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Abstract

We model the interaction of an intelligent agent with its environment as
a Partially Observable Markov Decision Process (POMDP), where the joint
dynamics of the internal state of the agent and the external state of the
world are subject to extrinsic and intrinsic constraints. Extrinsic constraints
of partial observability and partial controllability specify how the agent’s
input observation depends on the world state and how the latter depends on
the agent’s output action. The agent also incurs an extrinsic cost, based on
the world states reached and the actions taken in them.

Bounded agents are also limited by intrinsic constraints on their ability to
process information that is available in their sensors and memory and choose
actions and memory updates. In this dissertation, we model these constraints
as information-rate constraints on communication channels connecting these
various internal components of the agent.

The simplest is to first consider reactive (memoryless) agents, with a chan-
nel connecting their sensors to their actuators. The problem of optimizing
such an agent, under a constraint on the information rate between the input
and the output, is a sequential rate-distortion problem. The marginal distri-
bution of the observation can be computed by a forward inference process,
whereas the expected cost-to-go of an action can be computed by a backward
control process. Given this source distribution and this effective distortion,
respectively, each step can be optimized by solving a rate-distortion problem

that trades off the extrinsic cost with the intrinsic information rate.



Retentive (memory-utilizing) agents can be reduced to reactive agents
by interpreting the state of the memory component as part of the external
world state. The memory reader can then be thought of as another sensor
and the memory writer as another actuator and they are limited by the same
informational constraint between inputs and outputs.

In this dissertation we make four major contributions detailed below and
many smaller contributions detailed in each section.

First, we formulate the problem of optimizing the agent under both ex-
trinsic and intrinsic constraints and develop the main tools for solving it.
This optimization problem is highly non-convex, with many local optima.
Its difficulty is mostly due to the coupling of the forward inference process
and the backward control process. The inference policy and the control pol-
icy can be optimal given each other but still jointly suboptimal as a pair.
For example, if some information is not attended to it cannot be used and if
it is not used it should optimally not be attended to.

Second, we identify another reason for the challenging convergence prop-
erties of the optimization algorithm, which is the bifurcation structure of the
update operator near phase transitions. We show that the update operator
may undergo period doubling, after which the optimal policy is periodic and
the optimal stationary policy is unstable. Any algorithm for planning in such
domains must therefore allow for periodic policies, which may themselves be
subject to an informational constraint on the clock signal.

Third, we study the special case of linear-Gaussian dynamics and quadratic
cost (LQG), where the optimal solution has a particularly simple and solv-
able form. Under informational constraints, the forward and the backward
processes are not separable. However, we show that they do have a more ex-
plicitly solvable structure; namely, a sequential semidefinite program. This
also allows us to analyze the structure of the retentive solution under the
reduction to the reactive setting.

Fourth, we explore the learning task, where the model of the world dy-



namics is unknown and sample-based updates are used instead. We focus on
fully observable domains and measure the informational cost with the KL di-
vergence, so that the problem can be solved with a backward-only algorithm.
We suggest a schedule for the tradeoff coefficient, such that more emphasis is
put on reducing the extrinsic cost and less on the simplicity of the solution,
as uncertainty is gradually removed from the value function through learn-
ing. This leads to improved performance over existing reinforcement learning

algorithms.
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Chapter 1

Introduction

In this chapter we introduce the conceptual framework that is the basis for
the results presented in this thesis. Although reinforcement learning and
information theory have both been studied intensively for many decades,
some aspects of our approach to these fields are novel. The preliminaries are
included here in somewhat non-standard notation and are accompanied by

several new organizing principles and insights.

1.1 Partially Observable Markov Decision

Processes

A Partially Observable Markov Decision Process (POMDP) is a dynamical
system, with outputs that partially reveal the state of the system, and in-
puts that partially control the state dynamics. This richly expressive model
has numerous and diverse applications, from autonomous vehicles to ad dis-
plays [I]. POMDPs, and particularly the reinforcement learning paradigm
for optimizing and learning them, have therefore enjoyed increasing attention

from the research community in recent years.



1.1.1 Setting

Dynamics

A discrete-time dynamical system has a time-dependent state, and possibly
stochastic dynamics that determine the distribution of each next state given
each current state. A closed system has no input, and the dynamics are
simply a Markov chain of states {s;}, induced by the conditional probability
distribution p(s;;1|s;) of the state transition. In open systems, which we
consider in this thesis, an input control signal a; € A, also called an action,
can affect the dynamics of the state w; € W, which are now given by the
distribution p(wyy1|we, az).

The system also emits an output signal o, € O, also called an observation,
based on its state. The observation dynamics are given by the distribution
o(ogwy). In the special case of a fully-observable Markov Decision Process,
the observation space contains the state space, and o(o¢|w;) = 6o, =, -

The control signal is generated by an agent, based on past observations,
according to some policy. A history-based policy is given by the distribution
m(alo<t), where o<, denotes the observable history; i.e., the sequence of
observations up to time t. Jointly with its environment, also called the world,
the agent forms a larger dynamical system, which induces a stochastic process
over {wy, o, a;}.

Generic history-based policies are hard to optimize, implement, and even
represent, since the space of observable histories grows exponentially in size
with the length of the history. Instead, the agent is equipped with some
memory m; € M, which summarizes the observable history, and on which
the future actions are based. In addition to the control policy 7(a;|m;), the
agent now consists of an inference policy q(myi1|my, 0441), for updating the
memory state using the new observation. This induces a stochastic process

over {wy, op, My, az}.



Extrinsic Constraints

The world dynamics can be considered extrinsic limitations on how the agent
can interact with the world state. Without these limitations, the agent could
precisely observe the current state w, of the world, and completely determine
its next state w;y1. In POMDPs, the observability is partial, in that the only
information about w; that the agent can use is that given by o;. Dually,
controllability is also partial, in that the only future trajectory of states that
the agent can effect are those induced by a>;. Put another way, the state

dynamics p limits how the agent can control the world

Pw(wt+1|wt,mt) = Eatww(~\mt)[p(wt+l|wtu at)],

so that the distribution of w; 1, given w; and my, is a selected mixture 7 of
the fixed distributions p. Similarly, the observation dynamics o limits how

the memory state can adapt to the new world state

Pq(mt+l|mt7 wt+1) = Eot+1~a(-|wi+1)[Q(mt+l|mta 0t+1)]7

so that the distribution of m; 1, given m; and w1, is a fixed mixture o of
the selected distributions gq.

Another limitation on the policy of the agent, which is often viewed as the
target of the policy optimization, is to achieve low values of the expectation
of some cost (or equivalently, high values of an expected reward). Without
loss of generality, the cost is taken to be a function c(wy,a;) of the world
state and the action. On a long timescale, expected cost accumulates at a

linear rate, and we are concerned with that asymptotic rate

=
Vo = limsup = E|c(w, az)|. 1
o= msup 7 3 Ble(u,a0) 0



Stationary Processes

Let
IPTr,q(wt-i-la Myr1|we, my) = Pr (w1 |we, my) Pq<mt+1|mta Wiy1).

For a marginal distribution p(s;) over the joint state s; = (wy, m;) of the

world and the agent, the forward operator

Pﬁ,q tp E8t~ﬁ[IPTF7Q(‘|St)]7

induces a Markov process on the joint state. The limit (1) is clearly related
to fixed points of P4, called stationary distributions of the process: if at
any point the process reaches a stationary distribution p, it remains in that

distribution, and

Vg = B mo~ple(we, ar)]. (2)
ar~m(-jme)
However, the process does not always have a stationary distribution, and
when it does it may not be unique, with the one actually reached depending
on the initial distribution of sy = (wg, my).

To formulate the conditions under which there exists a unique stationary
distribution, we require some results from ergodicity theory, an extensively
researched field which we address here only in a nutshell.

We say that the joint state s communicates with s’, and denote s —, , s/,

if ¢’ is reached from s with positive probability after some finite time (s, s")
P;q[és](s’) =P, (s = 5'|so =) > 0.

Consider the equivalence classes of the equivalence relation s <., s’ (i.e. s
and s’ communicate with each other), and the partial order —, , induced on

the set of these communicating classes.



We say that a communicating class is closed if the probability of leaving
it is 0. A closed communicating class has a unique stationary distribution
over its member states. Even if the process has period T', and the marginal
joint distributions follow a limit cycle py, . . ., pr_1, the limit average (1) is the
expected cost (2), with respect to the stationary distribution p = %Z?;ol Ds.

If the process has multiple closed communicating classes, the convex com-
bination of their stationary distributions is also stationary, and thus the value
of the policy depends on the initial state distribution. On the other hand,
the process may have no closed communicating classes, or more generally the
total probability of reaching any closed communicating class from the initial
state may be less than 1. If a closed communicating class is not reached, the
process goes through an infinite sequence of distinct communicating classes,
which of course excludes stationarity. This is only possible when the state
space is infinite, in the case where W or M is infinite.

In reinforcement learning, it is common to assume ergodic processes, con-
sisting in particular of a single closed communicating class. However, it
should be recalled that the process is induced jointly by the world dynamics
and the agent policy, and some policies are not ergodic. Some of the compli-
cations this creates are explored in Section 2.2; however, further implications
are beyond the scope of this dissertation. Here we restrict the discussion
to policies that are well-behaved, in that the process they induce reaches a

single closed communicating class with probability 1.

Finite-Horizon Processes

In many reinforcement learning domains the process terminates upon reach-
ing a terminating state. A terminating state can be modeled as persisting
with probability 1 and cost 0, making it a closed communicating class, and
the value of any well-behaved policy 0. For the comparison of policies in this

episodic setting to be meaningful, we consider the total life-long expected



cost

[ee}
Z E wt, at
t=0

rather than the average cost.

A special case of this finite-horizon setting is the popular discounted set-
ting, although it is often mistakenly considered to have an infinite horizon [2].
In this setting, each transition has a fixed probability 0 < 1 —+v < 1 of termi-
nating, regardless of the current state or action. The horizon T} is distributed

geometrically with parameter 1 — ~, and we have

= Ty—
Veg = D, P(Ty = Z (uwn, ar)]
T=1 =
> T—
B Z Z wt7 at
T=1 =
= ee]
- Z Elc(wy, a)|[Ty > t] Z (1— )T
=0 T=t+1

Y Elc(wy, a) [Ty > t).

-+
Il

0

It may appear in this expression that the horizon is infinite and the costs are
discounted exponentially by 7. However the contribution of later time steps
to the total cost becomes negligible on the effective horizon, which is in the

1

order of the expected termination time g

Another special case is the fixed finite horizon T'

T-1
Vig = Z Elc(wy, a)]
t=0

This can be modeled by keeping track of the time index as a part of the state

w, = (t,w;), and terminating when ¢t = T'. Policies in this setting are often

10



Figure 1.1: Bayesian network of a POMDP

time-dependent, as can be the dynamics or the cost.

Throughout this thesis, we will use many of these different horizon set-
tings. In Section 2.1 we consider a finite horizon, in Section 2.2 a periodic
infinite horizon, in Chapter 3 an infinite horizon, and in Section 4.1 a dis-
counted horizon.

We have thus seen two common limitations on the agent policy; namely,
the extrinsic limitations of partial observability and partial controllability,
and the desire to incur low costs. Another set of possible limitations results
from the scarcity of intrinsic resources required by the agent for computa-
tion and communication. Such conditions of bounded rationality or intrinsic
motivation are the central theme of this dissertation, and will be introduced
in Section 1.2.2.

1.1.2 Structure

Symmetries

The structure of the process defined in the previous section can be sum-
marized in the Bayesian network in Figure 1.1. This structure has several
symmetries that are insightful to explore, and which yield useful dualities [3].

First, there is a horizontal (up/down) symmetry between the agent and

the world that maps the inputs and outputs of one component to those of

11



the other; that is, actions are mapped to observations and vice versa. This
symmetry underlines the fundamental distinction between the agent and the
world: the dynamics p and ¢ of one remain fixed, as those of the other, ¢
and m, are optimized. This suggests that in a closed system, the component
whose dynamics are adaptive on shorter timescales can be thought of as an
agent with respect to the rest of the system.

Second, there is a vertical (left/right) symmetry between the past and
the future, that again maps the inputs to the outputs and vice versa. This
symmetry underlines the role of causality in the process: while the outputs

of w;, namely o, and w41, are independent given the state s; = (wy, my)
0y Lwgyr | wi, my,

the inputs of wy 1, namely w; and a;, may be dependent given s, = (my, wy,1)
ay £ wy | wygq, my.

To illustrate this, consider a light switch w that is either on or off. A noisy
observation o of the state of the switch only affects the future through its
perception by an agent m. On the other hand, given the next switch state
w’, a change w # w’ is much more likely if the agent touches the switch than
if it does not, so the actual action a carries information on w even beyond
the mere intention m. Other similar causal asymmetries exist as well.
Nevertheless, this imperfect symmetry gives rise to an important duality
between inference and control [4]. Inference is inherently a forward process,
that is performed by computing the forward dynamics of the process while
marginalizing and conditioning probabilities. Control is inherently a back-
ward process, where earlier and earlier actions are selected based on their
previously-computed future consequences. The two processes and the inter-
change between them are central in reinforcement learning, and the duality

between them is thus highly insightful.

12



A third symmetry in the infinite-horizon setting is time shifting, which is

the basis for the stationary analysis of this setting.

