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Abstract— Retentive (memory-utilizing) sensing-acting agents

may operate under limitations on the communication between

their sensing, memory and acting components, requiring them

to trade off the external cost that they incur with the capacity of

their communication channels. In this paper we formulate this

problem as a sequential rate-distortion problem of minimizing

the rate of information required for the controller’s operation

under a constraint on its external cost. We reduce this bounded

retentive control problem to the memoryless one, studied in

Part I of this work [1], by viewing the memory reader as one

more sensor and the memory writer as one more actuator.

We further investigate the structure of the resulting optimal

solution and demonstrate its interesting phenomenology.

I. INTRODUCTION

In a feedback-control system, the internal state of the
agent interacts with the external state of the world through
sensors that pay attention to the agent’s environment and
actuators that apply intention to it, in a perception-action
cycle [2]. This interaction is limited by external constraints
on observability and controllability, as well as internal con-
straints on the information-processing resources available to
the controller.

In Part I of this work [1], we focused on memoryless
controllers that have no internal memory and can only attend
to their most recent input observation. We discussed how the
communication from the sensor to the actuator is central to
the agent’s ability to act upon the perceived information.
The degree of this attention, measured by the amount of
Shannon information about the input observation that is
utilized in the output control, is a lower bound on the
required capacity of the communication channel between
the controller’s sensor and its actuator. When this capacity
for internal communication is limited, the agent needs to
trade off some external cost for reducing the rate at which
it transmits information.

A related but often overlooked resource is memory band-
width. We can think of memory as a communication channel
from the past internal state of the controller to its future
internal state. When memory resources are remote, com-
munication constraints apply to them as well. Even local
memory is limited by its capacity to store information and by
the capacity of the internal communication channels to and
from the memory components. This limitation is evidenced
by the hierarchical design of memory in modern digital
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computers, which places larger capacity on the channels to
closer but smaller cache memory components [3].

When the controller is retentive (memory-utilizing), it does
maintain an internal memory state which can have informa-
tion on more than the most recent observation. As in Part I,
our guiding principle in this work is to measure the infor-
mation complexity of the controller’s internal representation
by asking “How much information does the controller have
on the past?”. The retentive controller receives information
of the past through both memory and sensory channels
(Figure 2) and the amount of information that it keeps of
the past is a lower bound on the total capacity of both these
channels [4].

In a sense, we can consider the reader of the memory
state to be one more sensor and the writer of the memory
state to be one more actuator. This suggests a reduction
from the retentive case to the memoryless case, in which the
memory state is considered external and part of the world
state [5], [6]. This memory component is fully observable,
fully controllable, has no process noise and incurs no cost.
Rather than redevelop our results for the retentive controllers
similarly to Part I, this reduction allows us to reuse those
results and underlines the structure of the solution.

In this paper we make two contributions. First, we present
a method for the design of controllers that are optimal under
a constraint on both their memory and sensory channel
capacity. To our knowledge, this is the first explicit treatment
of the channel capacity of the memory process in the context
of continuous state-space systems.

Second, we provide a reduction from the problem of
bounded retentive control to the problem of bounded memo-
ryless control. This reduction is conceptually convenient and
constructive, allowing us to treat both problems using the
same framework and providing insight into the structure of
the optimal retentive controller.

In Section II we define the LQG task and restate the results
of Part I. In Section III we present the retentive control
model, its reduction to memoryless control and the structure
of the resulting optimal solution. In Section IV we illustrate
our results with an example.

II. PRELIMINARIES

A. Control task
We consider the same closed-loop control problem de-

tailed in Part I [1, Section II]. In time t, a plant in state
x
t

2 Rn emits an observation y
t

2 Rk, takes in a control
input u

t

2 R` and undergoes a stochastic state transition.
We focus on discrete-time systems with linear dynamics,



Gaussian noise and quadratic cost rate (LQG). For simplicity,
all elements are taken to be homogeneous, i.e. centered at the
origin, and time-invariant. We note that all our results hold
without these assumptions, with the appropriate adjustments,
as usual in LQG problems [7].

Definition 1: A linear-Gaussian time-invariant (LTI) plant
hA,B,C,⌃

⇠

,⌃
✏

i has state dynamics

x
t+1 = Ax

t

+Bu
t

+ ⇠
t

; ⇠
t

⇠ N (0,⌃
⇠

), (1)

where A 2 Rn⇥n, B 2 Rn⇥`, 0 � ⌃

⇠

2 Sn+ and ⇠
t

is
independent of (xt, yt, ut

). The observation dynamics are

y
t

= Cx
t

+ ✏
t

; ✏
t

⇠ N (0,⌃
✏

), (2)

where C 2 Rk⇥n, ⌃

✏

2 Sk+ and ✏
t

is independent of
(yt�1, ut�1, xt

), where we denote xt

= {x
⌧

}
⌧t

, etc.
Definition 2: A linear-quadratic-Gaussian (LQG) task

hA,B,C,⌃
⇠

,⌃
✏

, Q,Ri involves a LTI plant and the cost rate

J
t

=

1
2 (x

|
t

Qx
t

+ u|
t

Ru
t

),

where Q 2 Sn+ and R 2 S`+. The task is to achieve a low
long-term average expected cost rate, with respect to the
distribution induced by the plant and the controller ⇡

J
⇡

= lim sup

T!1

1

T

TX

t=1

E
⇡

[J
t

].

As motivated in Part I, we are particularly interested
in linear-Gaussian time-invariant (LTI) controllers, which
induce, jointly with a LTI plant, a stationary Gaussian pro-
cess, independent of any initial conditions. With ⌃

x

2 Sn+,
⌃

y

2 Sk+ and ⌃

u

2 S`+, respectively the stationary covari-
ances of the state, the observation and the control, we have

⌃

y

= C ⌃

x

C|
+ ⌃

✏

,

and the reverse relation

x
t

= Ky
t

+ 
t

; 
t

⇠ N (0,⌃


)

K = ⌃

x

C|
⌃

†
y

⌃



= ⌃

x

�⌃

x

C|
⌃

†
y

C ⌃

x

,

with ·† the Moore-Penrose pseudoinverse. Assuming that the
process has mean 0, the stationary expected cost rate is

J
⇡

=

1
2 (tr(Q⌃

x

) + tr(R⌃

u

)).

