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Developers nowadays have to contend with a growing number of APIs. While in the long-term they are
very useful to developers, many modern APIs have an incredibly steep learning curve, due to their hundreds
of functions handling many arguments, obscure documentation, and frequently changing semantics. For
APIs that perform data transformations, novices can often provide an I/O example demonstrating the desired
transformation, but may be stuck on how to translate it to the API. A programming-by-example synthesis
engine that takes such I/O examples and directly produces programs in the target API could help such novices.
Such an engine presents unique challenges due to the breadth of real-world APIs, and the often-complex
constraints over function arguments. We present a generator-based synthesis approach to contend with these
problems. This approach uses a program candidate generator, which encodes basic constraints on the space
of programs. We introduce neural-backed operators which can be seamlessly integrated into the program
generator. To improve the efficiency of the search, we simply use these operators at non-deterministic decision
points, instead of relying on domain-specific heuristics. We implement this technique for the Python pandas
library in AutoPandas. AutoPandas supports 119 pandas dataframe transformation functions. We evaluate
AutoPandas on 26 real-world benchmarks and find it solves 17 of them.
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1 INTRODUCTION
Developers nowadays have to contend with a growing number of APIs. Many of these APIs are very
useful to developers, increasing the ease of code re-use. API functions provide implementations
of functionalities that are often more efficient, more correct, or produce better-looking results
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than what the developer can implement. This increases the productivity of developers overall
by providing functions that would be time-consuming to write from scratch, either because the
function has very complex logic, or because the developer has a non-traditional programming
background (e.g. data science).
Unfortunately, in the short to medium run, figuring out how to use a given API can hamper

developer productivity. Many new APIs are wide, with hundreds of functions, some of which have
overlapping semantics. Further, each function can have tens of arguments governing its behavior.
For example, some Python APIs such as NumPy use the flexible type system to define almost
entirely different behavior for functions based on the type or arguments. The documentation of all
of these factors is of varying quality. Further, modern APIs are frequently updated, so tutorials,
blog posts, and other external resources on the API can quickly fall out of date. All these factors
increase the difficulty of API use for the developer.
However, often times when trying to use an APIs to conduct data transformation, novice de-

velopers have an idea of what transformation they want to perform. The popularity of online
help forums such as StackOverflow has normalized the practice of creating an input-output (I/O)
example that clearly illustrates the transformation. By I/O examples of a transformation, we mean
examples where the input is the data before the transformation (e.g. the string “Garbledy Goop”),
and the output is the desired transformed data (e.g. “Goop, G.”).
When the novice developer can provide such an I/O example, programming-by-example based

synthesis is a compelling solution to the problem of finding a program in the API that performs the
transformation. Programming-by-example refers to a class of program synthesis tools that use an
I/O example as the specification to which the synthesized program must adhere [Feng et al. 2017;
Gulwani 2011; Polozov and Gulwani 2015; Yaghmazadeh et al. 2017]. Existing programming-by-
example engines have been highly successful in synthesizing string transformations typically used in
spreadsheets [Gulwani 2011], where the engine has been integrated into Microsoft Excel. However,
in most of these cases, the language in which the synthesized programs are written only consists of
tens of operators or functions. This is far below the number of functions in data transformation APIs.
The Python library pandas, which provides an API for dataframe transformations, has hundreds of
functions just operating on dataframes.
Beyond the sheer number of functions in the API, finding the correct arguments for a given

function is a challenge. API functions often place constraints on the arguments beyond type. In
Python, they can also accept multiple types for a single argument, with different constraints for
each type. A synthesis engine with no knowledge of these constraints will have a difficult time
creating runnable programs.

Based on these observations, we propose a generator-based program synthesis technique. At its
core, the technique utilizes a program candidate generator, which yields a different well-formed
program in the target API each time it is called. A simple way to build a synthesis engine is
then to repeatedly call the candidate program generator until it produces a program p such that
p(input) = output for the I/O example at hand.

The program candidate generator must encode expert domain knowledge about the API to—as
much as possible—synthesize programs in the API which are valid. For example, when producing
arguments to a function, the generator should almost never produce argument combinations which
cause the function to immediately error out. Given knowledge of the API, writing such a candidate
program generator is a straightforward—although perhaps tedious—effort. This means such a
generator can be written by any developer who knows the API, regardless of their familiarity with
program synthesis techniques.
However, if the generator takes a long time to generate a p such that p(input) = output, our

simple synthesis engine—which just calls the generator until it yields such a p—becomes impractical.
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To make the generator more likely to yield such a p in reasonable time, an API expert could work
with a program synthesis expert to build heuristics that prioritize more program candidates that are
more likely to pass the test. Building such heuristics is extremely tedious, error-prone, non-scalable,
and requires a long process of trial-and-error.

Our key insight is the following. Many of the choices which would be governed by heuristics in
these generators are choices between different elements in a given domain. For example, which
column name of a table to use in an argument. Instead of requiring the developer of the generator to
write sophisticated heuristics over which element in the domain should be chosen, we can provide
a smart operator which uses a learned probabilistic model to make the choice over the domain
which is most likely, given the I/O example. Thus, the developer of the generator can write only
the constraints on the program search space of which they are sure, such as constraints on the
argument space of a function. The fuzzier decisions can be left to smart operators over the domain.
Our smart operators allow users to specify a selection over a given domain (i.e., select one or

more elements from this set). The probabilistic models that back them thus only need to be trained
for a specific selection task (i.e., given this context, which element should be selected from the set).
This is in contrast to the use of probabilistic models in past work such as that of Lee et al. [2018]
and Devlin et al. [2017] where these models are trained over the full language. This is not feasible
for our target domain as we are dealing with large real-world APIs without designing DSLs or
considering small subsets of the API.
In this paper, we propose this smart generator model approach to program synthesis for APIs.

We introduce novel graph-neural-network based neural backends for 4 key smart operators over
a domain. For example, we provide operators to select a single element, as well as a subset or
sequence of elements, from a given domain. These operators can be seamlessly integrated with
arbitrary Python code in the program candidate generators.
We evaluate the viability of our proposed approach with an implementation for the Python

pandas API for dataframe manipulation. We chose pandas as a subject because it presents inter-
esting new research challenges; a broad number of functions, each taking multiple arguments
with dependencies, and transforms data with very complex structure (dataframe, i.e. tables). In
addition, we chose pandas because it is a prominent and widely-used library for data manipulation
in Python, used to pre-process data for statistical and machine learning application, as well as for
data science in its own right. Our implementation, AutoPandas, supports 119 pandas operations
on dataframes. We hand-wrote a program candidate generator that supports all these functions.
This generator encodes, in native Python, the pre-conditions for each supported pandas API.

In implementing AutoPandas, we also devise a novel encoding of dataframes as graphs in
our operators’ neural backends. Currently, this encoding is specific to key pandas data-structures
(dataframes, series, lists). However, graphs could be used to encode many other data structures,
including: matrices (similar to dataframes), strings (each node is a character), lists, trees, maps, and
objects (each object is a node and each field denotes an outgoing edge). The graph-neural-network
based backends for our smart operators assume only that their input is a graph, and thus can ingest
such encodings.

Overall we find that AutoPandas can efficiently solve 17 of our 26 complex real-world pandas
benchmarks. In particular, AutoPandas can solve 4 out of 10 benchmarks requiring sequences of 3
function calls. We also analyze the accuracy of our smart operators. We find the accuracy of the
smart operators to be quite high (Section 4.4) for argument prediction compared to deterministic
and randomized semantics. However, while the accuracy of the smart operators to predict function
sequences is much higher than random, it decreases as the function sequence length increases,
highlighting room for improvement.
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(a) An example input DataFrame.
(b) Desired output.

Fig. 1. A DataFrame input-output example.

In summary, we make the following contributions:
• We propose a smart generator approach to synthesizing programs in large, real-world APIs
(Sections 3.1, 3.2). Smart generators combine validity constraints on the space of programs
in the API (as described by documentation), with learned probabilistic models that guide
arbitrary choices within these constraints. These generators can be written in existing
languages such as Python.

• To build these smart generators, we introduce a set of arbitrary-choice smart operators with
neural backends. These smart operators seamlessly integrate with the execution of arbitrary
Python code in the generators, making choices by generating neural network queries on the
fly (Section 3.3.2). We additionally design novel graph neural network models for each of
these smart operator backends (Section 3.3.3). These graph-based models support generators
operating on complex data such as dataframes.

• We implementAutoPandas, a smart-generator based synthesis engine for the Python pandas
API for dataframe transformations (Section 4). AutoPandas supports 119 pandas functions,
an order of magnitude more functions than considered in prior work.AutoPandas is released
as open-source.1 AutoPandas can efficiently solve 17 out of 26 of complex real-world
benchmarks using the pandas library.