Reactive Agents

An interesting restriction of the solution space is to only consider reactive
(memoryless) agents. That is, when observing o, and deciding on an action
a;, we disallow any access to previously inferred statistics of the observable
history, and restrict the policy to be of the form m(a|o;).

Requiring the agent policy to be reactive may have a considerable impact
on its optimal value, since the optimal reactive policy can be arbitrarily worse
than the optimal retentive (memory-utilizing) policy. Nevertheless, there are
many reasons to consider reactive policies. First, in many real cases there
are optimal or near-optimal reactive policies. Fully-observable MDPs are one
important class of such cases, but others exist as well.

Second, even when reactive policies are not near-optimal, they may be
preferred for the simplicity of optimizing and implementing them. For exam-
ple, reactive policies were recently successfully employed to play Atari games,
with only the 4 most recent screen frames available as observation in each
step [5]. Third, a good treatment of reactive policies can be a springboard
for general policies.

Last, but not least, in a certain sense, no generality is lost by restrict-
ing attention to reactive policies, because the general case of planning with
retentive policies can be reduced to the problem of planning with reactive
policies in an extended POMDP.

The extended POMDP is defined over the joint world-agent state space
W = M x W. The observation space is O = M x O, and similarly the

action space is A = M x A. The extended state dynamics are

P((mg, wepr) [ (M-, wy), (My, a)) = 5mt:m;p(wt+1‘wt> at),

13



the observation dynamics are
o ((mi_1, 00)[ (M1, we)) = Oy =m0 (0cw0),
and the cost is
c((my—_1,wy), (my, ap)) = c(wy, ay).

That is, the memory component of the world state is fully observable, fully
controllable, and does not affect the cost.

To complete the reduction, we need to translate the solution reactive
policy in the extended POMDP, 7 ((my, a;)|(m4—1,0:)), back into a retentive
policy in the original POMDP. This policy does not generally have the prop-
erty that a; is independent of (m;_1,0;) given my, as it should according to
our original notation, but this condition can usually be relaxed without prac-
tical implications (see Section 3.2). Alternatively, the retentive policy can
have memory space M x A, and

q((mu, ap)|[(mu-1, ae-1), 0r) = T((me, @r)| (M1, 01))

T
(0] (0, @) = By

1.1.3 Methods

Optimization Problem

We are interested in optimizing the value of the policy (m,q)

' 1 T-1
Viq = limsup — Z Efc(w, ar)] = Ew,mo~plc(we, ar)]
oo I au~r(fme)

14



under a constraint on the observability and controllability allowed by the

world dynamics (p, o), so that p is a fixed point of the forward recursion

p(wt-i-la mt+1) =E (we,me)~p [p(wt-i-l‘wtv @t)CI(th’mt; Ot+1)]- (3)
ag~7(-|m¢)
ovr1~olwrs1)

We can formulate the optimization target as the Lagrangian

Eﬁﬂr,q,y = E(wt,mt)~15 [C(U}t, at)]
at"‘ﬂ'('|mt)

+v- (E (wg,me)~p [p('|wtaat> ®Q("mt70t+1>] _13)

ag~m(-|me)
ot+1~0(Jwit1)

= E(wt,mt)~ﬁ |:Eat~7r(-|mt) |:C<wt, Clt)

+E wi1~p(-|we,ar) [V<wt+17 mt-i-l)]] — v(wy, mt)]’
i aC )

where v(wy, my) is the Lagrange multiplier that corresponds to the constraint

of the forward recursion (3). In the infinite-horizon setting, we also add the

constraint that p is a normalized probability distribution, E;[1] = 1, with

multiplier \.

Although this optimization problem is highly non-convex, and many local
optima exist, we chose a parameterization under which the Lagrangian is lin-
ear separately in each parameter. This enables us to easily find the gradient
with respect to each parameter, and completely optimize over it with the

other parameters fixed.

Backward Operator

The gradient with respect to p is

aﬁ(wt,mt) £p,w,q,u = ]E[C(wm at) + V(thrl; mt+1>’wtamt] - V(wtamt) - A

15



A necessary condition for the solution to be optimal is that the gradient
be 0. By taking an expectation on both sides with respect to a stationary

distribution p(wg, m;), A must be the target expected cost E[c(wy, a;)], and

v(w,me) =B aentime)  [e(wy, ap) + (Wi, mypq)] — A (4)
o o)
mi1~q(-|me,0041)

As often is the case with Lagrange multiplier, A and v can be interpreted
as quantities of interest in the problem. Intriguingly, the Karush-Kuhn-
Tucker optimality conditions require A to be our target expected cost.

As for v, (4) is a backward recursion for the value of being in joint state
(wy, my). Tt computes the cost-to-go for trajectories starting at that state, by
accumulating backwards the cost, in a dynamic-programming scheme. Al-
though it was introduced as a Lagrange multiplier for the forward recursion,
v turns out to be the joint-state value function, also called the cost-to-go.

The duality between inference and control that was previously mentioned
in Section 1.1.2 manifests here in the primal-dual sense of optimization the-
ory: the backward recursion (4) determines the Lagrange multiplier of the
forward constraint (3). Since values and costs often appear as dual to log-
probabilities [4], it is fitting that the mean cost A is subtracted as an equalizer
in (4), somewhat resembling in form a normalization of probabilities.

In the finite-horizon setting, we exclude the terminating state from our
notation, and the stationary distribution is guaranteed by the dynamics (3) to
be 0 in non-terminating states. p is no longer normalized, and the Lagrange
multiplier A is omitted to get the ordinary Bellman equation [2].

Note that, throughout this discussion, we assumed that the constraint

p = 0 is inactive, otherwise it must also be included in the Lagrangian.

16



Optimal Policy
As for the agent policy, we have that optimally 7m deterministically selects

the action that optimizes the future value

a; (m¢) = argmin E[c(wy, a) + v(wepr, megr)|me] (5)

The expectation is with respect to the posterior distribution given the agent’s

memory state

ﬁ(wh mt)
B mi)~p Omy =my ]

]Pﬁ(wt|mt) =

This is the objective belief that the agent should have about what the state of
the world w; may be, when the agent itself is in state m;. To be able to per-
form this computation, the agent must be able to interpret m; as representing
this belief. An inference policy that induces a subjective belief b,,, (w;) which
equals the objective belief P;(w¢|m;), is called objectively consistent.
Similarly, the optimal ¢ deterministically selects the next memory state

that optimizes the future value starting at the inference half-step

m?ﬂ(mt; 0p+1) = argmin E[v (w1, mys1)|mye, 0p41]. (6)
mi4+1

Here the expectation is with respect to the updated posterior

P (my, We1)0 (041 |Wis1)
E(m21w2+1)“ﬁ/ [5m2=ng(0t+1 |w1/€+1)]

Pﬁ,w(wt+1|mta 0t+1) =

Y

where p’ is the half-step phased stationary distribution

p/<mt7 wt+1) = IE)( § T )~ [5mt mtp(wt+1’wt7 at)]
ap~m(-|mj,

ha

If the memory state space is unlimited, inference is optimized by choosing a

17



state m;,, that represents this updated posterior; i.e., having

bmtﬂ(wtﬂ) = IP[‘)J(thrl‘mt? 0t+1)-

This is the Bayesian inference policy that is the standard in reinforcement
learning [6]. It is deterministic and objectively consistent.

In summary, an analysis of the optimization problem gives us a forward
recursion (3) on the marginal distributions, a backward recursion (4) on the
cost-to-go function, and policy optimization equations (5), (6). These can be
treated as update equations that allow the iterative update of each solution
parameter given the others. Since each update brings a parameter to its
optimum, the solution is monotonically improved in each iteration, and is
guaranteed to converge in value, at least to a local optimum. This type of
forward-backward algorithm is a central element in reinforcement learning

and in this thesis.

Model-Based vs. Sample-Based Learning

Our approach so far has been model-based, in that the world dynamics (p, o)
are needed to compute the forward (3) and backward (4) updates, as well as
the inference policy (6). Indeed, general POMDPs are usually solved using
model-based methods [7] [8] [9].

When the model is known at the time of agent design, the task of opti-
mizing its policy is called planning. When the model is unknown, the task is
called learning, since the agent must learn something about the world before
good behavior can be identified. The agent cannot simply exploit its par-
tial knowledge of the world dynamics before it sufficiently explores unknown
aspects of the world, because the unknown aspects could allow it to choose
a much better policy. The agent must therefore trade off exploration and
exploitation [2].

However, the distinction is blurred in model-based methods, because at

18



least in principle, the unknown dynamical parameters of the world can be
considered part of the unknown state of the world. Exploration in this sense
is not unlike active perception [10]|, where the actions are selected also for
their benefit in better observing the world state.

Learning and exploration are more pertinent to sample-based methods,
where no model of the world is known or learned, and only the value func-
tion or the policy are learned. Unable to perform computations that involve
the unknown dynamics explicitly, sample-based methods interact with an
environment implementing these dynamics, and use the gathered samples to
approximate the computations. This is usually done in the fully observable
setting, where no inference or forward computation is needed. A promi-
nent example is the approximation of the expectation in the backward recur-
sion (4) with various sampling techniques [2]. This approach is employed in
Section 4.1.

Value Iteration vs. Gradient Methods

The method presented above utilizes a specific parameterization of the prob-
lem that makes the target linear in each parameter separately. This enables
the global optimization of each parameter given the others, which is then
iterated until convergence, an approach called value iteration [2] [L1].

Gradient methods update the parameters in a different manner [12] [13].
Whereas value iteration methods follow each coordinate of the gradient to
convergence before moving on to another coordinate, gradient methods only
take a small step in the direction of the gradient in each iteration. This
makes these methods suitable for combining with the plethora of gradient-
based parametric function learning methods developed in recent years in
the optimization literature. Compared to value iteration methods, gradient
methods follow a different trajectory in solution space, with implications for
convergence that are a subject of ongoing research.

It is also possible to mix and match the approaches. For example, policy

19



gradient methods often take small gradient steps with respect to the policy,

but keep the forward-backward equations consistent.

1.1.4 Challenges

The POMDP planning problem is provably computationally hard [14], and
the optimization problem is highly non-convex. Nevertheless, the problem
is important enough to merit the attention it has been getting. Inspired
by the fact that natural agents do regularly solve instances of the problem,
the research community has come up with useful insights and increasingly

effective approaches for solving it, but has also faced significant challenges.

Memory Space Identification

Central to these challenges is the identification of a good space of memory
states. This is essentially a representation learning problem. Naively, since
memory states represent belief states, we may be tempted to consider the
entire space of distributions over world states. Unfortunately, this space is
continuous, and its discretization requires a state space exponential in the
number of world states. This explosion in the size of the state space is
called the curse of dimensionality. To put this in precise terms, the number
of (JW| — 1)-dimensional simplexes with edge length € needed to tile the
simplex representing the distributions over W, is (vV2/e)I=1,

Not all Bayesian beliefs are reachable in a given POMDP. The Bayesian
inference policy is deterministic, making the belief state a function of the
observable history. The number of reachable beliefs is therefore bounded by
the number of different histories, |O|?, which is unfortunately exponential in
the horizon T', an explosion called the curse of history.

With a memory state space this large, it may not even be clear how to
represent the solution policy, let alone compute a good one. There is therefore

a crucial need to reduce the size of the memory space, and the number of
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representable beliefs. The set of all reachable beliefs needs to be clustered,
perhaps implicitly, into these representable beliefs. This is the premise of
all successful approaches to POMDP planning, such as point-based value
iteration [11] and finite-state controllers [15].

A remaining challenge with existing approaches is that they employ heuris-
tics for choosing the subset of representable beliefs, often without even mak-
ing these beliefs explicit. The representable beliefs are the centroids of the
belief space clustering that the inference policy implements, and there is a
defined cost for the information lost in this clustering. A more direct ap-
proach can compare this increase in cost to the belief compression it allows,
and trade them off, as in rate-distortion theory. In a very fundamental sense,
the complexity of POMDP planning really stems from the difficulty of rep-

resenting the informational landscape of beliefs — a curse of information.

Forward-Backward Coupling

This brings us to the final aspect of the challenge, which is the forward-
backward nature of the algorithms involved. Computing beliefs and infor-
mation costs requires marginal distributions to be found using a forward
process. At the same time, value functions are computed using a backward
process. When the forward and backward processes are separable, the prob-
lem becomes much easier to solve.

This is the case when observability is full, rendering the forward process
trivial. In domains with linear-Gaussian dynamics and quadratic cost (LQG),
the Gaussian distribution and the quadratic function make the processes
separable, and the problem easily solvable, despite the partial observability
and controllability. This hinges on the important property that the reachable
beliefs are themselves Gaussian distributions over the world state space, with
fixed covariances. The memory space can optimally be parameterized by the
means of the beliefs, and these parameters inferred by linear updates from

observations.
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Figure 1.2: Block diagram of joint source and channel coding

In general POMDPs, the forward and backward processes are coupled,
which manifests in the non-convexity of the problem, and contributes to its
complexity. To illustrate this issue, consider a solution policy that neglects to
infer from observations and to utilize in actions a useful piece of information
about the hidden state. This solution may easily become a local optimum for
optimization algorithms, since on the one hand the information cannot be
used in the control policy (backward process) if it is not inferred, and on the
other hand it is wasteful to commit the information to the limited memory
in the inference policy (forward process) if it is never used. The control and
inference policies may therefore be optimal for each other, but only locally
optimal as a pair.