B. Bounded memoryless control
In this section we restate the main result of Part I [1,

Section IV].
Definition 3: A memoryless linear-Gaussian time-invari-

ant (LTI) controller has control law of the form

u
t

= Hy
t

+ ⌘
t

; ⌘
t

⇠ N (0,⌃
⌘

), (3)

where H 2 R`⇥k, ⌃

⌘

2 S`+ and ⌘
t

is independent of
(ut�1, xt, yt).

The controller is bounded and operates under limitations
on its capacity to process the observation and produce the
control. Namely, with the Shannon information rate

I
t

= I[y
t

;u
t

] = E

log

f(y
t

, u
t

)

f(y
t

)f(u
t

)

�
, (4)

where f denotes the various probability density functions,
as indicated by their arguments, we are interested in a LTI
controller ⇡ that minimizes the long-term average rate

I
⇡

= lim sup

T!1

1

T

TX

t=1

I
t

, (5)

under the constraint that it achieves some guarantee level c
of expected cost rate.

Problem 1: Given a LQG task, the bounded memoryless
LTI controller optimization problem is

min

⇡

I
⇡

s.t. J
⇡

 c,

with I
⇡

as in (5), where I
t

= I[y
t

;u
t

], and with u
t

as in (3).
To solve the optimization problem, we consider the mini-

mum mean square error (MMSE) estimators

x̂
yt = E[x

t

|y
t

] = Ky
t

x̂
ut = E[x

t

|u
t

] = ⌃

x;u ⌃
†
u

u
t

,

respectively for the state given the observation and the
control. Since x̂

ut is a sufficient statistic of u
t

for x
t

, we
can reverse their causality, basing u

t

on x̂
ut instead of vice

versa. This puts the control law in the form

x̂
yt = Ky

t

x̂
ut = Wx̂

yt + !
t

; !
t

⇠ N (0,⌃
!

)

u
t

= Lx̂
ut .

The optimal memoryless controller satisfies the conditions
of Theorem 1 in Part I, Section IV-A, restated below in
algorithmic form. To numerically find the optimal solution,
we can interpret these conditions as update equations, which
we apply iteratively until a fixed point is reached.

We split the equations into three parts, a forward iteration
(Algorithm 1) updating the marginal distributions, a back-
ward iteration (Algorithm 2) updating the cost-to-go and the
control policy, and an eigenvalue decomposition (EVD) for
finding the control-based estimator covariance (Algorithm 3).
We can alternate between Algorithms 1, 2 and 3, iterating
until the solution converges to a fixed point of the equations.

III. BOUNDED RETENTIVE CONTROLLERS

A. Control model
In this section we discuss retentive (memory-utilizing)

controllers with bounded communication resources. A reten-
tive controller has an internal memory state z

t

in some space
Z . The memory allows the controller to output a control that
indirectly depends on past input observations rather than only
on the most recent observation. The controller takes as input
an observation y

t

and outputs a control u
t

, while also making
a memory state transition from z

t�1 to z
t

. Thus, in each time
step, there are two inputs, z

t�1 and y
t

, and two outputs, z
t

and u
t

.
Definition 4: A controller is retentive if it satisfies the

following independence properties:



Algorithm 1 Forward iteration
function FORWARD(⌃

x

,⌃
x̂u , L)

Update

⌃

x

 (A+BL)⌃
x̂u(A+BL)|

+A(⌃

x

�⌃

x̂u)A
|
+ ⌃

⇠

⌃

y

 C ⌃

x

C|
+ ⌃

✏

K  ⌃

x

C|
⌃

†
y

⌃

x̂y  K ⌃

y

K|

end function

Algorithm 2 Backward iteration
function BACKWARD(⌃

x̂y ,⌃x̂u ,K, S;�)
Update

M  ��1C|K|
(⌃

†
x̂y|x̂u

�⌃

†
x̂y
)KC

S  Q+A|SA�M

L � (R+B|SB)

†B|SA
N  L|

(R+B|SB)L

end function

Algorithm 3 Activation of control-based estimator modes
function ACTIVATION(⌃

x̂y , N ;�)
Update

V,⇤ EVD(⌃

1
/2

x̂y
N ⌃

1
/2

x̂y
)

with n� rank(⌃
x̂y ) columns of V spanning ker(⌃

x̂y )

D  diag

⇢
1� ��1��1

i

�
i

> ��1

0 �
i

 ��1

�

⌃

x̂u  ⌃

1
/2

x̂y
V DV |

⌃

1
/2

x̂y

end function

1) The memory state depends only on the previous mem-
ory state and the current observation; that is, z

t

is
independent of (zt�2, yt�1, ut�1, xt

) given z
t�1 and

y
t

.
2) The control depends only on the memory state; that is,

u
t

is independent of (zt�1, ut�1, xt, yt) given z
t

.
A system including a retentive controller satisfies the

Bayesian network in Figure 1.
As motivated in Part I for the memoryless case, we are

particularly interested in controllers where both the memory
state update and the control are linear-Gaussian and time-
invariant (LTI), since they are easier to optimize and imple-
ment. Linear controllers with limited memory are known not
to be optimal for all control problems [8], [9]. The conditions
under which such controllers are optimal for our bounded
control problem are beyond our current scope.