2 MOTIVATION
In order to motivate our problem statement and technique, consider the following scenario. Suppose
a developer or data scientist, new to the Python library pandas, needs to use pandas in order to
pre-process data for a statistical or ML pipeline. This pandas novice needs to transform some input
data—a pandas DataFrame read from a CSV file—into a different form for the target pipeline.

For example, suppose the input data is an expense table, represented by the dataframe in Figure 1a.
For input into the pipeline, it needs to be transformed slightly into the dataframe in Figure 1b. For
a small input table, the novice can do this by hand. But in order to scale, they need a re-usable
program in the pandas API that performs this transformation.

Our goal is to automatically solve exactly such problems. In this paper, we propose a generator-
based program synthesis technique for data transformation APIs. We evaluate its viability for the
pandas API by implementing our tool AutoPandas. Given a dataframe transformation represented
by an (input, output) example like the one in Figure 1, AutoPandas outputs a program p which
performs the transformation, i.e., such that p(input) = output.

Before we dive into the details of AutoPandas, however, let us return to the simpler problem at
hand. Again, a novice to the pandas API is trying to write a program that performs the transforma-
tion in Figure 1. Consider a simpler scenario, where, while the novice does not know pandas, they
know some other data transformation tools. In particular, the novice knows that in Microsoft Excel,

1https://github.com/rbavishi/atlas/tree/oopsla-2019-autopandas
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1 def find_pivot_args(input_df: pandas.DataFrame , output_df:pandas.DataFrame):

2 while True:

3 cur_kwargs = generate_pivot_args(input_df , output_df)

4 cur_out = pandas.DataFrame.pivot(input_df, ∗∗ cur_kwargs)
5 if cur_out == output_df:

6 return cur_kwargs

Fig. 2. A procedure to find the arguments to the pandas function pivot that turn input_df into output_df.

they can perform the transformation in Figure 1 using the “pivot table” functionality. The novice
also notices that pandas has a pivot function for dataframes, and thinks they can use it.

But, even when knowing which function in pandas to use, the novice is faced with the issue of
understanding what all the arguments to pivot do. For complex APIs like pandas, there are many
arguments for each function, requiring substantial effort to master even one function. Resources
explaining all the complexity of the API can overwhelm a novice wanting to perform a single
transformation.

Hence, novices often resort to asking experts for help on which arguments to use. Unfortunately,
this is not a perfect solution. First, if no expert is around to answer the question, a novice can get
stuck on the problem for a long time. Also, the expert finds themselves constantly answering a very
similar question—what pivot arguments should be used to get output from input? Answering
this question over and over again is not scalable. This issue is not imaginary: in reality, if a basic
pivot or merge question is asked on pandas StackOverflow, it is not answered, and simply marked
as a duplicate of a master answer diving into the details of these functions. At the time of writing,
these master answers had 369 and 254 duplicates, respectively. 2
An alternative to redirecting the novice to the documentation would be for the API

expert to write a program that outputs valid argument combinations for pivot on the
dataframe df, say generate_pivot_args(df). In particular, generate_pivot_args(df) is a genera-
tor that, every time it is called, yields a different valid argument combination. The novice
can then use generate_pivot_args(df) to enumerate the argument combinations, and save the
one that works for their input-output example. Figure 2 shows pseudo-code to find the cor-
rect arguments for pivot, given the generator generate_pivot_args(df). The code simply calls
generate_pivot_args(df) (Line 3) iteratively until it returns an argument combination kwargs such
that pivot(input_df, ∗∗kwargs) == output_df (Line 5).

To make sure that all the argument combinations returned by generate_pivot_args(df) are valid,
the expert can implement the function to encode the basic constraints on the arguments required
by pandas. Namely, for pivot these constraints are:
(1) arg_col should be selected from the list of column names of df, df.columns.
(2) arg_idx is either None, or selected from the list of column names of df, except from the

column name used in arg_col (df.columns-{arg_col}).
(3) Finally, the arg_val argument should either be (1) selected from the list of column names

except for the ones used in arg_col and arg_idx, or (2) None, in the case where arg_idx is
None and df has a multi-level index.

These constraints are universal for the pivot function, and an expert can straightforwardly derive
them from the documentation.

2The current number can be determinedwith the query at https://data.stackexchange.com/stackoverflow/query/edit/1024223.
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1 @generator

2 def generate_pivot_args(input_df: pandas.DataFrame , output_df: pandas.DataFrame):

3 context = (input_df, output_df)

4 arg_col = Select(df.columns, context, id=1)

5 arg_idx = Select({None} | df.columns − {arg_col}, context, id=2)

6 if isinstance(df.index, pandas.MultiIndex) and arg_idx is None:

7 arg_val = None

8 else:

9 arg_val = Select(df.columns − {arg_col, arg_idx}, context, id=3)

10

11 return { ' columns ' : arg_col, ' index ' : arg_idx, ' values ' : arg_val}

Fig. 3. A generator of all valid arguments to the pivot function from the pandas API. Select(D,c,i) returns
a single element from the domain D, according to the semantics in Figure 4.

Figure 3 shows the implementation of generate_pivot_args(df). The calls to Select(D,c,i) return
a single element from the domain D. To understand Figure 3, assume first that Select(D,c,i) just
returns a random element from D. We give formal semantics for Select and explain the arguments c
and i in Section 3.1. Essentially, these calls to Select allow generate_pivot_args(df) to cycle through
different argument combinations.

However, there is still a problem. If there are many argument combinations, the basic search in
Figure 2 may take some time to terminate. The problem gets worse if the exact function to use is
not clear. The novice may be unsure whether to use pivot, pivot_table, unstack, etc., and in that
case would have to go through the argument combinations for each of these functions. If the order
in which generate_pivot_args returns arguments is arbitrary, the correct argument combination is
unlikely to show up early enough for the code in Figure 2 to be really practical. The problem is
exacerbated if sequences of multiple functions are required to perform the transformation, as the
total number of possible argument combinations grows exponentially.
To make generate_pivot_args output the correct argument combination more quickly, the API

expert could replace the calls to Select(D,c,i) with a particular enumeration order through D. The
enumeration order would be based on some additional heuristics, for example:
(1) The values in the column from input that is used as arg_col end up being column names in

the output. Therefore, the generator should look at the output’s column names, and first try
to use as arg_col any column from the input that shares values with the output’s column
names.

(2) The values in the column from input that is used as the arg_val argument end up in the
main data of the table. Hence, the generator should look at the output’s data, and first try
to use as arg_val any column whose values are the same as output’s data cells. However
the values argument also accepts None as a valid argument, in which case all the remaining
column values are used as the main data of the output. Therefore the generator should take
this into account as well.

(3) ... (more heuristics omitted)

Designing such heuristics is error-prone. They are not guaranteed to be effective, especially if the
I/O example provided by the user cannot actually be solved with a single call to pivot. Further,
it is much more tedious for the expert to write a generator that uses these heuristics than it is to
write a generator that encodes the basic validity constraints, like that in Figure 3. Overall, using
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heuristics is an error-prone, tedious, and non-scalable way to more quickly find the correct argument
combination.

In this paper, we propose a different route. Instead of relying on humans to write more heuristics,
we propose a smart backend for operators like Select(D,c,i). This smart backend for Select first
derives from the context c a probability distribution p over D. Then, it returns elements d ∈ D
in descending order of their probability p(d). The distribution model can be represented by a
neural network, and learned from a training set of inputs, programs, and their outputs, as detailed
in Section 3.4. Over a validation set of (input, output) pairs where output = pivot(input,
**kwargs) for some arguments kwargs, our smart backend has 99% top-1 accuracy in retrieving
the correct kwargs.

Further, instead of using the smart backends only to generate arguments for pivot, we use them
to build a prototype synthesis engine for the pandas library, AutoPandas. AutoPandas takes in a
pair of (inputs, output) representing a dataframe transformation and outputs a program p in
the pandas API such that p(input) == output. We achieve this by (1) implementing a program
candidate generator which outputs straight-line pandas programs that run without error on input
and (2) using smart backends for Select and other operators so that the program candidate generator
outputs p such that p(input) == output early in the search. AutoPandas currently supports 119
pandas functions and can form programs with multiple function calls. Given the I/O example in
Figure 1, AutoPandas finds the correct program:

output_df = input_df.pivot(index='Date', columns='Category', values='Expense')

after checking only one program candidate.
In the next section, we formalize (1) generators, and the semantics of Select and other operators,

(2) generator-based synthesis, and (3) the smart backend we use to synthesize pandas programs.