The coupling of the forward and the backward processes is mediated
by the representation. Given the semantics of the memory states as the
beliefs for which they stand, the processes become separable. This again
emphasizes the importance of the challenge of finding good representations

for reinforcement learning.

1.2 Information Theory

1.2.1 Rate-Distortion Theory

Source Coding and Channel Coding

In classic coding theory, we are concerned with the lossy transmission of a
signal s over a noisy memoryless channel (Figure 1.2). We are given the

distribution pg(s) of the signal source, and a cost d(s, §), also called distor-
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tion, of reconstructing § at the receiver. We are also given the cost ¢(x) of
inputting  into the channel, and the probability distribution py|x (y|z) of
the channel output y given its input . We are required to design an encoder
qx|s(z|s) and a decoder q§|y(§]y) that achieve a good tradeoff of the expected

distortion and the expected cost; i.e., minimizes

E  s~ps [ad(s, )+ c(x)],
z~qx5(-|s)

y”PY\XHI)

$~qgy (-|y)

for some tradeoff coefficient «.

Due to the data-processing inequality [16] applied to the Markov chain

s — x — y — &, we have [[s; §] < I[x;y], where
) B[ 25002
av (y)

is the Shannon mutual information between x and y, and similarly for s and
5. Since the expected distortion only depends on the joint distribution of s
and §, and the expected cost only depends on the distribution of x, this sug-
gests a separation of source coding and channel coding. In the rate-distortion
problem, we determine the distribution gg5(8]s) induced by the source cod-
ing, so that it achieves low expected distortion while also compressing the
signal to keep the information rate I[s; 5] low. In the capacity-cost problem,
we determine the distribution ¢x () induced by the channel coding, so that it
achieves low expected cost while also allowing a greater information capacity

I[z;y] on the channel.

Source-Channel Separation

Clearly, a solution to the joint source-channel coding problem is also feasible
separately for each of the rate-distortion and capacity-cost problems. The

optima of the subproblems therefore give a lower bound on the joint optimum.
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Classic coding theory shows that if we allow the encoders and decoders to
map a large block of inputs, as one unit, into a large block of outputs, then
asymptotically for large blocks the lower bound obtained by separation is
tight [16]. This separation principle allows coding theorists and practitioners
to focus their efforts on one of the subproblems at a time, without having
to worry about combining the solutions into a joint solution, at least in this
simple setting.

When we come to apply this theory to reinforcement learning in Sec-
tion 1.2.2, however, we find that encoding blocks of inputs is not an option.
Our encoder and decoder are part of a controller that needs to take in a
single observation and output a single action in each time step. In a large
and rich system, it may be the case that each single observation or action
is complex enough to treat it as a block in and of itself. More generally,
however, single-letter coding is required.

A characterization of sources and channels that are matched for single-
letter coding is given in [17]. In such source-channel pairs there exists a
single-letter coding that achieves the lower bound of separate source and
channel coding. Luckily, when designing a reinforcement learning agent, it
is often possible to choose the channel that is built into the agent, so that it
matches the agent’s information sources. Then the problem of internal agent
communication can be separated into its source-coding and channel-matching
parts, and the former treated as a sequential version of the rate-distortion
problem, which we discuss in Section 1.2.2. For example, in Chapter 3 we
rely on the result that, if the optimal reconstruction distribution g5 18 Gaus-
sian with linear mean and fixed covariance, the linear-Gaussian channel with

quadratic channel cost matches the source.

Optimal Lossy Source Coding

To trade off the expected distortion E[d(s, §)] and the information rate I[s; 5],

we can set one of these terms as our optimization target, with a constraint
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that the other is not too high. The Lagrangian of this optimization problem

1S

Foqs =B s=n 5 log % +d(s,8) |,
plus terms that constrain the distributions ¢ and ¢ to be normalized. Here (8
is a Lagrange multiplier that sets the relative marginal costs of the distortion
and the information rate. This Lagrangian is also called the free energy, due
to similarities to the quantity of that name in statistical physics, with 3 the
inverse temperature.

Note that we did not constrain the distribution g(8) over the reconstruc-
tion to be the marginal that corresponds to p(s) and ¢(s|s). Instead, this
required property will emerge as a necessary condition for a solution to be an
optimum. The optimum must have gradient 0 with respect to all parameters,

which implies

log Q(8|:9> +d(s, §) + % + )\8> =0
E,-,[q(3]s
Oq(3) Fa.z:p = ;q—(:%)

aq(§|5) Foap = p(s) (%
q

and thus
. r _,. .
0(315) = 3 (6) exp(—i(s, )
7(3) = Esplq(s]s)]

Here Z3 is a normalizing partition function.

The equations for ¢ and ¢ provide us with a method for finding the optimal
solution. We can take them as update equations, and iteratively improve a
solution until it converges. This algorithm, known as Blahut-Arimoto, turns
out to be an alternating projection algorithm, where each step is a projection

onto a convex set, guaranteeing convergence to a global optimum [18].
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Figure 1.3: Channel from sensor to actuator of a reactive (memoryless) agent

1.2.2 Sequential Rate-Distortion

Problem Formulation

Rate-distortion theory gives us a way to model intrinsic limitations of bounded
agents. Agents often operate under limited capacity of their internal storage
and communication channels. Such constraints can also be used as a proxy
for computational limitations caused by scarcity of information processing
resources.

Intrinsic costs on information rates between the various components of
an agent limit the space of policies that can feasibly be implemented. The
agent may be unable to pay attention to the entire observation available in its
sensors, commit the entire observable history (or a sufficient statistic of it) to
memory, or specify its intended actions with perfect fidelity. Thus, in addition
to the requirement to incur low extrinsic costs, and to extrinsic constraints
of partial observability and partial controllability, the agent is subject to
intrinsic constraints of partial attendability and partial intendability.

It is instructive to first study these constraints in reactive (memoryless)
policies. Reactive agents have a sensor taking in input observations and
an actuator emitting output actions, but no internal memory component.
Therefore they have one memoryless channel, connecting the sensor to the

actuator, as in Figure 1.3.
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If the capacity of this channel is limited, we need to trade off the extrinsic
expected cost E[c(wy, a;)] with the rate of information I[o;; a;] between the
input observation and the output action. Similarly to the extrinsic cost, we

consider the long-term average of an intrinsic cost

T-1
m(a¢lo

Z E [log—E d t)] ,

t=0 m(ar)

which converges to the mutual information in the stationary distribution

Ii=E w~p |:10g M] )
or~o(-we) T(ar)
at~(|or)

1
I, = = limsup —
' THOOp T

with

T(a) = w~p [7(agor)].

oi~o(-|wt)

The free energy of this sequential rate-distortion problem is

fﬁﬂ'{',’fl’ﬂ/;ﬁ = Ethﬁ [ ]EOt'\fU(-|’LUt) + C(wt7 at)

as~m(-|ot)

{llog 7 (at|ot)

g m(ar)

+ Ewt+1~p('|wt7at)[V(wt+1):|:| - V(wt)] .

Optimality Principle

The sequential rate-distortion Lagrangian is non-linear but convex in the

policy parameters, and their global optimum given the other parameters is

m(aclo;) = Zﬁ(@t)ﬁ-(at) exp(—B E[v(wii1)or, at]) (7)

ma) =B wep [w(afor)], (8)

or~o(-|lwe)
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where for 7 the expectation is with respect to the predictive posterior

Ethﬁ[U(Ot|wt)7r(a't|0t)p(wt+1 \wy, a)]
By, ~plo(o|wi)m(aior)]

IP7r<wt+1|0t7 Gt) =

The backward recursion is similar to the unbounded case, except that the

cost-to-go now also accumulates the intrinsic informational cost

V(wt) =K 0t~0((~||wt)) %log
ai~7(-los
w1 ~p(-|we,at)

—Wfrcéist) + c(wy, ay) + ]/(wt+1)—| -\

Note that these updates are inherently forward-backward, even if we as-
sume full observability, unlike the unbounded case which is backward-only
when observability is full. Both the forward and the backward processes are
needed to compute the parameters for the single-step rate-distortion prob-
lem of optimizing the policy m and its marginal 7. The forward process
computes the marginal p, which takes the role of the source distribution in
rate-distortion theory, and is needed in the marginalization step (8) of the
Blahut-Arimoto algorithm. The backward process computes the cost-to-go
v, which takes the role of the distortion between the source and its recon-

struction

d(og, ar) = E[v(witr)]or, ar,

and is needed in the update step (7). The rate-distortion optimization of each

step depends on past solutions through p and on future solutions through v.

Extensions

One way to avoid the complication of the forward-backward coupling is to
eliminate the optimization over the parameter 7, which yields the marginal
distribution, and replace it with a fixed prior 7(a;). More generally, we can

allow this fixed prior to depend on the input as well, in the form p(a;|o;). If we
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also restrict attention to fully observable domains, the state marginal p is no
longer needed, and the entire optimization can be performed by a backward
algorithm. We use a sample-based version of this approach in Section 4.1.

We can generalize to retentive (memory-utilizing) policies by considering
the reduction presented in Section 1.1.2. When the agent has an internal
memory component, we can think of the memory reader as another sensor,
and of the memory writer as another actuator. Then we can consider the
joint information rate I[m;_1, 0;; my, a;] on the channel from the sensory and
memory inputs to the control and memory outputs. This is the approach
taken in Section 3.2.

We cannot always assume that all sensory inputs can be encoded together
by a single encoder, and the actuatory outputs decoded together. Different
sensors, such as an external sensor and a memory reader, can be distributed
between different components, and their inputs encoded separately by dis-
tinct encoders, and similarly for the outputs. The channels themselves can
likewise be independent, each with its own capacity.

The tradeoffs involved in this more general setting are much more compli-
cated. This is a special case of the diverse setting studied in network informa-
tion theory [19], where tight bounds on the achievable rate-distortion regions
are often unknown. We do not have a complete solution to this problem:;
however, the joint sensory-memory coding of the inputs to the inference pol-
icy can be formulated as a multiterminal source coding problem [20], where
the solution exhibits an intriguing tradeoff between memory and sensing, as
discussed in Section 2.1.

Finally, we mention that our formulation leads to a sequential form of
the source-coding problem and is missing its channel-coding counterpart.
We conjecture that some form of a sequential capacity-cost problem may be
relevant to a more general setting than the one discussed in this thesis and

solvable using similar methods.
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1.3 Organization of the Dissertation

This dissertation is organized as follows. In Section 2.1 we present our ap-
proach to POMDP planning under informational constraints, and introduce
the forward-backward algorithm for sequential rate-distortion. The setting in
this section is restricted to passive POMDPs, where actions incur costs but
do not affect the state of the world. The same algorithm can be implemented
in general POMDPs, but the convergence properties are poorer. Section 2.2
explores one insightful aspect of these convergence challenges; namely, that
the optimal solution can be either a limit cycle or an unstable fixed point of
the update operator.

Sections 3.1 and 3.2 study the important case of a POMDP over continu-
ous state, observation and action spaces, where the dynamics are linear with
Gaussian noise, and the extrinsic cost is quadratic. This LQG setting is of-
ten better-behaved than the general setting, making it useful in practice, and
allowing insights into the properties of the theory that generalize to discrete
and nonlinear domains. Section 3.1 focuses on reactive (memoryless) control
policies, section 3.2 applies the reduction from retentive (memory-utilizing)
policies to reactive ones to study the structure of the solution in the general
case, and section 3.3 contains supplementary lemmas and proofs.

In Section 4.1 we turn to the learning setting, where sample-based updates
are used instead of model-based ones. Focusing on fully observable domains
and Kullback-Leibler (KL) costs allows the algorithm to be backward-only,
with guaranteed convergence to the global optimum. The convergence rate,
as well as other desirable attributes, are shown to improve on existing rein-
forcement learning algorithms.

Finally, in Section 5 we discuss the contributions of this dissertation, and

the results and insights obtained.
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Chapter 2

Minimum-Information POMDP

Planning

2.1 Bounded Planning in Passive POMDPs

Published: Roy Fox and Naftali Tishby, Bounded Planning in Passive POMDZPs,
In Proceedings of the 29th International Conference on Machine Learning
(ICML), 2012.
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Bounded Planning in Passive POMDPs

Roy Fox
Naftali Tishby

School of Computer Science and Engineering
The Hebrew University
Jerusalem 91904, Israel

Abstract

In Passive POMDPs actions do not affect the
world state, but still incur costs. When the
agent is bounded by information-processing
constraints, it can only keep an approxima-
tion of the belief. We present a variational
principle for the problem of maintaining the
information which is most useful for minimiz-
ing the cost, and introduce an efficient and
simple algorithm for finding an optimum.

1. Introduction
1.1. Passive POMDPs Planning

Planning in Partially Observable Markov Decision
Processes (POMDPs) is an important task in rein-
forcement learning, which models an agent’s interac-
tion with its environment as a discrete-time stochastic
process. The environment goes through a sequence of
world states Wy, ..., W, in a finite domain W. These
states are hidden from the agent except for an observa-
tion Oy in a finite domain O, distributed by o(O;|W).

In the standard POMDP, the agent then chooses an
action, which affects the next world state and incurs
a cost. Here we consider Passive POMDPs, in which
the action affects the cost, but not the world state.
We assume that the world itself is a Markov Chain,
with states governed by a time-independent transition
probability function p(W;|W;_1) and an initial distri-
bution Pl(Wl)

The agent maintains an internal memory state M; in a
finite domain M. In each step the memory state is up-
dated from the previous memory state and the current
observation, according to a memory-state transition
function g;(M¢|M;—_1, O;) which serves as an inference
policy. Figure 1 summarizes the stochastic process.