Definition 5: A retentive linear-Gaussian time-invariant
(LTI) controller has memory state space that is a vector space

x
t�1

u
t�2

z
t�2

y
t�1

z
t�1

u
t�1

x
t

y
t

z
t

u
t

x
t+1

Fig. 1. Bayesian network of retentive control
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Fig. 2. Block diagram of a closed-loop retentive control system, with a
communication channel from the sensor-reader to the actuator-writer

Z = Rd and control law of the form

z
t

= Fz
t�1 +Gy

t

+ ⇣
t

; ⇣
t

⇠ N (0,⌃
⇣

) (6a)
u
t

= Lz
t

+ ⌫
t

; ⌫
t

⇠ N (0,⌃
⌫

) (6b)

where F 2 Rd⇥d, G 2 Rd⇥k, ⌃

⇣

2 Sd+, L 2 Rm⇥d,
⌃

⌫

2 Sm+ , ⇣
t

is independent of (z
t�1, yt) and ⌫

t

is indepen-
dent of z

t

.
We are interested in reducing the information complexity

of implementing this controller. To measure this complexity,
we consider the capacity of a memoryless communica-
tion channel from the sensor-reader to the actuator-writer
(Figure 2). The encoder and the decoder themselves are
memoryless, but the memory component has perfect fidelity,
making everything written by the actuator available for the
sensor to read in the next step.

We could use Z = {0, 1}r, the set of r-bit strings, instead
of the vector space Rd, to indicate that the controller can
process at most r bits of information per time step

I[z
t�1, yt; zt, ut

] = I[z
t�1, yt; zt]  H[z

t

]  r log 2.

As in the memoryless case (Part I [1, Section III-B]), the in-
formation rate is generally not a tight lower bound on the ca-
pacity of a discrete memory, but here again, if the controller
is LTI, there exists a perfectly matched memoryless additive
Gaussian noise channel. As shown in the Supplementary
Material1 (SM), Appendix I, the capacity of this channel
optimally equals the information rate I[z

t�1, yt; zt, ut

] and a
constraint on the information rate is equivalent to a constraint
on the power available for transmission on the channel.

The retentive controller optimization problem is therefore
similar to Problem 1, but with the information rate including
both the memory and the sensory channels.

1Available at https://arxiv.org/abs/1606.01947
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Problem 2: Given a LQG task, the bounded retentive LTI
controller optimization problem is

min

⇡

I
⇡

s.t. J
⇡

 c,

with I
⇡

as in (5), where

I
t

= I[z
t�1, yt; zt, ut

], (7)

and with z
t

and u
t

as in (6).
Note that here there is no additional constraint or cost on

the precision of u
t

given z
t

, implying that optimally ⌃

⌫

= 0.
There is an interesting connection between the retentive

information rate I
⇡

and the long-term average of the directed
information rate [10], [11], defined by

I[{y
t

}! {z
t

}] = lim sup

T!1

1

T
I[yT ! zT ]

= lim sup

T!1

1

T

TX

t=1

I[yt; z
t

|zt�1
].

By the independence properties of the retentive controller
and by the chain rule for information [12], we have

I[z
t�1, yt; zt, ut

] = I[z
t�1, yt; zt]

= I[zt�1, yt; z
t

]

= I[zt�1
; z

t

] + I[yt; z
t

|zt�1
].

We can thus define the following extension of the concept
of directed information.

Definition 6: The retentive directed information from the
sequence of observations yT to the sequence of memory
states zT is

I[yT ⇣ zT ] =

TX

t=1

I[zt�1, yt; z
t

].

Since I[yT ⇣ zT ] � I[yT ! zT ], the retentive directed
information rate is always a tighter lower bound on the
capacity of the channel in Figure 2. Despite the apparent
similarity to Figure 2 in [11], notice that their encoder and
decoder have unlimited memory of zt and ut. This justifies
their use of directed information, regardless of the residual
term I[zt�1

; z
t

] being infinite in their optimal controller.
Some further properties of the retentive directed informa-

tion can be found in the SM, Appendix VI.

B. Reduction to memoryless controllers

We can analyze the bounded retentive control problem
(Problem 2) directly using the same tools developed in
Part I [1, Section IV-A] for Problem 1. Fortunately, there
is no need to repeat that entire treatment, since a simple and
insightful reduction will allow us to reuse the results obtained
there.

We start by reformulating the problem. The following
relaxation and Lemma 1 that shows its equivalence to the
original problem allow us to reverse the causality between

x
t�1

y
t�1

m
t�1

u
t�1

m
t

x
t

y
t

u
t

m
t+1

x
t+1

Fig. 3. Bayesian network of relaxed retentive control
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Fig. 4. Bayesian network of relaxed retentive control, redrawn in the form
of memoryless control

u
t

and z
t

. We need a new notation for the resulting time-
shifted memory state sequence and define for each t

m
t

= z
t�1.

Definition 7: A retentive controller is relaxed if u
t

is not
required to be independent of (m

t

, y
t

) given m
t+1. Thus the

relaxed controller satisfies the Bayesian network in Figure 3
and its control law is given by ⇡(u

t

,m
t+1|mt

, y
t

).
Lemma 1: The relaxed controller optimization problem is

equivalent to the original Problem 2.
Proof: The following proof does not assume that the

controller is linear-Gaussian and holds for the LTI controller
as a special case.

Let ⇡ be a controller satisfying the Bayesian network in
Figure 3. We construct a controller ⇡̃ with z̃

t

= (u
t

,m
t+1)

for each t, such that

⇡̃(z̃
t

|z̃
t�1, yt) = ⇡(u

t

,m
t+1|mt

, y
t

)

⇡̃(u
t

|z̃
t

) = �
z̃t=(ut,·).

This controller satisfies the Bayesian network in Figure 1
and

I
⇡̃

[z̃
t�1, yt; z̃t, ut

] = I
⇡

[(u
t�1,mt

), y
t

; (u
t

,m
t+1)]

= I
⇡

[m
t

, y
t

;u
t

,m
t+1].

Thus the controller ⇡̃ is feasible for the unrelaxed Problem 2
and has the same performance as the relaxed controller
⇡, since it induces a stochastic process with the same
distribution and information rate.

The structure in Figure 3 can now be redrawn as in Fig-
ure 4. Comparing this Bayesian network to the one in Part I,
Figure 2, we have clearly reduced the bounded retentive
control problem to a special case of the bounded memoryless
control problem, as stated formally in the following lemma.