3 TECHNIQUE
3.1 Generators
We first formally describe generators. In our setting, a generator G is a program that, when invoked,
outputs values from a space of possible values. Figure 3 shows an example of such a generator G for
function arguments in the Python pandas library [pan 2014] for DataFrame (i.e. table) manipulation.
In particular, the generator in Figure 3 takes a pandas DataFrame as an input, and returns one
of the possible argument combinations of the pandas API function pivot, by selecting various
argument values.

Our generators G can contain arbitrary Python code, along with a set of stateful operators that
govern the behavior of G across runs. An example of such an operator is Select, which is also
used in the generator in Figure 3. Given a collection of values, Select returns a single value from
the collection. For example, the call to Select in Line 4 selects one of the columns of the input
dataframe df. The generator then assigns this value to arg_col, to be used as the pivot column.
Similarly, the call to Select in Line 5 picks either None or one of the columns in df except the one
selected as arg_col (i.e., df.columns − {arg_col}), to be used as the index. Choosing arg_val is
more complicated. In particular, if the input dataframe has a multi-level index, and arg_idx is None,
arg_val must be None for pivot to not throw an error. Generators are a natural form in which to
specify such contracts. The checks in place in Figure 3 ensure that the generator only generates
arguments that follow the contract, and thus, can be given to pivot without error.
On different invocations of the generator in Figure 3, the calls to Select may yield different

values. There are a few different ways in which Select can do this. First, it can simply randomly
choose values from D. Or, it can assure new values will be different by maintaining internal state
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which records the values it returned in previous runs. Further, it can use its context argument c to
determine the order in which it returns these values. We elaborate on this below.

Operators. Apart from Select, we support three other operators, namely (1) Subset, (2)
OrderedSubset and (3) Sequence. An informal description of their behavior is provided in Table
1, while a formal treatment is presented in Figure 4.

Each operator Op is of the form Op(D,C, id) where D is the domain passed to the operator; C
is the context passed to the operator to control its behavior; and id is the unique static ID of the
operator. The static ID of Op simply identifies each call to an operator uniquely based on its static
program location. It is provided explicitly in Figure 3 for clarity but may be inserted automatically
via a static instrumentation pass of the generator code. The behavior of the generator across runs
can be controlled by changing the semantics of these operators, some of which are described below.

Randomized. The simplest case is for the generator to be randomized. That is, the generator will
follow a random execution path as governed by the values returned by its constituent operator calls.
This can be achieved by simply randomizing the underlying operators, the semantics of which are
given in Figure 4c. These semantics are rather straightforward — each operator simply returns a
random element from the collection of possible values (defined byW, the definition of which is
given in Figure 4a). This collection of possible valuesW is a function of the operator type (one of {
Select, Subset, OrderedSubset, Sequence }) and the domain D passed to the operator call.

Exhaustive (Depth-First). Another option is to have an exhaustive generator which systematically
explores all possible execution paths as governed by the constituent operator calls. That is, all
the operators work in unison by returning a fresh combination of values on each invocation of
the generator. The operators also signal Generator-Exhausted when all possible values have been
explored. Figure 4d presents the operator semantics that achieve this behavior. In particular, the
semantics in Figure 4d enforce a depth-first exhaustive behavior across runs, where the generator
explores all possible values of operator calls occurring later in the execution trace of the generator
before exploring the ones occurring before. For example, when using the semantics in Figure 4d,
the generator in Figure 3 will first explore all possible values of the Select call at Line 9 before
moving on to the next possible value for the Select call at Line 5.

The operator semantics in Figure 4d uses three internal state variables t , σ and δ . The variable t
keeps track of the number of operator calls made in the current invocation of the generator. The
variable σ is a map from the operator call index to the choice to be made by the operator call in
the current invocation of the generator. Note that the operator call index is distinct from the static
identifier id as it keeps track of the dynamic index of the operator call in the generator call stack.
For example, if an operator at a program location is called twice as a result of an enclosing loop, it
will have two distinct entries in σ . Finally, δ represents a map from the operator call index to the
collection of possible values W as defined by the operator type and the passed domain D. The
variables σ and δ are initialized to empty maps before the first invocation of the generator, but are
persisted across the later ones. However t is reset to zero before every fresh generator invocation.
We also introduce a special operator called Op End that is implicitly invoked at the end of each
invocation in the generator. We now briefly explain the rationale behind all of these variables,
Op End and the rules themselves.

(1) Op-Extend - This rule governs the behavior of the operator when it is invoked for the first
time (as signified by t < dom(σ )). The operator returns the first value fromW and records
this choice in σ . It also stores W in δ for future use.

(2) Op-Replay - The hypothesis t ∈ dom(σ ) signifies that this operator call needs to replay the
choice as dictated by σ (t).
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Table 1. List of Available Operators

Operator Description

Select(domain) Returns a single item from domain
Subset(domain) Returns an unordered subset, without replacement, of the items in domain
OrderedSubset(domain) Returns an ordered subset, without replacement, of the items in domain
Sequence(len)(domain) Returns an ordered sequence, with replacement, of the items in domain

with a maximum length of len

(3) Op-End-1 - This rule captures the first behavior of the special operatorOp End. It finds the last
(deepest) operator call, indexed byk , that has not exhausted all possibilities, and increments its
entry in σ . This is key to enforcing depth-first semantics - a later call explores all possibilities
before previous calls do the same. Note that it also pops-off the later entries (> k) from σ
and δ . This is required as the generator may take an entirely new path based on the new
value returned by this operator and may therefore make an entirely new set of operator calls.
Together, these two steps maintain the invariant that σ stores the choice to be made by the
operators in the current generator run.

(4) Op-End-2 - The final rule covers the case when all operator calls have exhausted all possible
values. This makes the special Op End operator signal Generator-Exhausted after the last
invocation of the generator, indicating that we have explored all possible executions of the
generator.

Smart Semantics. Notice that the semantics presented in Figures 4c and 4d do not utilize the
context C or the static id passed to the operator. The significance of this is that given the same
domain, the behavior of the operator is fixed, regardless of the actual input with which the generator
is invoked. This is not suitable for tasks such as the one presented in Section 2, where the goal
is to quickly find an argument combination to the pivot function such that when it is called on
input_df, it produces the target output output_df. In this case, we want to change the behavior
of the operators based on the input and output dataframe, and bias it towards the values that have
a higher probability of guiding the generator execution in the right direction.
This smart behavior of operators is captured in the semantics presented in Figure 4e. The only

difference with the semantics in Figure 4d is that the set of possible valuesWM for each operator is
now the result of a function Rank(Op,id ) that takes in the original collection of possible values, the
passed domain D as well as the context C passed to the operator, and reorders the values in the
decreasing order of significance w.r.t to the task at hand. Note that the Rank function is sub-scripted
by (Op, id) implying that every operator call can have a separate ranking function.
In the generator in Figure 3, the context passed at every operator call is the input and output

dataframe. Therefore given suitable ranking functions Rank(Select,1), Rank(Select,2) and Rank(Select,3),
the generator can be biased toward producing an argument combination that, when passed to the
pivot function along with the input dataframe input_df, is likely to result in output_df.

3.2 Generator-Based Program Synthesis
We now describe how to build an enumerative synthesis engine E using generators. The input to E

is an input-output (I/O) example. The result is a program in the target language that produces the
output when run on the input given in the I/O example. Our target language is the python pandas
API. Figure 5 describes the basic algorithm behind this engine in Python-like pseudo-code. The
engine consists of two components — (1) a program candidate generator and (2) a checker that
checks if the candidate program produces the correct output. The checker is rather straightforward
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P(D)
def
= Power-Set of D

Perms(x ) def
= Set of all permutations of x

W (Op, D)
def
=


D if Op = Select
P(D) if Op = Subset
∪{Perms(x ) | x ∈ P(D)} if Op = OrderedSubset
{(a1, · · · , ak ) | k ≤ l, ai ∈ D} if Op = Sequence(l )

R(W)
def
= Random Element from W

(a) Common Definitions

W
def
= W (Op, D)

σk
def
= ∀t .((t < k ) ⇒ (σk (t ) = σ (t )))∧

((t ≥ k ∨ t < 0) ⇒ t < dom(σk ))

δk
def
= ∀t .((t < k ) ⇒ (δk (t ) = δ (t )))∧

((t ≥ k ∨ t < 0) ⇒ t < dom(δk ))

WM
def
= Rank(Op,id )(W (Op, D), D, C)

(b) Common Definitions (continued)

Op(D, C, id ) ⇓ R(W)
Op-Random

(c) Operator Semantics - Randomized

t < dom(σ ) δ ′ ≡ δ [t :=W] σ ′ ≡ σ [t := 0]