Appearing in Proceedings of the 29" International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).
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Figure 1. Structure of the Bayes network model of Passive
POMDP planning

The agent’s goal is to minimize the average expected
cost of its actions. In this paper we take the agent’s
memory state to represent the action, and define a cost
function d : W x M — R on the world and memory
states. The planning task is then to minimize
n
IS~ g

d(Wy, My)
n = Wi, M,

given the model parameters P, p, o and d.

A Passive POMDP can be viewed as an HMM in which
inference quality is measured by a cost function. Ex-
amples of Passive POMDPs include various gambling
scenarios, such as the stock exchange or horse rac-
ing, where the betting does not affect the world state.
In some settings, the reward depends directly on the
amount of information that the agent has on the world
state (Kelly gambling, see Cover & Thomas, 2006).

When the agent is unbounded it has a simple deter-
ministic optimal inference policy. It can maintain a
belief B;(W:|O(), which is the posterior probabil-
ity of the world state W; given the observable history
Oy = O1,...,0;. The belief is a minimal sufficient
statistic of O(;) for Wy, and therefore keeps all the rel-
evant information. It can be computed sequentially
by a forward algorithm, starting with By (W1|0;)
Py (W1)o(0O1]W71), and at each step updating

Bt(Wt ‘O(t))

o Z By 1 (w110 —1))p(Wilwi—1)o (O W),

wWt—1
normalized to be a probability vector.
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1.2. Information Constraints

The sufficiency of the exact belief allows the agent to
minimize the external cost, but it incurs significant
internal costs. The amount of information which the
agent needs to keep in memory can be large, and even
each observation can be more than the agent can grasp.
Anyway, not all of this information is equally useful in
reducing external costs.

In general, the agent’s information-processing capacity
may be bounded in two ways:

1. The capacity of the agent’s memory may limit its
information rate between M;_; and M, to Ryy.

2. The capacity of the channel from the agent’s sen-
sors to its memory may limit the rate at which the
agent is able to process the observation O; while
it is available, to Rg.

The requirement that the agent keeps sufficient statis-
tics and exact beliefs is unrealistic. Rather, the agent’s
memory M; must be a statistic of O;) which is not suf-
ficient, but is still ”good” in the sense that it keeps the
external cost low. We also want it to be "minimal” for
that level of quality, in terms of information-processing
rates, so that the agent keeps only information which
is useful enough. For each step individually, this is
exactly the notion captured by rate-distortion theory,
and here we have a sequential extension of it.

The main results of this paper are the formulation of
the setting described above, and the introduction of
an efficient and simple algorithm to solve it. We prove
that the algorithm converges to a local optimum, and
demonstrate in simulations the tradeoff of memory and
sensing intrinsic to this setting. The application of our
results to previously studied problems, and a compar-
ison to existing algorithms, are left for future work.

This paper is organized as follows. In section 2 we for-
mulate out setting in information-theoretical terms. In
section 3 we solve the problem for one step by finding
a variational principle and an efficient optimization al-
gorithm. In section 4 we analyze the complete sequen-
tial problem and introduce an algorithm to solve it. In
section 5 we show two simulations of our solution.

1.3. Related Work

Unconstrained planning in Passive POMDPs is eas-
ily done by maintaining the exact belief, and choos-
ing each action to minimize the subjective expected
cost. Planning in general POMDPs is harder, in one
aspect due to the size of the belief space. Many algo-
rithms plan efficiently but approximately by focusing
on a subset of this space.

Several works do so by optimizing a finite-state con-
troller of a given size (Poupart & Boutilier, 2003; Am-
ato et al., 2010). The belief represented by each state
of the controller is then the posterior probability of
the world state given that memory state. A different
approach is to explicitly select a subset of beliefs, and
use them to guide the iterations (Pineau et al., 2003).
Another is to reduce the dimension of the belief space
to its principle components (Roy & Gordon, 2002).

In this paper we present the novel setting of planning
in Passive POMDPs which is constrained by informa-
tion capacities. This setting allows treatment of rein-
forcement learning in an information-theoretic frame-
work. It may also provide a principled method for be-
lief approximation in general POMDPs. With a fixed
action policy the POMDP becomes a Passive POMDP,
and a bounded inference policy can be computed. This
reduces the belief space, which in turn guides the ac-
tion planning. This decoupling is similar to Chrisman
(1992), and will be explored in future work.

Some research treats POMDPs where the cost is the
D1, between the distributions of the next world state
when it is controlled and uncontrolled (Todorov, 2006;
Kappen et al., 2009). This has interesting analogies to
our setting. Our information-rate constraints define,
in effect, components of the cost which are the Dky, be-
tween the distribution of the next memory state and
its marginals (see section 3.1). Tishby & Polani (2011)
combine similar information-rate constraints of per-
ception and action together. Future work will explore
and exploit this symmetry in the special case where
the memory information rate is unconstrained.

2. Preliminaries

Assume that the model parameters P;, p, o and d are
given. The agent strives to find an inference policy
q(n) such that the average expected cost satisfies
n

1 E d(W, M) <D.

n = Wi, M,
for the minimal D possible. However, the agent oper-
ates under capacity constraints on the channels from
M;_1 and Oy to M;. The external cost d parallels the
distortion in rate-distortion theory, while the internal
costs are information rates. The agent actually needs
to minimize a combination of these costs.

Note that the agent will generally have some infor-
mation on the next observation even before seeing it,
i.e. M;_1 and O; will not be independent. The agent
therefore has some freedom in choosing what part of
the information common to M;_; and O; it remem-
bers, and what part it forgets and observes anew.
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The average information rate in both channels com-
bined cannot exceed their total capacity, that is

n

1
—> I(M;—1,01; My) < Rus + Rs.

n
t=1

In addition, in each step the portion of the above in-

formation that is absent from O; may only be passed

on the memory channel, and so

n

1
— D _I(My_1;M;|0r) < R

t=1
Similarly, information absent from M;_; is subject to
the sensory channel capacity
1 n

- ZI(Ot§ My|M,_1) < Rs.

t=1
The distortion constraint and the three information-
rate constraints together form the problem of
inference-planning in Passive POMDPs (Problem 1).

The emergence of three information-rate constraints
for two channels is similar in spirit to multiterminal
source coding (Berger, 1977). In their terminology, the
agent needs to implement in each M; a lossy coding
of the correlated sources M;_; and Oy, under capac-
ity constraints, so as to minimize an average expected
distortion. The main difference is that here we chose
to allow the encoding not to be distributed, in keeping
with the ability of memory to interact with perception
in biological agents (Laeng & Endestad, 2012).

3. One-Step Optimization
3.1. Variational Principle

Before we consider the long-term planning required of
the agent in Problem 1, we focus on the choice of g,
in the final step, given the other transitions, that is,
given the joint distribution of M,,_1, W, and O,,. We
define the joint belief 0,,(M,_1,W,) to be the joint
distribution of M,,_1 and W,,, and have

:g)r(Mnfh Wnu On) = gn(Mnflu Wn)U(Onlwn)

We are interested in the rate-distortion region which

includes all points (Rps, Rg, D) which are achievable,

that is, for which there exists some g, (M,,|M,_1,0,)
with d

f

Dan (Qn) =

€

d
IC,QH (qn) :f I(Mnfla On; Mn) S R]\/I + RS

<
Wn]ijn d(W,, M,) <D

d
Toro, () < T(Mp_y; M,|0,) < R

def
IS,an(Qn) = I( n;Mn|Mn—1) < Rs.

For any information-rate pair (Rps, Rs), the minimal
achievable D lies on the boundary Dy (R, Rs) of the
rate-distortion region. When 6,, and ¢,, are clear from
context, we refer to these quantities as D, Z¢, Zas, Zs
and D*. We find D*(Rp, Rs) by minimizing the ex-
pected distortion under information-rate constraints.
The minimum exists because all our formulas are con-
tinuous, and the solution space for ¢, is closed.

marginals of ¢, (M, |M,_1,0,). We expand the terms
of the problem using these conditional probability dis-
tributions, to have

min M71—1:7EI)/V71;07L mz qn(mn|Mn71a On)d(Wn7 mn)

qndn
o E o DKL(Qn(Mnan—laOn);(jn(Mn)) < Ry + Rsg
n—1,0n

M E o DKL(Qn(Mn|Mn—17On);Qn(MnK)n)) S RM

M EO DKL<Qn(Mn|Mn71aOn)7§n(Mn|Mnfl)) S RS

under normalization constraints.! We may waive the
constraints of non-negative probabilities, which will es-
sentially never be active as we shall see later. Also note
that we optimize over ¢, and ¢, as distinct parame-
ters. This is justified by theorem 1 which states that,
at the optimum, @, are indeed the marginals of ¢,.

Let the Lagrange multipliers for the constraints be ¢,
vYm and ~vg, and their sum v = v + v + 7s- Leav-
ing aside terms of logg,, the pointwise terms in the
Lagrangian will be

G(da ljna Mn—h Wna On7 Mn)
= d(Wp, M) — yc log ¢, (M)

—TMm IOg C771(]\4n|0n) — s IOg Cjn(]\/[n“wn—l)
In the following analysis, several expectations of this
function will be useful:

L4 Gen (d, Qns M1, Ona Mn)

= E G(da QHan717Wn7On7Mn),
Wn‘Mn—hOn
® an (d> Qn7 Mnfla Wn)
= E G(d, Cjnwzw'nfhI/VruOanM’n)a

OnyMn ‘Mn—hWn

* Go,,4,(d,qn)
= Mn—l,W:En),7On,Mn G(d, Gn, Mp—1, Wy, On, M)
= Do, (qn) +vc H(qn (M)
Y H (@n (M |On)) + vs H (Gn (M| M —1)),

!The information-rate constraints result from the n-step
Problem 1 by fixing the first n— 1 steps, if we consider that
only two of the constraints are actually used in any instance
(see corollary 3).
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where H is the entropy function. The Lagrangian of
the problem, up to normalization terms and additive
constants, can now be written as

El(Qna q'rﬁ 9717 Yc, VM, '75’) = Gﬂn,q” (d> Qn) - 'YH(Qn)~
3.2. Properties of the One-Step Lagrangian

Theorem 1. For any fized 6,, L1 is convex in qy
and @n. L1 is strictly convex in parameters which are
conditional on my,_1 and o, with Py (mn,_1,0,) > 0,
and at the minimum these satisfy

qn(Mn|Mnfl7On) (1)
— eXp(_vilGen (da QTM Mn—h OTL) Mn))
Zn(MnflaOn) ’

where Z, is a normalizing partition function, and

Qn(Mn) = Z Er(mn—lvon)Qn(Mn‘mn—laOn)

n

Mn—1,0n

My —1

(jn(Mn|Mn—l) = Z ];)r(on|Mn—1)Qn(Mn|Mn—lv On)-

(2)

Proof. For any fixed 6,,, £; is convex since all its terms
are convex. Non-zero terms only involve m,_; and
on, with Prg_ (mn_1,0,) > 0. Focusing on these pa-
rameters, the distortion terms are linear, and the in-
formation terms strictly convex. The unique feasible
extremum of £; is then the global minimum. Differen-
tiating by each parameter gives equations 1 and 2. [

If follows from theorem 1 that complementary slack-
ness conditions are sufficient for optimality. Ta-
ble 1 shows these conditions, the information rates
(R, Rs) where the solution meets the boundary, and
a subgradient of the boundary at that point. For ex-
ample, if the minimum of £; with var = v = 0 sat-
isfies Zo > Iy + Zs, then for any information-rate
pair in the interval [(Ze — Zs,Zs), (Zar, Ze — Zar)] the
minimal achievable distortion is D and (—v¢, —7y¢) is
a subgradient of the boundary.

Theorem 2. For any joint belief 8, the boundary
Dy (Ru, Rs) of the rate-distortion region is continu-
ous and convex. Any point (Ryr, Rs, D) on the bound-
ary at which (—ang, —ag) is a subgradient, is achieved
by minimizing L1 for multipliers

if Ic < In+TIs
if Ic > Iy +Zs
and oy < ag
ifIc > Iy+Zs
and ap; > g

(0, s, cvg)

(anm, 0,8 — apg)
(vos M, vs) =

(as,aM —Oés,O)

Table 1. Achievability of the rate-distortion boundary by a
minimizer of L£i; If the shown Conditions are met by the
multipliers and the minimum of £1, then D is the minimal
distortion for the shown Rates, and the shown Subgradient
is a subgradient of D* at that point

Conditions Rates Subgradient
%g z OIM + s (Za1,s) (=78, =75)
%f ZZIOM +Zs (Ze —Is,1s) (=7e, =70 = 7s)
%i :Z OIM +Zs (Za,Ze = Inr) | (=76 =81, =7c)
Bl | G T | e

Proof. Let transitions ¢, and ¢, achieve the

rate-distortion boundary at (R, Rs,D) and
(R}, R, D’), respectively, and let 0 < A < 1. Then
by equations 2 and the convexity of the Kullback-
Leibler divergence, the transition Ag, + (1 — )¢,
(over-)achieves  the  rate-distortion  constraints
XRwy,Rs,D) + (1 — N (R}, Rs, D).  The rate-
distortion region is therefore convex, and so is its
boundary. The boundary is continuous by the
continuity of the problem.