Lemma 2: The bounded retentive LTI controller
optimization problem (Problem 2) for the LQG task
hA

x

, B
x;u, Cy;x,⌃⇠

,⌃
✏

, Q
x

, R
u

i is equivalent to the



bounded memoryless LTI controller optimization problem
(Problem 1) for the LQG task hA,B,C,⌃

⇠̃

,⌃
✏̃

, Q,Ri,
where

A =


A

x

0

0 0

�
; B =


B

x;u 0

0 I

�
; C =


C

y;x 0

0 I

�

⌃

⇠̃

=


⌃

⇠

0

0 0

�
; ⌃

✏̃

; =


⌃

✏

0

0 0

�

Q =


Q

x

0

0 0

�
; R =


R

u

0

0 0

�
.

Here all matrices are extended by d rows and d columns.
Proof: Given the retentive control stochastic pro-

cess {x
t

,m
t

, y
t

, u
t

}, we consider the memoryless control
stochastic process {x̃

t

, ỹ
t

, ũ
t

} with

x̃
t

=


x
t

m
t

�
; ỹ

t

=


y
t

m
t

�
; ũ

t

=


u
t

m
t+1

�
.

The dynamics for this process can easily be seen to be given
by (1), (2), with A, B, C, ⌃

⇠̃

and ⌃

✏̃

as in the lemma. The
cost rate applies only to the x

t

and u
t

parts

J
t

=

1
2

✓
x
t

m
t

�| 
Q

x

0

0 0

� 
x
t

m
t

�

+


u
t

m
t+1

�| 
R

u

0

0 0

� 
u
t

m
t+1

�◆
.

The information rate is

I
t

= I[ỹ
t

; ũ
t

] = I[m
t

, y
t

;u
t

,m
t+1],

where the left-hand side is taken as in (4) and the right-hand
side as in (7), as required.

C. Structure of the optimal solution
We can substitute the form of the reduction in Lemma 2

into the optimal solution in Section II-B, to study more
explicitly the structure of the optimal solution in the retentive
case. The detailed derivations can be found in the SM,
Appendix VII.

For the backward process, it is useful to borrow notation
from the forward process and denote

S =


S
x

S
x;m

S
m;x S

m

�

S
x|m = S

x

� S
x;mS†

m

S
m;x

S
u|m = R+B|S

x|mB.

Then we can find the feedback gain

L = �(R+B|SB)

†B|SA

=


L
u;x|m 0

�S†
m

S
m;x(Ax

+B
x;uL

u;x|m) 0

�
, (8)

with a memory-conditioned form of the classic feedback gain

L
u;x|m = �S†

u|mB|
x;uSx|mA

x

.

The memory-conditioned cost reduction matrix is

N = L|
(R+B|SB)L =


N

x|m 0

0 0

�
,

with

N
x|m = A|

x

(S
x

� S
x|m + S

x|mB
x;uS

†
u|mB|

x;uSx|m)A
x

.

Thus rank(D)  rank(N)  n, with D the mode activation
matrix (see Algorithm 3), implying that at most n modes can
be active.

The d rightmost columns in (8) are 0, implying that ũ
t

depends only on the state estimator x̂
ũt = E[x

t

|ũ
t

] of x
t

and not on an estimator of the memory component m
t

. Since
x̂
ỹt = E[x

t

|ỹ
t

] is a sufficient statistic of ỹ
t

for x
t

, we also
have the Markov chain

x
t

— x̂
ỹt — ỹ

t

— ˆx̃
ỹt — ˆx̃

ũt — x̂
ũt — ũ

t

,

with

ˆx̃
ỹt = E[x̃

t

|ỹ
t

] = E


x
t

m
t

� ����


y
t

m
t

��

and similarly for ˆx̃
ũt This implies that we need only consider

the first component x̂
ỹt of ˆx̃

ỹt , which is obtained from the
observation ỹ

t

using

K = ⌃

x

C|
⌃

†
ỹ

=

⇥
K

x;y|m (I �K
x;y|mC

y;x)⌃x;m ⌃

†
m

⇤
,

where

K
x;y|m = ⌃

x|m C|
y;x ⌃

†
y|m

is the Kalman gain that performs optimal inference in the
classic LQG task [7].

Crucially, we see that x̂
ỹt depends on m

t

only through

x̂
mt = E[x

t

|m
t

] = ⌃

x;m ⌃

†
m

m
t

.

This implies that, for a controller ⇡, we can design an
equivalent controller ⇡0 whose memory state is the MMSE
estimator m0

t

= x̂
mt . The feedback gain for ⇡0 is

L0
=


I 0

0 ⌃

x;m ⌃

†
m

�
L.

Note that, since m0
t

is a sufficient statistic of m
t

for x
t

, we
have ⌃

x|m0
= ⌃

x|m and K
x;y|m0

= K
x;y|m. Thus

K 0
=

⇥
K

x;y|m I �K
x;y|mC

y;x

⇤
,

with ⌃

x;m0
⌃

†
m

0 = ⌃

m

0
⌃

†
m

0 in the second component
omitted due to its redundancy.

The controllers ⇡ and ⇡0 generate the same control u
t

and
thus incur the same external cost. At the same time, since
m0

t

is a function of m
t

, by the data-processing inequality the
information rate of ⇡0 is at most that of ⇡. Thus any controller
can be converted into a MMSE controller without loss of
performance, allowing us to consider the MMSE controller
canonical. In particular, this proves again that d = n is
always sufficient for representing the memory state.

We now diverge from the solution given in Section II-B,
which has freedom in its choice of memory representation,
and is therefore not guaranteed to be a MMSE controller.
Instead, we explicitly constrain the controller to be MMSE,
which in return enables us to relax some of the conditions



given in Section II-B, which are now not necessary (and
indeed do not hold at the optimum), as discussed below.