⟨Op(D, C, id ), σ , δ, t ⟩ ⇓ ⟨W[0], σ ′, δ ′, t + 1⟩
Op-Extend

t ∈ dom(σ )

⟨Op(D, C, id ), σ , δ, t ⟩ ⇓ ⟨W[σ (t )], σ , δ, t + 1⟩
Op-Replay

∃k . k is largest such that
(k ∈ dom(σ ) ∧ σ (k ) < |δ (k ) | − 1)

⟨Op End, σ , δ, t ⟩ ⇓ ⟨σk [k := σ (k ) + 1], δk , t + 1⟩
Op-End-1

�k . (k ∈ dom(σ ) ∧ σ (k ) < |δ (k ) | − 1)

⟨Op End, σ , δ, t ⟩ ⇓ Generator-Exhausted
Op-End-2

(d) Semantics - Depth-First Exhaustive

t < dom(σ ) δ ′ ≡ δ [t :=WM ] σ ′ ≡ σ [t := 0]

⟨Op(D, C, id ), σ , δ, t ⟩ ⇓ ⟨WM [0], σ ′, δ ′, t + 1⟩
Op-Extend

t ∈ dom(σ )

⟨Op(D, C, id ), σ , δ, t ⟩ ⇓ ⟨WM [σ (t )], σ , δ, t + 1⟩
Op-Replay

∃k . k is largest such that
(k ∈ dom(σ ) ∧ σ (k ) < |δ (k ) | − 1)

⟨Op End, σ , δ, t ⟩ ⇓ ⟨σk [k := σ (k ) + 1], δk , t + 1⟩
Op-End-1

�k . (k ∈ dom(σ ) ∧ σ (k ) < |δ (k ) | − 1)

⟨Op End, σ , δ, t ⟩ ⇓ Generator-Exhausted
Op-End-2

(e) Semantics - Smart Depth-First Exhaustive

Fig. 4. Operator Semantics for Generators. σ and δ are initialized to empty maps before the first invocation of
the generator. t is set to the integer zero before every invocation of the generator.Op End is a special operator
that is implicitly called at the end of each invocation of the generator. A detailed explanation is provided in
Section 3.1

1 def synthesize(input, output, max_len):

2 generator = generate_candidates(input, output, max_len)

3 while (not generator.finished()):

4 candidate = next(generator)

5 if candidate(input) == output:

6 return candidate

Fig. 5. Generator-Based Enumerative Synthesis Engine

to implement: we simply execute the program and test the exact match of its output to the target
output. The bulk of the work is done by the program candidate generator.

3.2.1 Program Candidate Generator. A program candidate generator P is a generator that, given an
input-output example, generates program candidates. First, assume P is a generator in exhaustive
mode (see Section 3.1). That is, on each invocation, P yields a program candidate that hasn’t
been produced so far. Figure 6 shows an excerpt of our program candidate generator for pandas
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1 @generator

2 def generate_candidates(input, output, max_len):

3 functions = [pivot, drop, merge, ...]

4 function_sequence = Sequence(max_len)(functions , context=[input, output], id=1)

5 intermediates = []

6 for function in function_sequence:

7 c = [input, ∗intermediates , output]
8 if function == pivot:

9 df = Select(input + intermediates , context=c, id=2)

10 arg_col = Select(df.columns, context=[df, output], id=3)

11 arg_idx = Select(df.columns − {arg_col}, context=[df, output], id=4)

12 if isinstance(df.index, pandas.MultiIndex) and arg_idx is None:

13 arg_val = None

14 else:

15 arg_val = Select(df.columns − {arg_col, arg_idx},

16 context=[df, output], id=5)

17 args = (df, arg_col, arg_idx, arg_val)

18

19 elif function == merge:

20 df1 = Select(input + intermediates , context=c, id=6)

21 df2 = Select(input + intermediates , context=c, id=7)

22 common_cols = set(df1.columns) & set(df2.columns)

23 arg_on = OrderedSubset(common_cols , context=[df1, df2, output], id=8)

24 args = (df1, df2, arg_on)

25 # Omitted code: case for each function

26
...

27 intermediates.append(function.run(∗args))
28

29 return function_sequence

Fig. 6. A Simplified Program Candidate Generator for pandas Programs.

programs. This generator produces straight-line programs, each of which is a sequence of up to
max_len pandas function calls. The program given at the end of Section 2 is an example of such a
candidate.

The generator in Figure 6 generates candidate programs as follows. First, it picks a sequence of
functions from a list of supported functions (Lines 3-4). Then, for each function in the sequence,
the generator selects the arguments (Lines 8-26), and computes the result by running the function
with the arguments and stores it as an intermediate (e.g. Line 27). Intermediates are the outputs
produced by previous functions in the sequence. These are essential to allow the generator to
generate meaningful multi-function programs, where a function can operate on the output of a
previously applied function. As shown in Lines 3-4, argument generation is done on a case-by-case
basis depending on the given function. For example, for the function pivot, the generator follows
the argument generation logic of Figure 3, applies the function with the selected arguments to a
selected input or intermediate df, and stores the output as an intermediate. The program candidate
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generator can handle pandas functions that operate on multiple dataframes, e.g. merge on Lines
19-24, by selecting each dataframe from the set of input and intermediates (Lines 20-21).

3.2.2 Building an Exhaustive Depth-First Enumerative Synthesis Engine. Using the exhaustive depth-
first semantics for operators presented in Figure 4d for the generator in Figure 6 gives an exhaustive
depth-first synthesis engine. This means that the engine explores all possible program candidates
and in depth-first order i.e. it explores all possible programs using the same sequence of functions
before exploring another sequence. Also, when enumerating the arguments, it explores all values
of a later argument before moving on to the next value for the previous argument.

3.2.3 Building a Smart Enumerative Synthesis Engine. The generator in Figure 6 describes a space
of programs that is extremely large for such an enumerative pandas synthesis engine to explore
in reasonable time. This generator supports 119 pandas functions, each taking 3 arguments on
average. This causes an enormous combinatorial explosion in the number of argument combinations
and choices made by the generator operators.

Hence, we need a smart generator that tailors itself to the presented synthesis task. That is, we
need to use the smart semantics for operators presented in Figure 4e. For the generator in Figure
6, the context passed to each operator call is explicitly shown. The function sequence selection,
as well as the selection of dataframes on which the functions operate (Lines 4, 9, 20, 21) all take
the input-output example along with any intermediates as the context. The operator calls used to
select values for arguments depends primarily on the dataframe(s) on which the function will be
run, so only that dataframe and the output is passed as context.
With this formulation in place, we can now define the Rank(Op,id ) function that is at the heart

of the semantics in Figure 4e. Given the domain D and the context C passed to Op, this function
reorders the space of possible valuesW (Op,D) according to a probability distribution over this
space. We exploit the recent advances in the area of deep learning and define these Rank functions
per operator using novel neural network models that we describe in the following section. We call
generators that use operators backed by these neural network models Neural-Backed Generators.

3.3 Neural-Backed Generators for Pandas
In AutoPandas, we use neural networks to define the Rank functions for the operators used in our
generators. In short, we design a neural network model for each kind of operator (see Table 1). The
first time an operatorOp is called with a particular domainD and context C, a query is constructed
using D and C. This query is passed to the neural network model, which returns a probability
distribution over the possible values for the operator (as defined byW (Op,D) in Figure 4a). The
Rank function then uses this distribution to reorder the elements inW (Op,D) in the decreasing
order of probabilities (WM in Figure 4b). The operator functions as before, but now returns values
in an order conditioned on the context. We now define the query concretely, its encoding as well as
the neural network architectures for each operator.

3.3.1 Neural-NetworkQuery. The queryQ to each neural networkmodel, regardless of the operator,
is of the form Q = (D,C) where D and C are the domain and context passed to the operator.

3.3.2 Query Encoding. Encoding this query into a neural-network suitable format poses several
challenges. Recall that the context and the domain passed to operators in the pandas program
candidate generator (Figure 6) contain complex structures such as dataframes. Dataframes are
2-D structures which can contain arbitrary Python objects as primitive elements. Even restricting
ourselves to strings or numbers, the set of possible primitive elements is infinite. This renders all
common value-to-value map-based encoding techniques popular in machine learning, such as
one-hot encoding, inapplicable. At the same time, the encoding needs to retain enough information
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about the context to generalize to unseen queries which may occur when the synthesis engine is
deployed in practice. Therefore, simply abstracting away the exact values is not viable. In summary,
a suitable encoding needs to (1) abstract away only irrelevant information and (2) be suitably
structured for neural processing. To this end, we designed a graph-based encoding that possesses
all these desirable properties. We describe the encoding below.

