/O example,
which is part of our larger synthesis project targeting large APIs. In the future, we intend to improve
our graph abstraction by refining equality edges, and adding other kinds of edges that may be able
to distinguish between computational functions such as add. We also plan to develop a smarter
dataframe-to-graph encoder and incorporate attention mechanisms in our network to counter the
effect of noise in the I/O examples (Section 3.1). Finally, we also want to be able to predict sequences
containing more than one pandas function to synthesize more complex programs.

4



References
[1] The pandas project. https://pandas.pydata.org, 2014. Accessed October 11th, 2018.

[2] a16z Podcast. The API Economy – The Why, What, and How. https://a16z.com/2018/03/13/api-economy-
why-what-how/, 2018. Accessed October 22nd, 2018.

[3] M. Allamanis, M. Brockschmidt, and M. Khademi. Learning to represent programs with graphs. In
International Conference on Learning Representations, 2018.

[4] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. DeepCoder: Learning to Write
Programs. CoRR, abs/1611.01989, 2016.

[5] R. Bunel, M. J. Hausknecht, J. Devlin, R. Singh, and P. Kohli. Leveraging grammar and reinforcement
learning for neural program synthesis. CoRR, abs/1805.04276, 2018.

[6] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using rnn encoder–decoder for statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734.
Association for Computational Linguistics, 2014.

[7] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P. Kohli. RobustFill: Neural Program
Learning under Noisy I/O. In ICML 2017, March 2017.

[8] Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri. Component-based synthesis of table
consolidation and transformation tasks from examples. SIGPLAN Not., 52(6):422–436, June 2017.

[9] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In Proceedings of
the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’11, pages 317–330, New York, NY, USA, 2011. ACM.

[10] A. Kalyan, A. Mohta, O. Polozov, D. Batra, P. Jain, and S. Gulwani. Neural-Guided Deductive Search for
Real-Time Program Synthesis from Examples. ArXiv e-prints, Apr. 2018.

[11] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv e-prints, Dec. 2014.

[12] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated Graph Sequence Neural Networks. CoRR,
abs/1511.05493, 2015.

[13] W. McKinney. Python for Data Analysis. O’Reilly, 2012.

[14] Microsoft. Gated Graph Neural Network Samples. https://github.com/Microsoft/gated-graph-neural-
network-samples, 2017. Accessed October 17th, 2018.

[15] V. Murali, L. Qi, S. Chaudhuri, and C. Jermaine. Neural Sketch Learning for Conditional Program
Generation. ArXiv e-prints, Mar. 2017.

[16] E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli. Neuro-Symbolic Program Synthesis. In
ICLR 2017, February 2017.

[17] D. School. Easier data analysis in Python with pandas (video series). https://www.dataschool.io/easier-
data-analysis-with-pandas/, 2016. Accessed October 22nd, 2018.

[18] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat. Combinatorial sketching for finite
programs. In Proceedings of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XII, pages 404–415, New York, NY, USA, 2006. ACM.

5

https://pandas.pydata.org

	Introduction
	Method
	Graph Abstraction
	Network

	Evaluation
	Accuracy Results
	Ablation Study

	Conclusion & Future Work