Constraining the controller to be MMSE imposes the
structure

⌃

x̃

=


⌃

x|m +⌃

m

⌃

m

⌃

m

⌃

m

�
,

parameterized by ⌃

x|m and ⌃

m

. The reduced number of
independent parameters leaves M overparameterized (see
SM, Appendix VII) and we can choose, without loss of
performance, the structure

M =


M

x|m +M
m

�M
m

�M
m

M
m

�

with

M
x|m = ��1Z

M
m

= ��1
(C|

y;xK
|
x;y|mZK

x;y|mC
y;x � Z),

where Z = ⌃

†
x̂ỹ|x̂ũ

�⌃

†
x̂ỹ

is the signal-to-noise-ratio (SNR)
matrix for the channel x̂

ỹt ! x̂
ũt . Due to the shrinkage

effect of K
x;y|mC

y;x

M
m

� 0 �M
x|m +M

m

.

The Hessian of the cost-to-go now has the form

S = Q+A|SA�M

=


Q

x

+A|
x

S
x

A
x

�M
x|m �M

m

M
m

M
m

�M
m

�

and the second-order expansion of the cost-to-go, at the
optimum, has the form

x̃|
t

Sx̃
t

= x|
t

(Q
x

+A|
x

S
x

A
x

� ��1Z)x
t

� (m
t

� x
t

)

|M
m

(m
t

� x
t

).

The first term measures the divergence of the state x
t

from
0 and the second the divergence of the controller’s estimator
m

t

from the true state x
t

, which is the expected form for a
MMSE controller. Both terms link the SNR matrix Z to the
cost reduction. In this form, S is again positive semidefinite,
while now M is generally not.

Finally, when � =1, we can recover the classic LQG re-
sults. Similarly to Part I [1, Section IV-B], we can substitute
N

x|m for ��1Z, to recover the algebraic Riccati equation

S
x|m = Q

x

+A|
x

S
x

A
x

�N
x|m

= Q
x

+A|
x

(S
x|m � S

x|mB
x;uS

†
u|mB|

x;uSx|m)A
x

.

IV. EXAMPLE

As a simple example, consider the double mass-spring-
damper system in Figure 5, adapted from [13]. The

m1 m2

k1

c1

k2

c2

k1

c1

x1
u1

x2
u2

Fig. 5. Double mass-spring-damper system; masses: m1 = 5kg,
m2 =

p
15 kg; spring constants: k1 = 1N/m, k2 = 0.5N/m; damping

coefficients: c1 = c2 = 1N·sec/m

continuous-time dynamics of this system are given by

A =

2

664

0 1 0 0

�k1+k2
m1

� c1+c2
m1

k2
m1

c2
m1

0 0 0 1

k2
m2

c2
m2

�k1+k2
m2

� c1+c2
m2

3

775

B =

2

664

0 0

1
m1

0

0 0

0

1
m2

3

775 C =


1 0 0 0

0 0 1 0

�
,

with m1 = 5kg, m2 =

p
15 kg, k1 = 1

N/m, k2 = 0.5N/m
and c1 = c2 = 1

N·sec/m. We discretize the time using the
Tustin transformation with sampling frequency 20Hz and
consider the isotropic noises and cost rates

⌃

⇠

= I ⌃

✏

= I Q = I R = I.

For the memoryless control problem, we initialize a solu-
tion with ⌃

x

= S = 0. For the retentive control problem, we
apply the reduction in Lemma 2 to obtain a reduced plant and
then initialize a solution using the classic LQG controller, as
described in Section III-C. To the initial solution, we apply
the forward-backward iterations of Section II-B, with fixed
�, until convergence to a fixed point, suspected as a global
optimum. To improve running time, we employ a reverse-
annealing scheme, decreasing � gradually over its range and
using the fixed point for one value of � to initialize the
iterations for the next value of �.

Figures 6 and 7 show, respectively, the resulting cost-log-
beta and cost-information curves, demonstrating that even
this simple example exhibits interesting phenomenology.

We see that both the memoryless (blue) and the retentive
(green) controllers undergo phase transitions as � increases.
The system is controllable and observable, allowing the
retentive controller to undergo 4 phase transitions, until
it fully remembers and controls all modes of the system.
However, the rank-2 matrices B and C only allow the
memoryless controller to undergo 2 phase transitions and
reach order d = 2.

In the first phase transition, the controllers begin control-
ling a single mode, in order to reduce the external cost, at the
expense of communication resources. This is not depicted in
the cost-information plot (Figure 7), since below this critical
point the information is 0 and the cost is fixed.

The second and fourth phase transitions involve memory
and only occur in the retentive controller. Below these critical
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Fig. 6. Cost-log-beta curve for the double mass-spring-damper problem.
Memoryless control (blue) generally incurs higher cost than retentive control
(green). The Lagrangian F (solid) is continuous, whereas the external cost
J (dashed) is discontinuous in the retentive case in phase transitions 2
(red dots) and 4. Background shades indicate the controller order d, with
boundaries at critical points.

point, a hypothetical order-2 retentive controller is worse
than the order-1 controller, in terms of the target F , the
total external and internal cost-to-go it incurs. At the critical
point, the order-2 controller overtakes the order-1 controller,
already with a significantly reduced cost rate and a significant
information rate (see red dots in Figures 6 and 7). The critical
point is where the ratio between these costs is ��1 (see (12)
in Part I [1, Section IV-B]).

The third phase transition is again common to the mem-
oryless and the retentive controllers, although by now the
retentive controller has committed to memory much valuable
information, reducing the cost much beyond the capabilities
of the memoryless controller.

V. DISCUSSION

In this paper we introduce the problem of optimal LQG
control with bounded channel capacity in both the memory
and the sensory channels. We show how to reduce this prob-
lem to that of bounded memoryless LQG control, study the
structure of the resulting solution and illustrate its interesting
phenomenology with a simple example.

One aspect of this phenomenology that merits further
study is the existence of suboptimal fixed points of the itera-
tive algorithm (Section II-B). For example, around the second
critical point in the double mass-spring-damper system (Sec-
tion IV), both an order-1 controller and a retentive order-2
controller are fixed points. Before the phase transition, one
of these solutions is stable, while the other is metastable
and suboptimal, and at the phase transition they switch. This
resembles well-studied phenomena in statistical physics.