Graph-Based Encoding. We now describe how to encode the domain D and the context C as a
graph, consisting of nodes, edges between pairs of nodes, and labels on nodes and edges. The
overall rationale is that it is not the concrete values, but rather the relationships amongst values,
that really encode the transformation at hand. That is, relationship edges should be sufficient for a
neural network to learn from. For example, the essence of transformation represented by Figure 1
is that the values of the column ‘Category’ now become the columns of the pivoted dataframe, with
the ‘Date’ column as an index, and the ‘Expense’ as values. The concrete names are immaterial.

Recall that the domain and context are essentially collections of elements. Therefore, we first
describe how to encode each such element e individually as a graph Ge . Later we describe the
procedure to combine these graphs into a single graph GQ representing the graph-encoding of the
full query Q . Figure 7 shows the graph-encoding of the query generated as a result of the Select
call at line 4 in Figure 3 and will be used as a running example.

Encoding Primitives. If the element e is a primitive value (strings, ints, float, lambda, NaN etc.),
its graph encoding Ge contains a single node representing e . This node is assigned a label based
on the data-type of the element as well as the source of the element. The source of an element
indicates whether it is part of the domain, if it is one of the input-outputs in the I/O example, if it is
one of the intermediates, or none of these.

Encoding DataFrames. If the element e is a dataframe, each cell element in the dataframe is encoded
as a node in the graphGe . The label of the node includes the type of the element (string, number,
float, lambda, NaN, etc.). The label also includes the source of the dataframe, i.e. whether the
dataframe is part of the domain, input, output, intermediate, or none of these. We also add nodes to
Ge that represent the schema of the dataframe, by creating a node for each row index and column
name of the dataframe. Finally, we add a representor node to Ge that represents the whole of the
dataframe. The label of this node contains the type “dataframe” as well as the source of the parent
dataframe. Note that this additional representor node is not created when encoding primitive
elements. The node representing the primitive element itself acts as its representor node.

The graph encoding of a dataframe also contains three kinds of edges to retain the structure of
the dataframe. The first kind is adjacency edges. These are added between each pair of cell nodes,
column name nodes or row index nodes that are adjacent to each other in the dataframe. We only
add adjacency edges in the four cardinal directions. The second kind is indexing edges, which are
added between each column name node (resp. row index node) and all the cell nodes that belong
to that column (resp. row). Finally, the third kind of edge is a representation edge, between the
representor node to all the other nodes corresponding to the contents of the dataframe.

Encoding the Query Q. Finally, to encode Q = (D,C), we construct Ge for each element in D and
C as described above, and create a graph G containing these Ge s as sub-graphs. Additionally, to
capture relationships amongst these elements, we add a fourth kind of edge - the equality edge,
between nodes originating in differentGe s such that the elements they represent are equal. Formally,
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Fig. 7. Graph encoding of the query passed to the Select call at Line 4 in Figure 3, on the I/O example from
Figure 1.

we add an equality edge between nodes n1 and n2 if n1 ∈ Gei ∧ n2 ∈ Gej ∧ i , j ∧V (n1) = V (n2)
where V is a function that given n, retrieves the value encoded as n. For representor nodes,
V returns the whole element it represents. For example, for a dataframe, V would return the
dataframe itself for the representor node.

Equality edges are key to capturing relationships between the inputs and the output in the I/O
example, as well as the domain D and the I/O example. The neural network model can then learn
to extract these relationships and use them to infer the required probability distribution.

3.3.3 Operator-Specific Graph Neural Network Models. Given the graph-based encodingGQ of a
query Q, we feed it to a graph neural network model. Each operator has a different model. These
models are based on the gated graph neural network, introduced by Li et al. [2015]. We base
our model on the implementation by Microsoft [Allamanis et al. 2018; Microsoft 2017]. We first
describe the common component of all the neural network models. Then, we provide an individual
description for the neural network model corresponding to each operator listed in Table 1.

The input to all our network models is a undirected graph G = (V , E, X). V and X characterize
the nodes, where V is the set of nodes and X is the embedding X : V → RD . Effectively, X maps
each node to a one-hot encoding of its label of size D, where D is a hyper-parameter. E contains
the edges, where each edge e ∈ E is a 3-tuple (vs , vt , te ). The source and target nodes are vs and vt ,
respectively. The type te of the edge is one of Γe ≡ {adjacency, indexing, representor, equality} and
is also one-hot encoded.

Each node v is assigned a state vector hv ∈ RD . We initialize the vector to the node embedding
h(0)v = X(v). The network then propagates information via r rounds of message passing. During
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Fig. 8. Operator-specific neural network architectures.

round k (0 ≤ k < r ), messages are sent across edges. In particular, for each edge (vs , vt , te ), vs
sends the messagemvs→vt = fk (h

(k)
vs , te ) to vt . Our fk : RD+ |Γe | → RD is a single linear layer. These

are parameterized by a weight matrix and a bias vector, which are learnable parameters. Each node
v aggregates its incoming messages intomv = д({mvs→v | (vs ,v, te ) ∈ E}) using the aggregator
д. In our case, we take д to be the element-wise mean of the incoming messages. The new node
state vector h(k+1)v for the next round is then computed as h(k+1)v = GRU (mv ,h

(k )
v ) where GRU is

the gated recurrent unit [Cho et al. 2014] with start state as h(k )v and inputmv . We use r = 3 rounds
of message passing, as we noticed experimentally that further increasing the number of message
passing rounds did not increase validation accuracy.
After message passing is completed, we are left with updated state vectors h(r )v for each

node v . Now depending on the operator, these node vectors are further processed in differ-
ent ways as described below to obtain the corresponding probability distributions over space
of values defined by the operator (see Figure 4a). A graphical visualization is also provided in Figure 8
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Select : We perform element-wise sum-pooling of the node state vectors h(r )v into a graph state
vector hG . We now concatenate hG with the node state vectors h(r )di

of the representor nodes di for
each element in the domain D in the query Q, to obtain vectors hi = hG ◦ h(r )di

. We pass the his
though a multi-layer perceptron with one hidden layer and a one-dimensional output layer, and
apply softmax over the output values for all the elements to produce a probability distribution over
the domain elements (p1, · · · ,pn). For inference, this distribution is returned as the result, while
during training we compute cross-entropy loss w.r.t this distribution and the correct distribution
where pi = 1 for the correct choice i and ∀j , i,pj = 0. Figure 8a shows an illustration of the
model.

Subset : As in Select, we perform element-wise sum-pooling of the node state vectors and
concatenate it with the state vectors of representor nodes to obtain the vectors hi = hG ◦ h(r )di

for
each element in the domain. However, we now pass the hi s though a multi-layer perceptron with
one hidden layer and apply softmax activation on the output layer to obtain a distribution (pik ,pek )
over two label classes “include” and “exclude” for each of the domain element dk individually. Recall
that the space of possible outputs for the Subset operator is the power-set of the domain D. The
probability of these labels corresponds to the probability with which an element is included and
excluded from the output set respectively. To compute the probability distribution, the probability
of each possible output set is computed as simply the product of the “include” probabilities for the
elements included in the set and the “exclude” probabilities for the elements excluded from the
set. Again, this distribution is returned as the result during inference, while during training, loss
is computed w.r.t this distribution and the correct individual distribution of the elements where
pik = 1 ∧ pek = 0 if element dk is present in the correct output, else pik = 0 ∧ pek = 1. Figure 8b
shows an illustration of the model.

OrderedSubset and Sequence : We perform element-wise sum-pooling of the node state vectors
h(r )v into a graph state vector hG . We then pass hG to an LSTM that is unrolled for T + 1 time-steps,
where T = |D| for OrderedSubset and T = l for Sequence(l) where l the max-length parameter
passed to Sequence. The extra time-step is to accommodate a terminal token which we describe
later. For each time-step t , the output ot is concatenated with the node state vectors h(r )di

of the
representor nodes dis for each element in the domain passed to the operator to obtain vectors
hti = ot ◦ h(r )di

. At time-step t , in a similar fashion as Select, a probability distribution is then
computed over the domain elements plus an arbitrary terminal token term. The terminal token
is used to indicate the end of a sequence/set. Now, to compute the probability distribution, the
probability of each set or sequence (a0, · · · ,ak ) where (k ≤ T ) is simply the product of probabilities
of ai at time-step i and the probability of the terminal token term at time-step k + 1. As before, this
distribution is directly returned during inference, while during training, loss is aggregated over
individual time-steps; the loss for a time-step is computed as described in Select. Figure 8c shows
an illustration of the model.