For a positive information-rate pair (Rps, Rg), hav-
ing M, independent of M,_; and O, makes all
information-rate constraints inactive. This satisfies
the Slater condition, and the multipliers detailed in
the theorem are then the Karush-Kuhn-Tucker multi-
pliers necessary for g, to be optimal. O

Corollary 3. Let D¢, D}, and D% be the boundaries
of the rate-distortion regions obtained by keeping each
two of the three information-rate constraints. Then D*
is their mazimum.

3.3. Optimization Algorithm

An algorithm which alternatingly minimizes £; over
each parameter with the others fixed, in the style of
Blahut-Arimoto (Cover & Thomas, 2006), will allow
us to find the minimum.

Theorem 4. Algorithm 1 converges® monotonically to
the global minimum of L.

Proof. L1 is non-increasing in each iteration and is
bounded from below, which guarantees its monotonic
convergence. That is

2For the sake of clarity, here and in the rest of this paper
strict convexity, uniqueness of minimum and convergence
should all be taken with respect to events and transitions
of positive probability, as justified by theorem 1.
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Algorithm 1 Last-Step Optimization
Input: P17p7 o,d, 'VCnyMafYSaen
Output: optimal ¢,
740
Initialize some suggestion for g,
repeat
Compute the marginals g, of ¢, (eq. 2)
Compute a new value for ¢/ *! from " (eq. 1)
r—r+1
until ¢, converges

Li(qy,a,) — La(ay™, @) —=— 0.
r—roo
But ¢"*! is the unique minimum of the continuous
Lagrangian. This implies that g, also converges to
a solution ¢ with marginals ¢;. By the continuity
of the Lagrangian’s derivatives, they are all 0 at this
solution. O

4. Sequential Rate-Distortion
4.1. Variational Principle

Returning to the entire process of Problem 1, the se-
quence of joint beliefs 03 ,,) = 02,...,0, depends re-
cursively on 1 and the policy g(,). Foreach 1 <t <n

Ory1(My, Wig1) (3)

= Z et(mt—lawt)Etr(Mt7Wt+l|mt—lawt)7
m¢—1,Wt
with 6; given as the independent distribution of Mg
and W;.

Adding the constraints of equation 3 with multipliers
Vt,my,wesr» the Lagrangian of Problem 1 is

_ 1< _
Ln(qn), An), O2,m)) = - ZEI(QtaQt§9t77C7'Y]Wa'YS)

t=1

1 n—1
_E Z Z Vtme,wepn 9t+1(mt, wt+1)

t=1 m¢,wi41

- Z gt(mtflawt)];)r(mtth+l|mt717wt)
t

me—1,Wt
up to normalization terms and additive constants.

Solving £,, is much more difficult than £;. £, is not
convex, and each step may affect all future steps. Intu-
itively, remembering some feature of the sample in one
step is less rewarding if this information is discarded in
a future step, and vice versa. This leads to £,, having
many local minima.

4.2. Local Optimization Algorithm

Nevertheless, Problem 1 still has some structure which
can be insightful to explore. In particular, it has some
interesting similarities to the standard POMDP plan-
ning problem. Differentiating £, by ¢: we now get

Qt(Mt|Mt7170t) (4>
_ exp(_’yilGGt(dtﬁmq_t;MtflaOtth))
Zt(MtflaOt) ’
with
A7 (Wy, My) = d(Wy, M, E
t ( ty t) ( ty t) + Wt+1‘Wt I/t,]Wt,Wt+1)

where 7, = 0. ¢; now depends on the future through
the multiplier vector ;. Note how the expectation
of v v, w,,, given W; plays a parallel role to that of
d(Wt, Mt) .

L, is linear in each 6, and at the optimum must in
fact be constant in every non-trivial component of 6;.
This gives us a recursive formula for computing v;_q
from 74, ¢ and . For 1 < t < n, and whenever
0< Ht(Mt_l, Wt) <1, we have

Ve—1,M,_ W, = G%(dtﬁtaq_taMtflaWt) (5)

— E H M| M;_1,0 A .
’yot‘Wt (qe(M¢|Mi—1,0¢)) + Ae,w,

Note that equation 5 is a linear backward recursion
for 7. The multipliers Xt come from the constraints
that 6, is a probability distribution function. It has no
consequence, however, since it is independent of M;_1,
and is normalized out when 7;_; is used to compute
qi—1 in equation 4.

At this point, we can introduce the following general-
ization of algorithm 1, which finds the optimal transi-
tion ¢, given the joint belief #; and the policy suffix

d(t+1,m) = Gt+15---54qn-

Algorithm 2 One-Step Optimization

Inp]-It: Plapa g, d7 YC> VM, YSs 0157 d(t+1,n)
Output: optimal ¢;

r<«20

Initialize some suggestion for g

repeat
Compute H(Ttﬂ’n) from 6#; and Ug 1) (eq. 3)
Compute the marginals (y.n) of Upn) (eq. 2)
Compute ﬁ(rt,nq) recursively backward (eq. 5)
Compute ¢, ™! from 0}, g/ and 7] (eq. 4)
rr+1

until ¢; converges

This is a forward-backward algorithm. In each iter-
ation we compute 0(;11,) = 0it1,...,0, recursively

36



Bounded Planning in Passive POMDPs

forward, and then 7 ,,_1) = V4,..., U1 recursively
backward. The algorithm is guaranteed to converge
monotonically to an optimal solution, since L, is still
strictly convex in each ¢; separately. In fact, all our
theorems and proofs regarding algorithm 1 carry over
to this generalization.

4.3. Joint-Belief MDP

Expanding the recursion of #; in equation 5 to a closed
form, and disregarding \;, we find that for 1 <t <n

and consistent parameters3
L —t4+1(qe,n); 0%) (6)
1
= m Z at(mt—l,U)t)l/t—l,mt,l,wt-

me—1,W
If we extend the recursion by another step to define
Uy, we get that our minimization target is

1
Ln(qny; 01) = - il

Vo,Mo, Wy -
0,W1

The minimization

Vi(0;) = min E

Vi—1,My_1 Wy
qet,n) My_1,Wy

can be looked at as the cost-to-go given the joint belief
0; before step t. Importantly, the recursive formula 5,
when minimized over q(; ), is a Bellman equation. It
contains a recursive term

E Vi, My, W,
My Wegr | My—y Wy A

which is the expected future cost, and other terms
which are the expected immediate costs, internal and
external, of implementing ¢; in step ¢.

This suggests viewing our problem as a joint-belief
MDP. Here the states are the joint beliefs 6;, the ac-
tions are ¢;, and the next state always follows deter-
ministically according to equation 3. This determinism
allows us to use a time-dependent policy q(), rather
than a state-dependent one, and will prove useful in
finding a solution.

The belief space of a standard POMDP can be looked
at as the state space of a belief MDP, with the same
actions and observations, and a linear transition func-
tion. If memory states are approximate beliefs, then
our model is more like a further abstraction, where the
MDP state space is the set of distributions over the
belief space. Table 2 summarizes the main differences
between this joint-belief MDP and the belief-MDP rep-
resentation of discrete-action finite-horizon POMDPs.

3When the Lagrangian is written in terms of the policy
and the initial joint belief, the other parameters are taken
to be consistent with them.

Table 2. Differences in belief-MDP representation of
POMDPs and Bounded Passive POMDPs

POMDP
beliefs, A(W)

same as POMDP
discrete

Bounded Passive POMDP
joint beliefs, (A(M))YWY

State space

memory-state transitions

Action space .
continuous

deterministic
linear in joint belief

stochastic

State transition linear in belief

internal+texternal cost
Dgkry,+linear in joint belief

external cost

Policy cost linear in belief

continuous
concave in joint belief

piecewise-linear

Value function . .
concave in belief

One important difference is in the structure of the
value function. The expected cost £,,_¢41 of a fixed
policy suffix q(;,,) consists of some linear terms of ex-
pected distortion, but also some strictly convex terms.
The latter all take the form of a Kullback-Leibler di-
vergence between g, for some t’ > ¢, and a marginal
G, the latter depending on 6; through equations 2 and
the recursion 3.

That this cost is not linear makes the representation of
the value function a challenge, but a greater difficulty
is the size of the policy space, which is finite in discrete-
action finite-horizon POMDPs, but continuous here.
Minimizing over it does not yield a piecewise-linear
function of the joint belief, although it is still contin-
uous, and the convex mixing of policies shows that it
is still concave?. It is unclear how to finitely represent
the resulting value function in our case.

4.4. Bounded Planning Algorithm

Perhaps surprisingly, the determinism of the joint-
belief MDP allows us to define a local criterion for
optimality. Together with iterations of algorithm 2
which make local improvements, this will guarantee
convergence to a local optimum.

Our algorithm is a simple forward-backward algo-
rithm, with a building block (algorithm 2) which is
itself forward-backward. In each iteration we compute
recursively forward the joint beliefs 6, for the current
policy q(»). Then we compute recursively backward a
new policy qzn), by finding in each step t a policy suffix
which is locally optimal for #;. The criterion for opti-
mality is that in each step we can use either qE t+1,1)
from the previous step or q(;1 1) from the previous it-
eration, and whichever leads to a lower cost is chosen.

Theorem 5. Algorithm 3 converges monotonically to
a limit cost L*. For any ¢ > 0, any q,, which costs
within € of L* is also within € of a local minimum of

41f rewards are used instead of costs, the value function
is convex.
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Algorithm 3 Passive POMDP Bounded Planning

Input: elapv a, d7 YO, VM, VS, T
Output: locally optimal g,
r<0
Initialize some suggestion for )
repeat
6{ — 91
Compute 07, ,, from 07 and g, _,, (eq. 3)
for t < n to 1 do
41 : Is
q(:’n)’t < argmin, Lon—t+1(qet,n); 07)
r+1,t+1
St q(+1,n) € {q(:i-l,n) ’q(t+1,n)} (alg. 2)
end for
r+1 r+1,1
Un) <~ 4n)
rr+1
until £,,(qf,,);61) converges

the bounded-inference-planning problem (section 2), in
the sense that for any 1 <t < n, the global minimum
given q(rt_l) and q(THLn) 1s at most € better than q(rn).
Proof. In iteration r, q(rn) from the previous iteration
is feasible for q%l. Therefore the cost of q(rn) is non-
increasing in 7 and converges monotonically to a limit
L*.

Let ¢f. | be within some € > 0 of L*. Fixany 1 <t <n,

(n)

and let ¢; achieve the global optimum given q(t_l) and
q(TtH,n). Then

L0(4)301) — € < La(q,))':01)

(@) -

< ﬁn((‘](rt—l)aq(;f;)’t)ﬂl)
(b) T * T

< Ln((‘](t—1)7qtaQ(H.l,n));el)v

where
(a) follows recursively from (q{,,q(;i,f”$l ) being fea-
sible for 0}, in iteration r, for each 1 < t' < ¢,

and

(b) follows from (g;, q(;,, ,) being feasible for 6 in
iteration 7.
O

Where algorithm 3 runs algorithm 2, it can initial-
ize ¢+ to ¢; from the previous iteration. This may
speed up each iteration, particularly when the algo-
rithm has nearly converged. In addition, when run-
ning algorithm 3 with different sets of multipliers, it
converges much faster if each run is initialized with the
previous result. Empirically, this also leads to much
better local minima if the runs are sorted in order of
decreasing multipliers.

Figure 2. Boundary of the rate-distortion region for the se-
quential symmetric channel simulation
The parts from left to right: yar = 0; v =vs =0; 75 =0

Figure 3. Contour map of the rate-distortion boundary for
the sequential symmetric channel simulation

5. Simulations
5.1. Symmetric Channel

Figure 2 shows the boundary of the rate-distortion
region for the 30-step sequential symmetric channel
problem. The domains W, O and M are all binary.
The agent observes the state correctly with probabil-
ity 0.8. The state remains the same for the next step
independently with probability 0.8. The distortion is
the delta function.

The boundary consists of three parts as in corollary 3.
They have vy = 0 (left), yar = vs = 0 (middle) and
vs = 0 (right). Empirically, taking vo = 0 is never
feasible, as no optimal solution ever has Zo < Zp;+Zs.

To clarify this further, figure 3 shows a colored contour
map of the boundary. The lower the distortion, the
higher the required information rates. The tradeoff
between memory and perception is illustrated by the
negative slope of the contours.
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Ry

Figure 4. Contour map of the rate-distortion boundary for
the Kelly gambling simulation

5.2. Kelly Gambling

Three horses are running in 10 races. Each horse has
a fitness rating f; € {1,2,3}, and the winning horse is
determined by softmax, i.e. horse ¢ wins with proba-
bility proportional to exp(f;). Between the races, the
fitness of each horse may independently grow by 1,
with probability 0.1 if it is not maxed out, or drop by
1, with probability 0.1 if it is not depleted. Each horse
keeps its fitness with the remaining probability.

The only observations are side races performed be-
fore each race: 2 random horses compete (with soft-
max) and the identities of the winner and the loser
are announced. The memory state is a model of the
world, consisting of the presumed fitness fl of each
horse. The log-optimal proportional gambling strategy
is used (Kelly gambling, see Cover & Thomas, 2006),
betting on horse 7 a fraction of the wealth proportional
to exp( fz) Each bet is double-or-nothing, and the dis-
tortion is the expected log return on the portfolio.