LQG control with constraints on the sensory channel
capacity has now been studied in the regime of unlimited
memory [11], no memory (Part I of this work [1]) and in
this paper, a shared channel capacity for sensing and memory.
More generally, the memory and the sensory channels can
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140

150

160

170

180

190

200

c
o
s
t
,
J
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1 d=2 d=3 d=4

Fig. 7. Cost-information curve for the double mass-spring-damper problem.
Memoryless control (blue) incurs higher cost than retentive control (green)
after phase transition 2 (red dots). The asymptotic costs at � = 1 (dashed
black) can be approximated with very little information and a reduced order.

be separate, with their relative costs ranging from 0 (no
memory) to 1 (shared capacity) to1 (unlimited memory) in-
cluding any intermediate value. This memory-sensory trade-
off has been studied in the context of finite-state systems [4]
and further insight can be gained from studying this more
general problem in the LQG context.
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APPENDIX I
PERFECTLY MATCHED CHANNEL

In this appendix we construct a channel that is perfectly
matched to the sequential source code derived in Theorem 1,
in Part I of this paper [1, Section III-B]. Recall that in a
perfectly matched source-channel pair the optimal source
coding and the optimal channel coding can be implemented
jointly for single letters, without requiring longer blocks.
This allows us to use them in a perception-action cycle,
where we cannot accumulate a block of inputs before emit-
ting an output.

The main results of [2], applied to our setting, can be
summarized as follows. We wish to find a memoryless
channel into which we can input an encoding w

t

= g(x̂
y

t

),
such that x̂

u

t

= h(ŵ
t

) can be decoded from the channel
output ŵ

t

. Suppose that we are concerned with the power
needed to transmit w

t

and thus the input cost is w|
t

w
t

.
Then the source x̂

y

t

and the channel w
t

! ŵ
t

are perfectly
matched if there exist an encoder and a decoder such that

1) The Kullback-Leibler divergence D[f(ŵ
t

|w
t

)kf(ŵ
t

)]

between the conditional and marginal densities of ŵ
t

,
as a function of w

t

, equals c1w
|
t

w
t

+ c2, for some
constants c1 � 0 and c2; and

2) f(x̂
u

t

|x̂
y

t

) satisfies the conditions in Theorem 1.
To meet these conditions, we can choose the channel, the

encoder and the decoder to have

w
t

= D
1
/2V |

⌃

†
/2

x̂

y

x̂
y

t

ŵ
t

= w
t

+ �
t

; �
t

⇠ N (0, I �D)

x̂
u

t

= ⌃

1
/2

x̂

y

V D
1
/2ŵ

t

,

with D and V as in Theorem 1. Then

⌃

w

= D

⌃

ŵ

= I

⌃

x̂

u

= ⌃

1
/2

x̂

y

V DV |
⌃

1
/2

x̂

y

= ⌃

x̂

u

;x̂
y

,

and it can be verified that

D[f(ŵ
t

|w
t

)kf(ŵ
t

)] =

1
2w

|
t

⌃

�1
ŵ

w
t

+ const,

as required.
The capacity of the additive Gaussian noise channel with

noise covariance I � D, under the appropriate expected
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power constraint, is indeed achieved by a Gaussian input
with covariance D and is equal to the information rate in
Theorem 1. As shown in [2], this means that constraining
the expected power ⌃

w

is equivalent to constraining the
information rate I[x̂

y

t

; x̂
u

t

].
Note, however, that the matched channel noise covariance

depends on the constraint, through the solution in Theorem 1.
Moreover, this result is not applicable when the best channel
available to the designer of the controller is not the matched
channel above, in which case both the channel and the
sequential source coding generally need to be adapted.

APPENDIX II
PROOF OF LEMMA 1 OF PART I

In this appendix we restate and prove Lemma 1 of
Part I [1, Section IV-A].

Lemma 1: Let x and x̂ be 0-mean jointly Gaussian ran-
dom variables. The following properties are equivalent:

1) There exists a random variable u, jointly Gaussian with
x, such that x̂(u) = argmin

x̂

E[kx̂�xk2|u] = E[x|u].
2) ⌃

x̂;x = ⌃

x̂

.
3) ⌃

x|x̂ = ⌃

x

�⌃
x̂

, where ⌃
x|x̂ is the conditional co-

variance matrix of x given x̂, implying ⌃
x

⌫ ⌃
x̂

.
4) x̂ = E[x|x̂].

Such x̂ is called a minimum mean square error (MMSE)
estimator (of u) for x.

Proof: (1 =) 2) Assume without loss of generality
that u has mean 0. Then

x̂ = ⌃

x;u ⌃
†
u

u,

implying

⌃

x̂;x = ⌃

x;u ⌃
†
u

⌃

u;x = ⌃

x̂

.

(2 =) 3)

⌃

x|x̂ = ⌃

x

�⌃
x;x̂ ⌃

†
x̂

⌃

x̂;x = ⌃

x

�⌃
x̂

.

(3 =) 4) Since x and x̂ are 0-mean and jointly Gaussian,
we can write for some T

x = T x̂+ ⇠; ⇠ ⇠ N (0,⌃
x|x̂),

implying

⌃

x

= T ⌃
x̂

T |
+ ⌃

x

�⌃
x̂

,

thus without loss of generality T = I .



(4 =) 1) Taking u = x̂, we have

argmin

x̂

0
E[kx̂0 � xk2|u]

= argmin

x̂

0
(x̂0|x̂0 � 2x̂0| E[x|u]) + E[x|x|u],

which is optimized by x̂0
= E[x|u].

APPENDIX III
PROOF OF LEMMA 2 OF PART I

In this appendix we restate and prove Lemma 2 of
Part I [1, Section IV-A].

Lemma 2: The bounded memoryless LTI controller opti-
mization problem (Problem 1) is solved by a control law of
the form

x̂
y

t

= Ky
t

(5a)
x̂
u

t

= Wx̂
y

t

+ !
t

; !
t

⇠ N (0,⌃
!