All the network models are trained with the ADAM optimizer [Kingma and Ba 2014] using
cross-entropy loss.

3.4 Training Neural-Backed Generators for Pandas
A Neural-Backed Generator consists of operators backed by Rank functions that influence their
behavior. We implement these Rank functions using neural networks. as described in Section 3.3.3.
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Training each of these networks for each call to an operator with static ID id requires training
data consisting of tuples of the form Tid = (C,D, c) where c is the correct choice to be made by
the operator call with static id id . Put another way, the neural network behind the operator call at
location id is trained to predict the choice c with the highest probability given the context C and
domain D.

Unfortunately, such training data is not available externally as it is highly specific to our genera-
tors. We therefore aim to synthesize our training data automatically, i.e., synthesize a random tuple
containing a context C, domain D, and the target choice c . This is a highly non-trivial problem, as
there are two strong constraints that need to be imposed on C, D and c for this tuple to be a useful
training data-point. First, the random context, domain and choice should be valid. That is, there
should exist an execution of the generator for some input such that the operator call in question
receives the random context and domain as input, and makes the same choice. Second, this tuple
of context, domain and choice should be meaningful, i.e., the choice should lead to progress on
the task contained in the context. In our synthesis setting, this translates to the property that the
generator makes a step towards producing a program that actually produces the output from the
input as passed in the context. We rely on two key insights to solve these problems for our pandas
program candidate generator.

Supposewe have tuples of the form (I,O,P,K)whereP is a pandas program such thatP(I) = O

i.e. it produces O when executed on inputs I. Also, K is the sequence of choices made by the
operators in the generator such that the generator produces the program P when it is fed I and O

as inputs. Then, it is straight-forward to extract training data tuples (C,D, c) for each operator call
by simply running the generator on I and O and recording the concrete context C and domain
D passed to the operator, and forcing the operator to make the choice c . These tuples are also
meaningful by construction, as the operators make choices that lead to the generation of the
program P which solves the synthesis task described by I and O.

The second insight is that we can obtain these (I,O,P,K) tuples by using the generator itself. We
generate random inputs I (DataFrames), run the generator on I using the randomized semantics
presented in Figure 4c while simultaneously recording the choices made as K . The program P

returned by the generator is then run on I to yield O.
The sheer size of APIs such as pandas presents another problem in this data generation process.

The large number of functions yields a huge number of possible sequences of these functions (Lines
3-4 in Figure 6). Even when considering sequences of length ≤ 3, the total number of sequences
possible from the 119 pandas functions we support is ~500,000. Generating enough examples for
all function sequences to cover a satisfactory portion of all the possible argument combinations is
prohibitively expensive and would result in dataset of enormous size that cannot be processed and
learned from in reasonable time.

However, not all sequences actually occur in practice. Practitioners of the library come up with
sequences that are useful in solving real-world examples. So, we mine Github and StackOverflow to
collect the function sequences used in the real-world. We were able to extract ~4300 sequences from
both these sources. Then, while generating the tuples (I,O,P,K) using randomized semantics, we
tweak the semantics of just the call to Sequence at Line 4 in Figure 6 to randomly return sequences
from only this mined set of sequences.

4 EVALUATION
We first evaluate the feasibility and effectiveness of our technique by evaluating the end-to-end
ability of AutoPandas to synthesize solutions for real-world benchmarks. We then provide deeper
insights into the performance of our neural network models and compare it with two baselines to
demonstrate the usefulness of the models.
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4.1 Implementation
We implement the overall technique described in Section 3 in a tool called AutoPandas. AutoPan-
das consists of 25k lines of Python code, and uses Tensorflow [Abadi et al. 2015] to implement the
neural network models. The code is available at https://github.com/rbavishi/autopandas.

4.2 Training and Setup
We generated 6 million (input, output, program, generator choices) training tuples (as described
in Section 3.4) containing 2 million tuples each for programs consisting of one, two, and three
function calls. Similarly, we generate 300K validation tuples with 100K tuples each for the three
function sequence lengths. From these tuples we extract training and validation data for the 320
operator calls in our program candidate generator for pandas, and train their respective models for
10 epochs on four Nvidia Titan V GPUs. We finished training all the models in 48 hours. All our
synthesis experiments are run on a single 8-core machine containing Intel i7-7700K 4.20GHz CPUs
running Ubuntu 16.04.

4.3 Performance on Real-World Benchmarks
We evaluated AutoPandas on 26 benchmarks taken from StackOverflow questions containing
the dataframe tag. We ran AutoPandas with a time-out of 20 minutes and used smart depth-first
enumeration semantics for the program candidate generator. We also impose an upper bound on
the number of Replays an operator is allowed to make (see the Op-Replay semantics in Figure
4d). This prevents any operator from limiting the scope of exploration when it can return a very
large number of values given a single domain. In our experiments, we set a bound of 1000. For
comparison, we also implement a baseline version of AutoPandas called Baseline that follows
depth-first exhaustive enumeration semantics (Figure 4d) for all operator calls except the Sequence
invocation. The rationale is that given the size of the search space, it is more meaningful to compare
the performance of the models backing the exploration of function arguments given the same
function sequences. Table 2 contains the results.

The column Depth contains the length of the function sequence used in the official solution for
the benchmark. Cand. Explored denotes the number of candidates both approaches had to check
for correctness before arriving at one which produces the target output. Seq. Explored contains the
number of function sequences explored (by the Sequence call at Line 4 in Figure 6), while the Time
column contains the time taken (in seconds) to produce a solution if any.

AutoPandas can solve 17 out of the 26 benchmarks. The Baseline approach solves 14/26. Both
approaches tend to miss the 20 minute mark more often on benchmarks with higher depths, which
is expected as the space of possible programs grows exponentially with the length of the function
sequence being explored. The guided execution of the program candidate generator enabled by
neural networks allows AutoPandas to search this enormous space in reasonable time.

Even on the benchmarks that are solved by both approaches, the lower numbers in the Candidates
Explored column indicate that our neural-backed program candidate generator indeed learns to
adapt to the synthesis task at hand, generating the solution faster than the baseline. Finally the
number of sequences explored in both approaches is always at most 10, and often 1, suggesting
that the sequence prediction component is quite effective. The difference in time between the two
approaches is relatively smaller than in candidate numbers, because AutoPandas includes the
time taken to query the neural network models and interpret its results. However we believe this is
fundamentally an engineering issue. Performance could easily be improved by batching queries,
parallelizing exploration and speculative execution of the generator while waiting for results from
the models.
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Table 2. Performance on Real-World Benchmarks. Dashes (-) indicate timeouts by the technique.

Benchmark Depth Candidates Explored Sequences Explored Solved Time(s)
AutoPandas Baseline AutoPandas Baseline AutoPandas Baseline AutoPandas Baseline

SO_11881165 1 15 64 1 1 Y Y 0.54 1.46
SO_11941492 1 783 441 8 8 Y Y 12.55 2.38
SO_13647222 1 5 15696 1 1 Y Y 3.32 53.07
SO_18172851 1 - - - - N N - -
SO_49583055 1 - - - - N N - -
SO_49592930 1 2 4 1 1 Y Y 1.1 1.43
SO_49572546 1 3 4 1 1 Y Y 1.1 1.44
SO_13261175 1 39537 - 18 - Y N 300.20 -
SO_13793321 1 92 1456 1 1 Y Y 4.16 5.76
SO_14085517 1 10 208 1 1 Y Y 2.24 2.01
SO_11418192 2 158 80 1 1 Y Y 0.71 1.46
SO_49567723 2 1684022 - 2 - Y N 753.10 -
SO_13261691 2 65 612 1 1 Y Y 2.96 3.22
SO_13659881 2 2 15 1 1 Y Y 1.38 1.41
SO_13807758 2 711 263 2 2 Y Y 7.21 1.81
SO_34365578 2 - - - - N N - -
SO_10982266 3 - - - - N N - -
SO_11811392 3 - - - - N N - -
SO_49581206 3 - - - - N N - -
SO_12065885 3 924 2072 1 1 Y Y 0.9 4.67
SO_13576164 3 22966 - 5 - Y N 339.25 -
SO_14023037 3 - - - - N N - -
SO_53762029 3 27 115 1 1 Y Y 1.90 1.50
SO_21982987 3 8385 8278 10 10 Y Y 30.80 13.91
SO_39656670 3 - - - - N N - -
SO_23321300 3 - - - - N N - -

Total 17/26 14/26

Most of the benchmarks on which AutoPandas fails to find a solution involve arithmetic
functions. AutoPandas’s encoding does not capture arithmetic relationships readily, so its function
sequence prediction is not as accurate for these sequences. In future work we plan to explore richer
encoding schemes that can tackle these issues.