Figure 4 shows the contour map, which is not convex
in this instance.

6. Conclusion

We have presented the problem of planning in Pas-
sive POMDPs with information-rate constraints. This
problem takes the form of a sequential version of rate-
distortion theory, and accordingly we were able to pro-
vide algorithms which globally optimize each step in-
dividually. Unfortunately, the full problem is not con-
vex, and we expect that it has very hard instance sets.

Nevertheless, typical instances with some locality in
their transitions and observations are expected to be
easier. We have introduced an efficient and simple
algorithm for finding a local minimum, and have used
it to illustrate the problem with two simulations. In
doing so, we have demonstrated the emergence of a

memory-perception tradeoff in the problem.

Our work has been motivated by the problem of plan-
ning in general POMDPs, which may benefit from be-
lief approximation which is principled by information
theory. The application of our current results to this
problem is left for future work.
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Abstract

In POMDPs, information about the hidden
state, delivered through observations, is both
valuable to the agent, allowing it to base its
actions on better informed internal states,
and a "curse", exploding the size and di-
versity of the internal state space. One at-
tempt to deal with this is to focus on re-
active policies, that only base their actions
on the most recent observation. However,
even reactive policies can be demanding on
resources, and agents need to pay selective
attention to only some of the information
available to them in observations. In this
report we present the minimum-information
principle for selective attention in reactive
agents. We further motivate this approach
by reducing the general problem of optimal
control in POMDPs, to reactive control with
complex observations. Lastly, we explore a
newly discovered phenomenon of this opti-
mization process — period doubling bifurca-
tions. This necessitates periodic policies, and
raises many more questions regarding stabil-
ity, periodicity and chaos in optimal control.

1 Introduction

For an intelligent agent interacting with its environ-
ment, information is valuable. By observing and re-
taining information about its environment, the agent
can form beliefs and make predictions. It represents
these beliefs in an internal state, on which it can then
base its actions.

If information about some event in the world is un-
available to the agent, through the lack of observabil-
ity or attention, its internal state is independent of
that event, and so are its actions, potentially incur-
ring otherwise avoidable costs. The same is true if the
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information is only partially available, limiting the ex-
tent to which the agent’s actions can depend on the
state of the world.

However, information is also a "curse". Retaining
much information about the world requires the agent
to have a large and rich internal state space, represent-
ing diverse beliefs. This leads to complex policies for
inference and control, which are computationally hard
both to find and to apply. Designed agents should not
be — and evolved agents are unlikely to be — more
complex than is sufficient for them to perform well.

The "curse of dimensionality" [3] is the challenge of
representing in the internal state space the entire be-
lief space — the space of probability distributions over
world states. The volume of this simplex is exponen-
tial in the number of world states, and approximate
methods [19] [17] [1] [12] are required to explore and
represent policies over this space.

The "curse of history" [14] results from representing
only reachable Bayesian beliefs — posteriors of the
world state given each possible observable history. The
Bayesian belief is a sufficient statistic of the observable
history for the world state, keeping all available infor-
mation about it. Unfortunately, the size of this space
can be exponential in the length of the history.

This realization immediately suggests the idea of trun-
cating the observable history by forgetting older ob-
servations. Taken to the extreme, this leads to reac-
tive agents [10] [20], in which each internal state can
only take into account the most recent observation,
discarding the previous internal state. The internal
state space of reactive agents needs not be larger than
the observation space, which removes the curse of his-
tory in domains where the set of observations is not
too large.

Definition 1. A reactive agent bases its actions only
on the most recent observation. In contrast, a reten-
tive agent can base its actions on a memory state,
which is updated with each observation, and thus sum-



marizes the entire observable history.

A drawback of this approach is that, since the history
is no longer grounded in a known initial belief, a new
challenge arises of identifying which beliefs these inter-
nal states represent. This challenge generally requires
forward-backward algorithms [6], as opposed to fully
observable Markov Decision Processes which are solv-
able by backward (dynamic programming) algorithms
[3].

In addition, the original difficulty remains in domains
where the observation space is still too large, such as
the one presented in Section 3. In this sense, the curse
of history is a special case of the following principle,
which we might call the "curse of information".

An agent’s input — its sensors, and its memory when
available — usually contains too much information for
the agent to process. For the agent to encode all of
this information in its new internal state, an internal
state space is required that is too large to be manage-
able and utilized by feasible policies. As a matter of
practicality, an agent must have selective attention. A
retentive agent must also have selective retention [6],
which is beyond the scope of this paper.

Definition 2. A reactive agent (similarly, a retentive
agent), is said to have selective attention (resp. se-
lective retention) if its internal state has less informa-
tion about the world state than its observation (resp.
observable history) does.

Reactive policies have been explored before in [10],
with some of their challenges noted in [20]. A policy-
gradient algorithm for finding such policies was pre-
sented in [7], which has the nice property of avoiding
the forward-backward coupling. However, the local
optimum it finds is not guaranteed to be a fixed point
of the value recursion.

Information considerations in dynamical systems were
presented in [24]. Algorithms were later introduced
for trading off value and information in fully observ-
able Markov Decision Processes [18] and in partially
observable ones where actions have no external effect

[6].
This paper offers three novel contributions, in each of
the following sections.

Section 3 shows that reactive policies are as expressive
as retentive policies, under proper redefinition of the
model. This motivates our focus on reactive agents, at
the same time that it demands a more principled cure
for the curse of information than simply discarding the
memory.

Section 4 provides such a principle, namely the
minimum-information principle. We present the prin-
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observation

o(o|s)

action
p(s']s,a)

policy
m(alo)

Figure 1: Schematic model of a reactive agent inter-
acting with its environment

ciple and formalize it, discuss its relation to source
coding, and give an algorithm for its numeric solution.

Section 5 demonstrates a newly discovered phe-
nomenon in optimal control, namely the occurrence of
bifurcations when attention is traded off with external
cost. This is illustrated using two examples.

We conclude with a short discussion of these contribu-
tions and their consequences.

2 Preliminaries

We model the interaction of an intelligent agent with
its environment using the formalism of Partially Ob-
servable Markov Decision Processes (POMDPs). A
POMDP is a discrete-time dynamical system with
state s; € S. In time ¢, the system emits an observa-
tion o, € O with probability o(o|s;). It then receives
from the interacting agent an input action a; € A,
and transitions to a new state s;;; with probability
p(st41]8¢,a¢). For our purposes here, the sets S, O
and A are finite, and we are only concerned with sta-
tionary (time-invariant) POMDPs, where the model
parameters p and o are fixed for every time step.

A reactive agent has no internal memory state, and
can only base its actions on the most recent observa-
tion. The agent consists of two modules, the sensor
making the observation o; and the actuator taking the
action a; (Figure 1). The reactive policy 7 of the agent
is implemented by linking the two modules through
a communication channel, such that the action a; is
taken with probability m(at|o;) in reaction to obser-
vation o;. The policy is called periodic with period T
if 1y = w7 for every time step ¢. The policy is called
stationary if it has period 1, i.e. m; is fixed for every
time step.

The model and the policy together induce a stochastic
process over the variables {s;, 0, a;} (Figure 2). Due
to the agent’s lack of memory, the states {s,} form a
Markov chain. In the following we always assume that
the process is ergodic. This implies that, if the agent
policy has period 7, then for each phase 0 <t < T



Figure 2: Graphical model of a reactive agent inter-
acting with its environment

there exists a unique marginal distribution p;(s;) that
is a fixed point of the T-step forward recursion

Pi(sier) = Y Pils)) Pi(sipr]s:)
with

t+7T—1

Z H Pr (s741]87)

St41,--,St4T—1 T=t

Pt,w(3t+7’|5t) =

and

PTI'T (ST+1|8T) = Z U(OT|8T)7TT(GT|OT)p(ST+1|ST7G/T)'

or,ar

These marginal distributions are therefore periodic
with the same period T, i.e. p; = Pry7, and inside
a cycle the phases are linked through the 1-step for-
ward recursion

Dit1(St41) = Zpt(st)Pm(st+1|3t)~ (1)

The marginal distributions also induce beliefs

bt( t| t) 5t(0t)
with

6}(025) = Zﬁt(st)a(ot|st).

The belief is the posterior distribution of the state
given the observation.

In this paper we will have the agent incur an external
nominal cost ¢(s¢, a;) when it takes action a; in state
s¢, and measure the quality of a policy by the long-
term average expected cost

1 T-1
€= lim — ; Elc(s, ar)]

in the stochastic process that the policy induces. If the
policy has period 7 and the process is at its periodic
marginal distribution, then

T-1
C= % > > pels)o(orls)mi(alor)c(se, ar).

t=0 s¢,0¢,a¢
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Figure 3: Graphical model of a retentive agent inter-
acting with its environment

Figure 4: Reduction from a retentive policy to a reac-
tive policy

This undiscounted expected cost is appropriate for
studying stationary processes. In contrast, discount-
ing the cost by v¢ emphasizes transient effects, up to
horizon O( ﬁ) A related fault with discounting in
reactive policies is discussed in [20].

3 Reduction from retentive to
reactive policies

Consider a retentive agent [2] [6] interacting with a
POMDP (Figure 3). The agent has an internal state
my € M, and an inference policy ¢; controlling it,
such that with probability g¢;(m¢|mi—1,0¢) the mem-
ory state m;_1 is updated to m; upon observing o; in
time step t. The control policy m;(as|m;) is allowed
to depend not only on the most recent observation,
but on the summary of the entire observable history
represented in my.

In a given POMDP, retentive policies (¢, 7) are much
more expressive and powerful than reactive policies.
Interestingly, however, there exists another (time-
variant) POMDP in which ' = (¢,7) can be im-
plemented as a reactive policy (Figure 4). This
new POMDP is similar in spirit to the cross-product
MDP [11], and the distinction between them is dis-
cussed below.

Formally, let the state space of the new POMDP be
S’ = M x S, the observation space O’ = M x (O U
{L}), where L is some null-observation symbol, and
the action space A" = M U A. Let the dynamics ad-
vance at twice the frequency, with each time step tak-



ing half as long. The state at time ¢ is s, = (m;—_1, 5¢),
and it emits an observation with distribution

or((me—1,01)|(mi—1,5¢)) = a(ot]s).

The agent, upon observing (m;_1, 0;), can apply its in-
ference policy to generate the next memory state m;.
It then takes the "action" of committing m; to "exter-
nal storage"

Dy (g, s)|[(my—1, s¢), my) = 1.

In this new state at time ¢+ %, the committed memory
state is observable

U; 1 ((me, L)|(my, s0)) =1,
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and the agent can apply its control policy to take the
action aq, thus controlling the transition

p;Jr;((mt, 5t+1)|(mt, St)7 at) = p(8t+1|8t, at)-
2

Note that it should be inadmissible for the agent to
commit a memory state in a non-integer time step, or
take an action in an integer one. This can be enforced
by penalizing the wrong type of action, which is the
main reason that the new POMDP needs to be time-
variant.

Assuming that the agent follows these restrictions, the
new POMDP induces the same stochastic process over
the variables {s;, o, ms, a;} as the original one for any
given policy, establishing the reduction.

Our reduction is related to the cross-product MDP
of [11]. However, the two models have different formu-
lations that serve their different purposes — where the
cross-product MDP creates structure to be exploited
in planning algorithms, our formulation flattens this
structure to reduce the problem to a simpler one. To
achieve this, instead of the implicit restriction in [11]
that policies depend only on the agent state, we model
the same constraint explicitly as partial observability.
Furthermore, by breaking each time step into two we
avoid the exponential action space of the cross-product
MDP.

Lastly, an important issue to consider is the memory
state space M. The standard approach in the rein-
forcement learning literature is to have M be the be-
lief space, the simplex of distributions over S, and ¢
the Bayesian inference policy'. Such a choice would
make S’, O’ and A’ uncountable, as opposed to our
usual assumption that these sets are finite.

Tt is also common to have actions as part of the ob-

servable history, which our notation allows but does not
require.
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Alternatively, we can have in M only reachable be-
liefs. If the support of the inference policy ¢ is finite?,
then over a finite horizon only a finite number of be-
liefs are reachable. Unfortunately, due to the "curse
of history", this number is exponential in the horizon,
which renders this reduction — and indeed many ex-
isting approaches to POMDPs — impractical.

This difficulty underlines the need for selective atten-
tion. Theoretically, the support of m; needs never be
larger than that of (m;_1,0:), at least in terms of suffi-
cient inference. However, it should practically be much
smaller than that — roughly the same size as the sup-
port of m;_; — if the agent is to interact with the
system for significant horizons without exploding in
complexity. The ability of the agent to selectively at-
tend to its input, whether from sensors or from mem-
ory, and to retain not all, but only the most useful
information, is key to reducing this complexity.

This is the approach taken by Finite State Controllers
(FSCs) [15], where the number of memory states is
fixed. Several heuristic algorithms exist for finding a
good FSC, however this problem is hard and highly
non-convex. The policy of a FSC is time-invariant, and

as we see in Section 5 a stationary Bellman-optimal
solution is generally not stable.

4 Minimum-information principle

Our guiding principle in formalizing selective attention
is the reduction of information complexity, as mea-
sured by the Shannon mutual information between the
observation o; and the action a;. We first present the
principle, and then justify it by relating it to source
coding. We note that numerous other justifications
and connections exist, some discussed previously [9]
[24] [25] [16] [8], and some should be explored further,
particularly in the context of POMDP planning.