) (5b)
u
t

= Lx̂
u

t

, (5c)

where W 2 Rn⇥n, ⌃
!

2 Rn⇥n, L 2 R`⇥n, !
t

is
independent of y

t

, x̂
u

t

is a MMSE estimator for x̂
y

t

and

I[y
t

;u
t

] = I[x̂
y

t

; x̂
u

t

]. (6)
Proof: Consider a LTI controller ⇡ of the form

u
t

= Hy
t

+ ⌘
t

; ⌘
t

⇠ N (0,⌃
⌘

), (III.1)

satisfying the Markov network

x
t

— y
t

— u
t

| |
x̂
y

t

x̂
u

t

.

We now construct a controller ⇡0 with control law u0
t

based
on the estimator x̂0

u

t

by defining the Markov chain

x
t

— y
t

— x̂
y

t

— u00
t

— x̂0
u

t

— u0
t

such that each consecutive pair of variables has the same
joint distribution as their unprimed namesakes. Since x̂

y

t

is
a sufficient statistic of y

t

for x
t

, we have the Markov chain
x
t

— x̂
y

t

— y
t

— u
t

, implying that u00
t

has the same
joint distribution with x

t

as u
t

does. Likewise, x̂0
u

t

has the
same joint distribution with x

t

as x̂
u

t

does. Since x̂
u

t

is a
sufficient statistic of u

t

for x
t

, we have that u0
t

also has the
same joint distribution with x

t

as u
t

does.
Thus the controller ⇡0 induces the same stochastic process

{x
t

, u0
t

} and the same external cost. Note that u0
t

may not
have the same joint distribution with y

t

as u
t

does and due
to the data-processing inequality [3]

I[y
t

;u
t

] � I[x̂
y

t

;u
t

] = I[x̂
y

t

;u00
t

]

� I[x̂
y

t

; x̂0
u

t

] � I[y
t

;u0
t

].

Therefore ⇡0 performs at least as well as ⇡ and equally well
when ⇡ is optimal, proving (6).

x̂0
u

t

is a MMSE estimator for x̂
y

t

since

E[x̂
y

t

|x̂0
u

t

] = E[E[x
t

|y
t

]|x̂
u

0
t

]

= E[x
t

|x̂0
u

t

] = x̂0
u

t

,

where the second equality follows from x
t

— y
t

— x̂0
u

t

.
Finally, it may not be clear from the above analysis that

u0
t

is optimally deterministic in x̂0
u

t

. If u
t

has covariance ⌃
⌫

given x̂0
u

t

, the Lagrangian of the optimization problem ((9)
in Part I) depends on ⌃

⌫

only through the terms
1
2 (tr(R⌃⌫

) + tr(SB ⌃
⌫

B|
)).

Since R + B|SB ⌫ 0 is positive semidefinite, we can
take ⌃

⌫

= 0 without loss of performance, recovering the
structure (5). Intuitively, the argument is that any noise
added to u0

t

, beyond x̂0
u

t

, is not helpful in compressing x
t

and can only increase the external cost without saving any
communication cost.

In the other direction, let u
t

satisfy the form of Lemma 2.
We can rewrite u

t

in the form (III.1), with

H = LWK

⌃

⌘

= L⌃
!

L|.
APPENDIX IV

PROOF OF THEOREM 1 OF PART I
In this appendix we restate and prove Theorem 1 of

Part I [1, Section IV-A], which relies on the following
Lagrangian developed there.

F⌃
x

,⌃
x̂

u

,L,S;� =

1
2 (�

�1
(log |⌃

x̂

y

|† � log |⌃
x̂

y

|x̂
u

|†) (9)
+ tr(Q⌃

x

) + tr(RL⌃
x̂

u

L|
)

+ tr(S((A+BL)⌃
x̂

u

(A+BL)|

+A⌃
x|x̂

u

A|
+ ⌃

⇠

�⌃
x

))).

Theorem 1: Given �, the Lagrangian (9) is minimized by
a controller satisfying the forward equations

⌃

x

= (A+BL)⌃
x̂

u

(A+BL)| (10a)
+A⌃

x|x̂
u

A|
+ ⌃

⇠

⌃

y

= C ⌃
x

C|
+ ⌃

✏

(10b)
K = ⌃

x

C|
⌃

†
y

(10c)
⌃

x̂

y

= K ⌃
y

K|, (10d)

the backward equations

M = ��1C|K|
(⌃

†
x̂

y

|x̂
u

�⌃†
x̂

y

)KC (10e)

S = Q+A|SA�M, (10f)
L = � (R+B|SB)

†B|SA (10g)
N = L|

(R+B|SB)L (10h)

and the control-based estimator covariance

⌃

x̂

u

= ⌃

1
/2

x̂

y

V DV |
⌃

1
/2

x̂

y

, (10i)

the latter determined by the eigenvalue decomposition (EVD)

V ⇤V |
= ⌃

1
/2

x̂

y

N ⌃
1
/2

x̂

y

(10j)

having V orthogonal with n� rank(⌃

x̂

y

) columns spanning
the kernel of ⌃

x̂

y

and ⇤ = diag{�
i

} and by the active mode
coefficient matrix

D = diag

⇢
1� ��1��1

i

�
i

> ��1

0 �
i

 ��1

�
. (10k)



Proof: The minimum of the Lagrangian (9) must satisfy
the first-order optimality conditions, i.e. that the gradient
with respect to each parameter is 0 at the optimum. We start
by differentiating F by the feedback gain L

@
L

F⌃
x

,⌃
x̂

u

,L,S;� = RL⌃
x̂

u

+B|S(A+BL)⌃
x̂

u

= 0,

which we rewrite as

(R+B|SB)L⌃
x̂

u

= �B|SA⌃
x̂

u

.