4.4 Analysis of Neural Network Models
4.4.1 Function Sequence Prediction Performance. We single out the call to Sequence in our program
candidate generator as it is the component most critical to the performance of the generator,
and dissect the performance of the neural network model backing it; on our synthetic validation
dataset in Figure 9. In particular, we measure top-1 to top-10 accuracies on a per-sequence basis.
Recall that these are the sequences mined from GitHub and StackOverflow. Figures 9a-9c show
the performance of the model when predicting sequences of lengths 1, 2 and 3 respectively. As
expected, the performance for shorter sequences is better as the logical distance between the input
and output is lower, and therefore the encoding can capture sufficient information. Another reason
for poorer accuracies at higher lengths is the fact that for large APIs like pandas functions often
have overlapping semantics. Therefore multiple sequences may produce viable solutions for a given
output example. This is reinforced by the results on real-world benchmarks in Table 2. In particular
the numbers in the “Sequences Explored” column for AutoPandas suggest that the model indeed
predicts useful sequences, even if they don’t match the ground-truth sequence.

Figures 9d-9f present the expected accuracies of a purely random model on the same dataset. As
expected, the accuracies are almost zero (there is a slight gradient in Figure 9d). The sheer number
of possible sequences makes it improbable for a random model to succeed on this task; even our
baseline benefited from the neural model’s predictions.

4.4.2 Comparison with Deterministic and Randomized Semantics. We demonstrate the efficacy of
the smart semantics for operators by comparing the neural network models with deterministic and
randomized baselines. In the deterministic baseline, the order in which operators return values is
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(a) Smart, Length-1 (b) Smart, Length-2 (c) Smart, Length-3

(d) Random, Length-1 (e) Random, Length-2 (f) Random, Length-3

Fig. 9. Smart Model Accuracies on Function Prediction Task, compared to a Random Baseline. Per-sequence
Top-k accuracies provided. Color gives accuracy; darker is better. The color point (x ,y) gives the top-x accuracy
for sequence with ID y. Sequence IDs are sorted based on top-1 accuracy of the smart model.

fixed for a given input domain (see Figure 4d). In the randomized baseline, the operator returns
values in a random order (see Figure 4c). We expect the neural network approach (see Figure 4e) to
perform better than both these baselines as it is utilizing the context. Figure 10 shows the results.
We see that while a randomized approach smoothens results compared to the deterministic

approach (ref. Figure 10c vs. Figure 10b), both still have significant difficulty on certain operator
calls (top-left corners of all graphs). The neural network model performs quite well in comparison.
There are operator calls where all the three approaches perform poorly or all perform well. The
former can be attributed to insufficient information in the context. For example, if a pandas function
supports two modes of operation which can both lead to a solution, the model may be penalized in
terms of accuracies, but may not affect its performance in the actual task. The latter case, where all
approaches perform well, can be mostly attributed to small domains. For example, many pandas
functions take an axis argument that can only take the value 0 or 1, which can be modeled as
Select({0,1}) in the generator. Hence the top-2 accuracy of all the approaches will be 100%.

Overall, we see that the neural-backed operators arrive at the correct ‘guess’ much more quickly
than their randomized or deterministic counter-parts, thus helping the generator as a whole to
arrive at the solution more efficiently. In fact, the accuracies in Figure 10 are quite high for the
neural-backed operators overall. We think this is a very encouraging result, as we are able to learn
useful operator-level heuristics.
The contrast between the overall high accuracies in Figure 10a and the accuracies in Figure 9

suggests that the biggest bottleneck is predicting the correct function sequence. This and the
previous observation are reinforced by the columns containing the number of candidates and
function sequences explored in Table 2.
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(a) Smart Model (b) Baseline-Deterministic

(c) Baseline-Randomized

Fig. 10. Per-operator Top-k accuracies. Color gives accuracy; darker is better. The color point (x ,y) gives the
top-x accuracy for operator with ID y. Operator IDs are sorted based on top-1 accuracy of the smart model.

5 LIMITATIONS
Our program candidate generator has been hand-written by consulting the Pandas source code and
therefore may not be completely faithful to the full internal usage specification of all functions. Due
to the complexity of the API pre-conditions for pandas, writing this generator required substantial
manual labor. While the writer of such a generator needs only knowledge of the API, and not of the
synthesis engine, this still poses a practical barrier to implementing the technique for other APIs.
Our technique requires that all programs be expressible in terms of the generator, so the generator
restricts the space of programs we can synthesize. The current generator behind AutoPandas only
expresses programs consisting of a sequence of API calls of maximum length three.

Another limitation is that our synthetic data may not be representative of the usage of pandas
in the real-world. For example, our dataset may contain many transformations that do not “look
useful” to a human, and thus our models may be biased away from useful ones. This may be a factor
in why we are unable to synthesize 9 of our real-world benchmarks within timeout. Further, our
training dataset may not contain enough data-points for effective training for each operator call in
our candidate generator. We plan to address this by generating datasets than are larger and have
more realistic program distributions for training, by improved sampling of generator executions.
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In this paper, we only experimented with graph encodings of DataFrames for our smart graph-
neural-network based backends, as described in Section 3.3.2. Graphs could potentially be used
to encode many other data structures, including: matrices (similar to dataframes), strings (each
node is a character), lists, trees, maps, and objects (each object is a node and each field denotes
an outgoing edge). The backends for our smart operators can ingest such encodings. However, it
is possible the accuracy results for smart operators would not be as high as those presented in
Section 4.4 for graphs generated in a different domain.
Also with regards to the encoding, the impact of which relationship edges to add may have a

large impact on the results. In this work, we focused on equality edges only. These edges will help
distinguish shape transformation methods, but will not distinguish e.g. arithmetic operations. In
fact, we observed that our current encoding cannot distinguish amongst arithmetic operations such
as min, max, mean, etc. However, top-k accuracy remains reasonable because the encoding appears
to cluster arithmetic operations together—all these different arithmetic operations result in similar
graph encodings. In other domains where shape transformations may be less significant than data
transformation, more feature engineering work may need to be done to determine which edges
should be added in a graph encoding.

In this paper we omit a full evaluation of whether a simpler machine learning model operating
on hand-engineered features over the I/O example could perform as well as our graph-neural-
network backends. However, we experimented withmanual feature engineering for generator-based
synthesis where we trained an SVM over features such as, “a row name becomes a column name”,
“a data value becomes a column name”, etc. We found that results for the overall function sequence
prediction task were poor, and reasonable results were obtained only for the functions we used as
exemplars in the feature engineering process. Although it is possible the results could be improved
with more careful feature engineering, we believe this may be more tedious and harder to scale
than specifying relationship edges in our proposed graph encoding.

6 DISCUSSION
Although the results suggest that our current AutoPandas system works pretty well, the neural-
backed program candidate generator we use is only one of the many possible generators in a
large design space. At a high-level, our generator works by first predicting an entire sequence of
functions, and then exploring the resulting space of argument combinations. However, predicting
entire sequences is prone to error, especially at higher lengths, since the logical distance between
the input and the target output may not allow our graph-based encoding to capture complete
information about the transformation. Another possible approach is to predict only one function
(along with its arguments) at a time, and make the next decision based on the output of running
this function. This approach is closer to reinforcement learning as feedback is solicited at the end of
every decision, but with the additional option of backtracking. We intend to explore this direction
in future work.
One of the key elements which allows neural-network backed execution of generators is our

graph-based encoding of the domain and context that are passed as queries to the network, where
relationships between elements are captured using edges. These edges can be thought of as depen-
dency relationships. When considering DataFrames as in our case, these edges (especially equality
edges) capture the elements of the output that are dependent on certain elements of the input.
This presents an opportunity for user interaction — the user, along with the input-output example,
can provide additional help by pointing out the relationships between the cells of the input and
output dataframe, which can be directly captured as edges in our encoding. This has the potential
of greatly speeding up synthesis and we plan to investigate it further.
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Finally, we strongly believe that generators have applications in various other fields apart
from program synthesis such as program testing and automated documentation. For example, the
generator in Figure 3 for the pivot function additionally serves as a precise specification of its
intended usage, and can serve as a medium of API usage communication between developers and
users. It can also serve as an API contract that implementers of pivot can adhere to. It also presents
a potential testing application as exhaustively enumerating this generator effectively acts as a stress
test for the pivot function and may be extremely useful in regression tests. Finally, for automated
testing techniques such as fuzzing, our neural backed generators may be useful as program feedback
can be used to train model son-the-fly to bias the generator towards generating inputs that are
more likely to exercise interesting parts of the program under test. This is similar to work done in
neural fuzzing in Böttinger et al. [2018].