The pointwise mutual information between o; and a;
in time step t is given by

mt(at]ot)

it(ot,ar) = log = o(ar)

b

with

m(ay) = Zat<0t)7rt(at‘0t)- (2)

This can be thought of as the internal informational
cost of choosing action a; in reaction to observation
0¢. The long-term average expectation of this internal
cost, similar to the external cost, is

1 T-1
= TIE’)I;O T ; E[it(Ot, at)].

2For example, the Bayesian inference policy is deter-
ministic.



If the policy has period T and the process is at its
periodic marginal distribution then

7. Z Z Ut Ot Tt at\Ot)Zt(Ot,at)

t=0 o¢,a
7. E Ot,at

ZDKL [mellme) =

Here Dk, [m||7] is the Kullback-Leibler divergence of
7y from 7, and I[os; a4 is the Shannon mutual infor-
mation between o; and ay.

Dxy, [m¢||7¢] is a measure of the cognitive effort required
for the agent to diverge from a passive, uncontrolled
policy 7; to an active, controlled policy ;. Unlike [9)
[24] [25], we allow the passive policy, as well as the ac-
tive one, to be designed or evolved. The uncontrolled
policy that minimizes the informational cost Z is the
appropriate marginal distribution of the action (2) [5].

Among agents incurring external cost C < C, the sim-
plest agent, in some sense, minimizes the internal cost
Z. In other words, the agent needs to trade off its
external and internal costs. To link these views, the
Lagrange multiplier 5 corresponding to the constraint
C < C in the optimization of Z is a conversion rate
between the two types of cost. We can then write the
total cost as
F=3I+C.

F is called the free energy, due to its similarity to the
quantity of the same name in statistical physics, with
B taking the part of the inverse temperature.

For a given (3, the agent chooses its policy so as to mini-
mize the free energy, under two constraints. First, the
dynamics of the system follow the forward recursion
(1). Second, p, m(-|o¢) and 7 need to be probabil-
ity distributions, each summing to 1. The constraints
that they are non-negative can be ignored, since they
will be either inactive or weakly active.

This gives for horizon T" the Lagrangian Lp » »
=7 Z < > pelse)o(od]se)mi(atlor) fi(se, 01, ar)
+ Y v (sern) (Zﬁt(st)Pm(SHﬂst)ﬁt+1(8t+1)>

St4+1 St

_@t<ZI3t(8t) - 1) + ﬂt(Zﬁt(at) — 1)
+Z>‘t(0t) (Zﬂ't(atbt) — 1)),

with
ft(SuOt,at) =

%Z't(Oh at) =+ C(St, Cl,t).
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4.1 Necessary conditions for optimality

This optimization problem is far from convex, and no
efficient algorithm is known for finding the global opti-
mum. Indeed, as 8 tends to infinity, the agent’s policy
becomes deterministic, and some problems involving
deterministic reactive policies are known to be NP-
complete [10].

Nevertheless, we can consider local minima by finding
the first-order necessary conditions for a solution to be
optimal. That is, we differentiate the Lagrangian by
each of its parameters, and require that this derivative
equals 0.

For p, this gives us a backward recursion

Vt(St) = Z J(0t|3t)7rt(at‘0t)ft(3tvOtvat)
+ Z Pr,(st41]80)ver1(5e41) — - (3)
St41

Due to overconstraining, we have some degrees of free-
dom in choosing the multipliers to satisfy the Karush-
Kuhn-Tucker conditions [4]. If the policy has period
T, we will choose ¢, to also have period 7 and satisfy

1 T2
*Z%&:}_
tho

so that v; also has period 7. Thus v¢(s;) measures the
fluctuation from the average free energy F of the state
s¢ in phase t of the cycle.

The first-order necessary conditions for 7 are

mi(agloy) = Ti(ay) exp(—Pds(or,a:))  (4)

1
Zt (Ot)
with

th St|0t Stvat)
+th stlog)p

StySt+1

0t7 at
St+1 \5t7 CLt)Vt+1 (5t+1)

and the normalizing partition function

Zi(o) =y milar) exp(—Bdi(or, ar)),

at
and for 7 we have (2) as promised.

As [ tends to infinity, the optimal policy in (4) be-
comes deterministic. Together with (3), it becomes a
Bellman equation [3].

For finite £, on the other hand, the optimal policy is
stochastic, which is a welcome outcome in many re-
spects. The best deterministic reactive policy is gen-
erally arbitrarily worse than the optimal stochastic
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Figure 5: Reactive policy as a source-coding problem

reactive policy [20]. Optimality in reactive policies
requires stochasticity. Unfortunately, many planning
algorithms rely on the smaller space of deterministic
policies (e.g. [14]), and others lack a principle by which
to gauge the optimal amount of uncertainty in the
agent’s actions (e.g. [2]). We propose minimum in-
formation as such a principle.

Furthermore, in practice the model used for planning
is itself uncertain. Using deterministic policies could
overfit to the available data, and hinder further learn-
ing [22]. Information considerations provide a princi-
pled way of fitting the uncertainty of the policy to the
uncertainty of the model [18].

In reinforcement learning, it is common to use soft-
max to obtain stochastic planning and exploration
policies [2] [22]. Note that soft-max is a special case of
(4), with the uniform prior instead of the marginal 7.
That information theory provides a better principle
for stochasticity in optimization is further illustrated
in the next subsection.

4.2 Sequential rate-distortion

The form of (4) and (2) may be familiar as the solution
to the rate-distortion problem of lossy source coding
[5]. Indeed, minimum-information optimal control can
be construed as a sequential rate-distortion problem
[23].

The reactive agent’s policy is a channel from its sensor
to its actuator (Figure 5). Following the classic model
of such a channel, the sensor can be considered an en-
coder which, upon observing the "source" o;, chooses
a "codeword" m;. It transmits it to the actuator, a
decoder which then "reconstructs" the intended ay.

For a given time step ¢, and with a source distribution
7+(o¢) and a distortion function d(o,a:) fixed, this
would be a standard source-coding problem. Let a
feasible agent be one achieving at most D expected
distortion

Z Ge(os)me(at|or)di (o, ar) < D.

Ot,0¢

Now suppose we are interested in the feasible agent
with the simplest internal state space, as measured by
the size of the "codebook" M. The rate-distortion
theorem [5] states that the simplest feasible agent is
the one minimizing I[o;; a].

46

In a sequential rate-distortion problem, the solution
m; in time step ¢ affects future source distributions &,
in time steps 7 > ¢, as well as past distortions d, in
time steps 7 < t. This creates a coupling between the
forward inference process of computing marginal dis-
tributions, and the backward control process of com-
puting value functions. This is further complicated in
partially observable processes, where d; also depends
on the forward inference process through the beliefs b;.

Coupling makes sequential rate-distortion complex,
both conceptually and computationally. Conceptu-
ally, the results of rate-distortion theory are no longer
known to hold in the sequential case. If we neverthe-
less accept the minimum information as a solid guid-
ing principle in our optimization, we find that this
optimization is computationally hard. We can opti-
mize the policy in each time step given the other time
steps with algorithms like Blahut-Arimoto [13]. How-
ever the forward-backward algorithm for finding the
overall policy is only guaranteed to converge to a local
optimum [6].

4.3 Optimization algorithm

The forward recursion (1), the backward recursion (3),
the optimal policy (4) and its marginal (2) are neces-
sary conditions for a solution to be optimal. They also
provide an algorithm for finding a good solution: it-
eratively plug the current solution in the right-hand
side of one of the equations, to obtain a better so-
lution, until (asymptotically) no such improvement is
possible. Many existing algorithms employ a similar
scheme. For example, in the Generalized Policy Itera-
tion algorithm for planning in MDPs [22], there is some
schedule for alternating between® policy evaluation, a
variant of (3), and policy improvement, a variant of
(4) with 8 — oo.

A sophisticated schedule can guarantee that the solu-
tion improves monotonically with each iteration [6].
Here we suggest the following simpler schedule, for
which such a guarantee does not hold, but which em-
pirically converges to good solutions in practice.

Repeat until convergence:

1. Compute the marginal 7 given the current solu-
tion for 7, by applying (2).

2. Compute the value function v given the current
solution for p, m and @. This can be done by
iteratively applying (3) until it converges, or by
solving it as a system of linear equations.

3A forward equation is not needed in fully observable
problems if attention is not selective.



3. In a forward algorithm, until convergence to a
limit cycle:

(a) Compute the marginal p; given the current
solution for p;_; and m;_1, by applying (1).

(b) Compute the optimal policy m; given the cur-
rent solution for p;, T and v, by applying (4).

5 Periodicity in reactive policies

Throughout the previous sections, we always referred
to periodic reactive policies rather than stationary
ones, even though the POMDP itself is assumed to
be stationary. Periodic reactive policies may seem to
be a contradiction in terms, since their actions depend
not only on the most recent observation, but also on
the time ¢. They require a clock to be available to the
actuator, with period that is a multiple of the policy
period.

We argue that periodic policies must inevitably be a
part of the solution concept of POMDPs with selective
attention. When paying full attention to inputs, in the
form of exact Bayesian inference, we can restrict the
discussion to stationary policies [19]. When attention
is partial, there are significant drawbacks to consider-
ing only stationary policies.

One drawback is that the best stationary policy is
generally arbitrarily worse than the optimal periodic
policy. Adapting the example in [20], consider the
POMDP illustrated in Figure 6. This model has 2
states, 1 (uninformative) observation and 2 actions.
The actions deterministically set the next state, and
a reward (negative cost) is given for switching to the
other state.

The optimal stationary retentive policy for this
POMDP is to have two internal memory states, each
indicating a different action, and switch between them
in each time step. This policy gets the reward in each
time step, but incurs 1 bit of internal cost?.

On the other hand, a stationary reactive policy in an
unobservable POMDP is just a fixed distribution over
the actions, and it can be no better in this instance
than the uniform distribution. This policy yields only
half the expected reward, but incurs no internal cost.

Lastly, the reactive policy of period 2 which alternates
between the actions also receives the full reward, at
seemingly no internal cost. In fact, this would seem-
ingly also be the preferred retentive solution, if the
internal cost is taken into consideration.

Of course, counting no internal cost for a periodic pol-

4See [6] for the definition of the internal cost of a reten-
tive policy.

47

icy is cheating. Instead of paying attention to its sen-
sors or memory, the agent is paying attention to a
clock, but that attention is still a burden on internal
resources.

Similar to the informational cost between o; and a;, we
need to add a term for the informational cost between
t and a;. For a reactive policy with period 7, this cost
term can naturally be defined by

with

Here we use the fact that the phase of the cycle is
distributed uniformly during the process.

Adding the term I[¢; a;] to the free energy is equivalent

to asserting that a clock is observable to the agent, and

that attention to it is as costly as to any other part of

the observation. The pointwise informational cost is

now

7i(aor)
7 (ar)

and the average expected internal cost is

Et(ot,at) = log

b

~ 1 T-1
I== > Toss ag] + 1[t; af)
t=0

= I[Ot; at|t} + I[t, at] = I[t, Ot} at].

The values of f;, 7, and d; change accordingly, and the
optimal policy is now

7 (at) exp(—Bdy (o, ar)),

Wt(at|0t) = =
t(ot

with the proper partition function Z,(o;).

This allows us to consider policies which are "softly pe-
riodic", in that they attend to some but not all time in-
formation. Figure 7 shows the information-cost curve
for the POMDP in Figure 6, and Figure 8 shows the
final-state diagram for the iterative algorithm with the
schedule in Section 4.3.

Interestingly, this problem exhibits a bifurcation at
B = 1. Below this value, information is too costly, and
the optimal solution is the stationary uniform policy.
At 8 = 1, the system undergoes a period-doubling
bifurcation, and above this value the optimal policy
becomes periodic with period 2 — the two phases of
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mal policy of period 2
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Figure 7: Information-cost curve for the POMDP in
Figure 6; Points on the curve were achieved by the
algorithm with different values of 3, and points above
it are achievable; The curve is convex, with slope —/3

the cycle are given by the two branches in Figure 8.
The "hardness" of this periodicity, as measured by the
information I[t;a;], grows continuously from 0, and
tends to 1 bit as 8 tends to infinity.

Above the critical point, a third solution exists, which
is a fixed point of the optimization schedule (the
dashed line in Figure 8). This solution is the optimal
stationary reactive policy, but it is an unstable fixed
point: starting the optimization from a small pertur-
bation of this solution does not converge back to it, but
diverges until it reaches the periodic solution. Thus we
have a supercritical pitchfork bifurcation [21].

The instability of the stationary solution is another
paramount reason for allowing periodic policies. It
would be practically impossible to find a stationary
solution using Bellman-like variational methods, as
the one presented in this paper. In contrast, ap-
proaches such as policy-gradient methods [2] generally
can find stationary solutions, but these are generally
not fixed points of a Bellman recursion, and are thus
not Bellman-optimal [3].