As this equation shows, L is underdetermined in the kernel
of ⌃

x̂

u

, since these modes are always 0 in x̂
u

t

and have
no effect on u

t

. L is also underdetermined in the kernel of
R + B|SB, since these modes have no cost (immediate or
future) and can be controlled in any way without affecting
the solution’s performance. Thus without loss of performance
we can take

L = �(R+B|SB)

†B|SA.

We substitute this solution back into the Lagrangian, to
get

F⌃
x

,⌃
x̂

u

,S;� =

1
2 (�

�1
(log |⌃

x̂

y

|† � log |⌃
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y

|x̂
u

|†) (IV.1)
+ tr(M ⌃

x

)� tr(N ⌃
x̂

u

) + tr(S ⌃
⇠

)),

with

M = Q+A|SA� S

N = L|
(R+B|SB)L

= A|SB(R+B|SB)

†B|SA.

The problem of optimizing over ⌃
x̂

u

given the other param-
eters can now be written, up to constants, as the semidefinite
program (SDP)

max

⌃
x̂

u

log |⌃
x̂
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�⌃
x̂

u

|† + � tr(N ⌃
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u

)

s.t. 0 � ⌃
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u

� ⌃
x̂

y

.

By Lemma V.1 in Appendix V, the optimum is achieved
when ⌃

x̂

u

satisfies (10i)–(10k).
Finally, with P = ⌃

x̂

y

⌃

†
x̂

y

the projection onto the support
of x̂

y

t

and since the range of ⌃
x̂

u

is contained in that
subspace, we have
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y
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†
).

The purpose of introducing P is to notice that even if
the range of ⌃

x̂

y

is increased, this has no effect on the
Lagrangian, because these modes are orthogonal to the range
of ⌃

x̂

u

. This allows us to treat P as constant, so that the
range of P ⌃

x̂

y

P is constant in a neighborhood of the
solution, and the derivative of the pseudoinverse is simplified
in this case to
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,

with J
i,j

the matrix with 1 in position (i, j) and 0 elsewhere.
This yields
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implying (10e).

APPENDIX V
SEMIDEFINITE PROGRAM SOLUTION

In this appendix we state and prove the following solution
to our SDP problem.

Lemma V.1: The semidefinite program

max

X2Sn+
log |M1 �X|† + tr(M2X)

s.t. X � M1,

with M1,M2 ⌫ 0, is optimized by

X = M
1
/2

1 V DV |M
1
/2

1 ,

with the eigenvalue decomposition (EVD)

V ⇤V |
= M

1
/2

1 M2M
1
/2

1 ,

such that V is orthogonal with n � rank(M1) columns
spanning the kernel of M1 and ⇤ = diag{�

i

} and with

D = diag

⇢
1� ��1

i

�
i

> 1

0 �
i

 1

�
.

Proof: Let the EVD of M1 be

U U|
= M1,

with U orthogonal and  diagonal, having

 =


 + 0

0 0(n�m)⇥(n�m)

�
,

with m = rank(M1). Let

 

‡
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†
+ I � †

 =


 

�1
+ 0

0 I

�
.

By changing the variable to

Y =  

‡
/2U|XU 

‡
/2,

the constraint of the SDP becomes

Y � I
m,n

=


I
m⇥m

0

0 0(n�m)⇥(n�m)

�
.

Y must therefore be 0 outside the upper-left m⇥m block,
and the SDP is equivalent, up to constants, to

max

Y 2Sn+
log |I

m,n

� Y |† + tr( 

1
/2U|M2U 

1
/2Y )

s.t. Y � I
m,n

.

Let the EVD of the linear coefficient be

¯V ⇤ ¯V |
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1
/2U|M2U 

1
/2,
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Fig. VI.1. Bayesian network of online inference from a sequence of
independent observations

with

¯V =


¯V+ 0

0 I(n�m)⇥(n�m)

�

orthogonal and preserving the kernel of  and
⇤ = diag{�

i

}. We can again change the variable to

D =

¯V |Y ¯V ,

to get

max

D2Sn+
log |I

m,n

�D|† + tr(⇤D)

s.t. D � I
m,n

,

which can easily be solved using Hadamard’s inequality [3],
to find

D = diag

⇢
1� ��1

i

�
i

> 1

0 �
i

 1

�
.

Finally, the lemma follows by unmaking the variable
changes and taking

V = U ¯V .

APPENDIX VI
PROPERTIES OF THE RETENTIVE DIRECTED INFORMATION

In this appendix we show how the retentive directed
information (Definition 6 of Part II [4, Section III-A]) relates
to the multi-information of Bayesian networks [5].

Consider the Bayesian network in Figure VI.1, which
describes the process of online inference from a sequence
of independent observations. The multi-information of this
network, for horizon T , is equal to the retentive directed
information

I[yT , zT ] = E
"
log

f(yT , zT )
Q

T

t=1 f(yt)f(zt)

#

=

TX

t=1

E

log

f(z
t

|zt�1, yt)

f(z
t

)

�
= I[yT ⇣ zT ].

An important property of the directed information is
that the mutual information between two sequences can be
decomposed into the sum of directed information in both
directions [6]

I[xT

; zT ] = I[xT ! zT ] + I[zT ! xT

].

Interestingly, retentive directed information extends this
property to the retentive control process (Figure 1 in Part II).
This process can be thought of as consisting of four phases:

observation, inference, control and state transition. Its multi-
information can accordingly be decomposed [7] into the sum

I[xT , yT , zT , uT

] = I[xT ! yT ] + I[yT ⇣ zT ]

+ I[zT ! uT

] + I[uT ⇣ xT

].

APPENDIX VII
STRUCTURE OF THE OPTIMAL RETENTIVE CONTROLLER

In this appendix we derive the structure of the optimal
retentive controller summarized in Part II [4, Section III-C].

For the structured feedback gain L we find using the Schur
complement that
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We also have
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Dually, for the structured Kalman gain K we find that
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Now constraining the controller to be MMSE, we have the
structure
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which we employ in differentiating F (IV.1), to get
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This leaves M overparameterized and we can choose to give
it the structure
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