7 RELATEDWORK
7.1 Program Synthesis
A large body of work has been dedicated to solving program synthesis problems. Numerous
systems have been developed targeting a variety of domains such as string processing [Gulwani
2011; Parisotto et al. 2017], data wrangling [Feng et al. 2018, 2017; Le and Gulwani 2014], data
processing [Smith and Albarghouthi 2016; Yaghmazadeh et al. 2018], syntax transformations [Rolim
et al. 2017], database queries [Yaghmazadeh et al. 2017] and bit-vector manipulations [Jha et al. 2010].
We attempt to categorise these works at a coarse level according to the high-level synthesis strategy
used in their respective systems. We then summarise how our strategy of using neural-backed
generators compares and relates to these strategies.
CEGIS [Solar-Lezama 2008; Solar-Lezama et al. 2006] is a general framework for program

synthesis that synthesizes programs satisfying a specification Φ. The basic algorithm involves two
components — a synthesizer and verifier, where the synthesizer generates candidate programs
and the verifier confirms whether the candidate is correct. The synthesizer also takes the space of
possible candidates as an input, either explicitly or implicitly. This space may be defined in multiple
ways, for example using syntactic definitions of valid programs [Alur et al. 2013]. A large fraction
of techniques, including ours, fall under this general CEGIS framework, with differing strategies
for producing program candidates, which are broadly classified below.

7.1.1 Synthesis using Logical Reasoning. At a high-level, approaches using logical reasoning either
encode the synthesis problem as a constraint-solving problem and use SAT/SMT solvers to generate
valid solutions to the constraints [Jha et al. 2010], or use logical specifications to prune the search
space. These specifications can be manually specified [Feng et al. 2017; Polikarpova et al. 2016] or
learnt as lemmas during synthesis [Feng et al. 2018; Wang et al. 2017]. Regardless, these approaches
target domains that are amenable to logical specification, such as string processing and numer-
ical domains. Although Feng et al. [2018, 2017] target the same space as our work—DataFrame
transformations—, they consider only 10 R functions and support a fraction of the possible argument
combinations. These functions are accompanied by 10 specifications over the structural constraints
imposed by these functions. In contrast, our generators are general-purpose and constraints can be
written in the target language itself. The choice points introduced by various operators at different
locations in the generator are backed by neural network models that effectively guide the search.
This allows us to target domains such as pandas which is not amenable to logical specification and
constraints.

7.1.2 Domain-Specific Inductive Synthesis. These class of approaches involve the design of a special-
purpose DSL tailored towards the target domain [Gulwani 2011; Polozov and Gulwani 2015] such
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as string processing or table data extraction. Each DSL operator is backed by an algorithm called a
witness function that prunes away impossible candidates for the given I/O example. Such approaches
are highly efficient and can solve a large number of tasks provided their solutions can be expressed
in the DSL.

However, targeting a new domain entails the tedious process of designing a DSL for that domain,
along with custom algorithms that are fundamental to the synthesis algorithm itself. In contrast,
our generators allow us to encode these algorithms using operators backed by neural networks.
Our neural network models are akin to the witness functions used in these approaches.

7.1.3 Synthesis using Machine Learning. One class of machine learning approaches predict pro-
grams directly using neural networks [Devlin et al. 2017; Parisotto et al. 2017] while another
employs neural networks to guide the symbolic techniques above [Balog et al. 2016; Bunel et al.
2018; Kalyan et al. 2018]. In both cases, the models involved take the input-output example directly
and make predictions accordingly. However the domains tackled so far are simpler; Balog et al.
[2016]; Devlin et al. [2017]; Kalyan et al. [2018] target string-processing and lists of bounded integers
where machine learning models such as cross-correlational networks, LSTMs with attention are
applicable. In contrast, these models cannot target DataFrames due to the issues we detail in Section
3.3.2. Additionally, since DataFrames are not of a fixed size, the CNNs used to encode fixed-size
grid-based examples in Bunel et al. [2018] are also not applicable.

Another class of approaches use probabilistic models to rank program candidates generated by
the synthesizer [Feng et al. 2018; Lee et al. 2018; Raychev et al. 2014]. These models are trained on
data extracted from large open repositories of code such as Github and StackOverflow. We follow
suit in using existing pandas programs to generate training data for our generators. With respect
to the target domain, the closest related work is the TDE system introduced by [He et al. 2018]
which also targets generic APIs in Java. It mines a large corpus of API methods along with the raw
arguments taken by those methods. Then, given a new I/O example, it searches through this corpus
using a mix of statistical and static analysis techniques. However, the mining of this corpus relies
on the availability of rich type information about the API as well as the I/O example, something
which is not available for popular Python libraries such as Tensorflow and Pandas. Moreover, TDE
cannot generate unseen argument combinations, unlike our generator-based approach.

7.2 Graph Neural Networks
Dai et al. [2017]; Kool et al. [2019] use graph-neural networks to solve difficult combinatorial
optimization problems such as the Travelling Salesman Problem (TSP). Although their use-case
is different, the adopted approach is similar in spirit to the use of graph neural networks in
AutoPandas. Their network iteratively constructs the solution by selecting and adding a node
to the solution in every iteration. This updated graph is then used as input in the next iteration.
Similarly in our neural-backed generators, every operator makes a decision based on a graph-
encoding of the input query, which may influence the graph-encoding for a query to a subsequent
operator call in the generator.

7.3 Generator-Based Random Testing
Our generator-based approach to synthesis bears, at a high level, many similarities to generator-
based testing. Generator-based testing, pioneered by QuickCheck [Claessen and Hughes 2000],
allows users to test their programs by (1) writing a parameterized property test, usually containing
an assertion, and (2) repeatedly running this property test with inputs produced with by a type-
specific input generator. These input generators usually have randomized semantics to generate a
variety of inputs of the given type, such that running the property test with many inputs produced
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by the generator quickly “checks” it. Overall, QuickCheck generates inputs to try to find an
assertion violation, while our approach generates programs to try and find ones that satisfy the
input-output example. Thus, using the randomized semantics for our operators is analogous to a
QuickCheck-style testing approach.
However, using purely randomized semantics for generators is unlikely to find a program

satisfying the input-output example in reasonable time (see 9, Figures 10). In some cases the same
issue arises in testing. There have been recent works in software testing focusing on “guiding”
QuickCheck generators towards a testing objective [Löscher and Sagonas 2017; Padhye et al. 2019].
These rely on evolutionary approaches that improve towards the testing objective in a large number
of trials trials. Our goal in synthesis is to get the objective (satisfying the I/O example) âĂĲrightâĂİ
on the first try. The key advantage of the programming-by-example setting over the testing one is
the presence of the I/O example, over which the randomness in the generator can be conditioned.
This conditioning allows the neural-backed operators return the correct domain element in the
first few tries, instead of relying on evolutionary approaches.

7.4 Probabilistic Programming Languages
Readers familiar with Probabilistic Programming Languages (PPLs) [Gordon et al. 2014] may notice
the similarity of our generators to models in PPLs. In particular, the interleaving of operators
and arbitrary Python code in our neural-backed generators bears significant resemblance to the
interplay between sampling from latent distributions and deterministic code in programs written
in PPLs. One possible encoding of our synthesis problem using PPLs would take the input-output
example as the input (y) to the model with the observed variable (x) or output as the Pandas
program, and the latent random variable (z) as the the choices to be made by the operators. Due
to the purely discrete nature of our generators, the model (p(x |z)p(z)) is fixed in the sense that
the choices made by the operators uniquely determine the generated pandas program. This is in
contrast to the usual probability distributions that are computed by models written in a PPL. Hence
only the guide (p(z |y)) needs to be trained for the problem. Therefore, our formulation is a specific
instance of the general PPL inference problem where the full generality of PPL inference algorithms
is not required and is possibly inefficient.

8 CONCLUSION
In this paper we introduced a neural-backed, generator-based approach to synthesize programs
matching an input-output example directly in a large API. We hand-wrote a candidate program
generator for the subset of the Python pandas API dealing with dataframe transformations. The
candidate program generator includes argument generators for each of these 119 functions, each of
which captures the key argument constraints for the given function. We introduce smart operators
to make the arbitrary decisions in these generators. We find that these smart operators are much
more accurate than deterministic or random operators on validation data. In addition, their use
improves the efficiency of the program candidate generator, allowing 3 extra test benchmarks to be
synthesized before timeout compared to our baseline. Although there remain possible engineering
improvements to improve speedups, the results suggest our technique is a promising one for this
broad-language synthesis problem.
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