5.1 Robot example

As another example, consider the POMDP illustrated
in Figure 9. Here a robot is engaged in moving items
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Figure 8: Finite-state diagram for the iterative algo-
rithm applied to the POMDP in Figure 6, as a func-
tion of the cost conversion rate (3; Points on the curve
are the probability of taking the action "right" in each
phase of the limit cycle of the algorithm, when run to
convergence with the given g
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Figure 9: A POMDP of a robot moving items from
the left end of a corridor to the right one; Shown ac-
tions succeed with probability 0.8, otherwise the state
remains the same; Location sensor correct with prob-
ability 0.88, load sensor with probability 0.7
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Figure 10: Information-cost curve for the POMDP in
Figure 9
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Figure 11: Finite-state diagram for the POMDP in
Figure 9; Points on the curve are the probability of
taking the action "unload" when the sensors indicate
"right end" and "loaded", in each phase of the limit
cycle; The lower branch is grayed out for clarity

from the left end of a corridor to the right one. The
robot can be in one of 4 states: it can be at either
end of the corridor, and it can be carrying an item or
not. It has 4 actions: to move to the left end of the
corridor, or to the right, or to pick up or put down an
item. However, an action can fail with probability 0.2,
leaving the robot at the same state. The robot can
only pick up an item at the left end of the corridor,
and it receives a reward for dropping an item at the
right end.

The robot has 4 possible observations from two bi-
nary sensors, telling it its position and whether or not
it is carrying an item. The location sensor is more
reliable, showing the correct position with probability
0.88. The load sensor only shows the correct load state
with probability 0.7. The parameters were selected for
visual clarity of the results.

Figure 10 shows the information-cost curve for this
problem. Here there are two phase transitions, where
the period doubles to 2, then again to 4 (Figure 11).
When attention is scarce, the robot’s actions are more
uniformly random. In this situation, the sensors, al-
though noisy, carry more relevant information than the
clock, since they better correspond to the actual state.

As attention increases with 3, the robot relies more
and more on its sensors. Conditional on the observa-
tion, the robot makes its actions less and less stochas-
tic. At some point, the policy is reliable enough that
the clock has more relevant information about the load
state than the noisy sensor. At that point, a pitchfork
bifurcation occurs, and the robot begins to rely mostly
on the parity of the clock to decide when to move, and
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on the location sensor to decide where to move and
whether to load or unload.

With the parameters above, as 3 keeps increasing, the
clock eventually becomes even more reliable than the
location sensor, and a second period doubling occurs,
to period 4. Asymptotically as 8 grows to infinity,
the clock signal takes precedence over both sensors,
and the agent unloads its cargo on schedule even if its
sensors tells it that it is dislocated or empty handed.

6 Discussion

In this paper we presented three novel results involv-
ing reactive agents interacting with partially observ-
able systems. We have motivated the focus on reactive
policies through a reduction from retentive policies, in-
troduced a principle and an algorithm for optimizing
reactive policies, and explored a surprising aspect of
their phenomenology.

We conclude with a few remarks on the implication of
each contribution.

6.1 Selective attention as clustering

Information-constrained clustering can also be con-
strued as source coding [16], so that the data to be
clustered is considered the source, and the cluster cen-
troids the reconstruction. Following the relation we
show between selective attention and source coding,
we can think of a reactive policy as a soft clustering of
observations into actions.

With the information constraint removed, the cluster-
ing becomes hard, mapping each data point to its clos-
est centroid. Similarly in our case, as 8 grows the pol-
icy becomes more deterministic, until at 5 — oo it
always picks the optimal action for each observation.

The implication of viewing reactive policies as cluster-
ing is that actions should generally be simpler, and
never more complex, than the observations on which
they are based. Indeed, there is a duality between ob-
servations and actions, and between selective attention
(the retained part of the observation) and selective ac-
tion (the intended part of the action, as divergence
from the prior 7). Information that is not retained
cannot be used for choosing actions, and there is no
point in retaining information that is not used.

6.2 Implications of selective attention for
retentive agents

In this paper we have focused on reactive agents, and
introduced the minimum-information principle for op-
timal selective attention. However, as the reduction



in Section 3 shows, this has implications for retentive
agents as well.

The effect of selective attention is to make internal
states less complex than their inputs, by discarding
information that is not useful enough. When applied
to the inference policy, this leads to approximate infer-
ence, that trades off the external value of information
in guiding actions with its internal cost in information
complexity. In fact, an inference process in POMDPs
is equivalent to sequential clustering. With each new
observation o, the pair (m;_1,0;) is clustered into a
new internal state my.

The major challenge when planning in POMDPs is
approximating the Bayesian belief in such a way that
allows efficient planning and execution, while not los-
ing too much value. Selective attention, and in this
case retention, is precisely such a principle. The ap-
plication of this approach to retentive agents is left for
future work.

6.3 Policy bifurcations and chaos theory

We have discovered the occurrence of bifurcations
in the optimization process of reactive policies. It
presents many of the characterizing features of chaos
theory of iterated functions, such as period doubling
and slow convergence near the bifurcation points. We
expect to see many more such features in other, more
complex systems. We conjecture that systems with
more states, perhaps infinitely many, can present a cas-
cade of bifurcations, leading to aperiodicity and chaos.

A full investigation of the bearings of the theories of
bifurcation and chaos to optimal control in dynami-
cal systems is beyond the scope of this report. To the
extent that such a connection exists, it could be of
profound philosophical implications, as it could indi-
cate that intelligent agents interacting with complex
environments must choose among the following alter-
natives:

e Plan with very little attention of their inputs
e Plan for very short horizons

e Plan with some degree of inability to identify their
own value function or predict their own future ac-
tions.
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Minimum-Information LQG Control
Part 1I: Memoryless Controllers

Roy Fox' and Naftali Tishby!

Abstract— With the increased demand for power efficiency
in feedback-control systems, communication is becoming a lim-
iting factor, raising the need to trade off the external cost that
they incur with the capacity of the controller’s communication
channels. With a proper design of the channels, this translates
into a sequential rate-distortion problem, where we minimize
the rate of information required for the controller’s operation
under a constraint on its external cost. Memoryless controllers
are of particular interest both for the simplicity and frugality
of their implementation and as a basis for studying more
complex controllers. In this paper we present the optimality
principle for memoryless linear controllers that utilize minimal
information rates to achieve a guaranteed external-cost level.
We also study the interesting and useful phenomenology of the
optimal controller, such as the principled reduction of its order.

I. INTRODUCTION

The modern technology industry is deploying artificial
sensing-acting agents everywhere [1]. From smart-home de-
vices to manufacturing robots to outdoor vehicles and from
nanoscale machines to space rockets, these agents sense their
environment and act on it in a perception-action cycle [2].

When these agents are centrally controlled or when the
sensors and the actuators are distributed, this control process
relies on the ability to communicate the observations to
the controller and the intended actions to the actuators.
Autonomous agents likewise require sufficient capacity for
the internal communication between their sensor and ac-
tuator components. As devices become smaller and more
ubiquitous, power efficiency and physical restrictions dictate
that communication become a limiting factor in the agent’s
operation.

Classic optimal control theory [3] is unconcerned with the
costs and the limitations of communicating the information
needed for the controller’s operation. In the past two decades,
however, a large body of research has been dedicated to this
issue ([4]-[7] and references therein).

The perception-action cycle between a controller and its
environment (Figure 1) consists of multiple channels and the
capacity of any of them can be limited. Accordingly, various
information rates can be considered. Our guiding principle
in this work is to measure the information complexity of
the controller’s internal representation by asking “How much
information does the controller have on the past?”. The past
is informative of the future [8] and some information in past
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{royf,tishby}@cs.huji.ac.il
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observations is useful in controlling the future. We therefore
seek a trade-off between the external cost incurred by the
system and the internal cost of the communication resources
spent by the controller in reducing that external cost. This
trade-off is often formulated as an optimization problem,
where one cost is constrained and the other minimized.

When the controller has no internal memory, it can only
attend to its most recent input observation, perhaps selec-
tively. The degree of this attention, measured by the amount
of Shannon information about the input observation that
is utilized in the output control, is a lower bound on the
required capacity of the communication channel between the
controller’s sensor and its actuator (see Figure 3).

Our motivation in considering memoryless controllers is
twofold. First, there are applications in which having any sig-
nificant memory capacity within the controller is impractical.
When the system is complex and the controller’s hardware
and resources are limited, they may be inadequate for main-
taining any significant representation of the environment. In
this case, a memoryless controller is the more cost-effective
solution and sometimes the only feasible one. Memoryless
controllers have been studied before, particularly in the con-
texts of delay [9]-[11] and discrete state-spaces [12]-[14].

Second, we show in Part II of this work [15] how to
formulate the problem of optimizing a bounded retentive
(memory-utilizing) controller as an equivalent problem of
optimizing a bounded memoryless controller. This reduction
enables us to reuse the solution derived in this paper in
solving the bounded retentive control problem.

Much of the related existing research has been concerned
with the issue of stabilizability of an unstable plant over
communication channels that are limited in some way:
quantization [16]-[20], noise [21]-[23], delay [24] and fad-
ing [25]. Our current work reduces in the stabilizable case
to known results, and this analysis will be included in an
upcoming paper.

Other early publications proposed heuristic approximate
solutions to the problem of optimal control with finite
precision [26], [27]. More recently, the problem of optimal
control over limited-capacity channels has been studied, with
various information patterns in the sensor-side encoder and
the actuator-side decoder: unlimited encoder and decoder
memory with full feedback [28]-[31], unlimited encoder
memory and memoryless decoder [32], and unlimited de-
coder memory with some feedback to the encoder [33].

A special case of our current work was studied in [34].
Their setting is fully observable and scalar, whereas we treat
the much more general setting of partially observable vector
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Fig. 1. Block diagram of a closed-loop control system

spaces. Our main result reduces in this simple case to one of
their solutions, implying that their other proposed solution is
never optimal.

In this paper we make three contributions. First, we present
a method for designing memoryless linear controllers that
utilize minimal information rates to achieve a guaranteed
external cost level. To our knowledge, this is the first
treatment of information considerations in continuous-space
control problems where neither the controller’s sensor nor its
actuator have unbounded memory capacity.

Second, we derive a solution that has a particularly explicit
form, allowing direct numerical computation. Unlike classic
controllers, which are designed by separable forward and
backward Riccati equations [35], our forward and backward
recursions are coupled. Yet each forward and backward step
is given in closed form up to eigenvalue decomposition
(EVD) operations. This is in contrast to the semidefinite
programs (SDP) in [29], [31], [36], which require external
solvers.

Third, we study the interesting and useful phenomenol-
ogy of the optimal controller. It manifests a water-filling
effect [37], which is a principled criterion for the selection of
the active controller modes and their magnitudes. By trading
off external cost to reduce the controller’s communication
resources we also reduce its order in a principled way.

In Section II we define the LQG task that the controller
should solve. In Section III we present the memoryless
control model and the information considerations involved.
In Section IV we find the conditions satisfied by the optimal
linear solution and discuss its intriguing phenomenology.
More discussion and an illustrative example can be found
in Part II of this work [15].

II. CONTROL TASK

We consider the closed-loop control problem depicted
schematically in Figure 1, where an agent (controller) is
interacting with its environment (plant). When the plant is
in state x; € R", it emits an observation y; € R¥, takes
in a control input u; € R’ and undergoes a stochastic state
transition. The goal of the controller is to reduce the long-
term average expectation of some cost rate J;(x, ut).

A controller 7 defines the possibly stochastic mapping
from the observable history y* = {y, } < into the control ;.
The plant and the controller, under some initial conditions,
jointly induce a stochastic process over the infinite sequence
of variables {x¢, yi, us }-

o4

Our focus in this work is on discrete-time systems with lin-
ear dynamics, Gaussian noise and quadratic cost rate (LQG).
For simplicity, all elements are taken to be homogeneous, i.e.
centered at the origin, and time-invariant. We note that all our
results hold without these assumptions, with the appropriate
adjustments, as usual in LQG problems [3].

Definition 1: A linear-Gaussian time-invariant (LTI) plant
(A, B,C, 3¢, %,) has state dynamics

Ti41 = Axy + Buy + & &~ N(0,%),

where A € R"™" B e R"*¢ Ye € ST is in
the positive-semidefinite cone and ¢&; is independent of
(', y*, u") = {&+,yr,ur }r<t. The observation dynamics
are

€ N(O, EE),

where C € R**", ¥, € Sk and ¢ is independent of
(g1, ut=1, zt).

Definition 2: A linear-quadratic-Gaussian (LQG) task
(A,B,C, 3¢, %, Q, R) involves a LTI plant and the cost rate

T = 3 (2] Quy + uf Ruy),

where ) € S and R € Sﬁ. The task is to achieve a low
long-term average expected cost rate, with respect to the
distribution induced by the plant and the controller 7

T
1
J» = limsup T ZE’T[‘%]

ey
T— 00 =1

We are particularly interested in controllers which are
time-invariant, i.e. have 7(u;|y*) independent of ¢, and which
induce a stationary process, independent of any initial condi-
tions. In a stationary process, the marginal joint distribution
of (x¢,ys, ut) is time-invariant and we can replace the long-
term average expected cost rate (1) with the expected cost

rate in the stationary marginal distribution.
We denote by ¥, € S} and %, € Sk, respectively, the
stationary covariances of the state and of the observation,
assuming they exist and are finite. They are related through

yr = Oy + €43

2, =C%,CT+%,.

If z; and y; are jointly Gaussian with mean 0, they satisfy
the reverse relation

s = Kyi + K¢; re ~ N(0,5%),

where the residual state noise «; is independent of y; (but
not of the past of the process), and

K=%,CT%]
Sk =3, -5, CTE] C%,,
with - the Moore-Penrose pseudoinverse. If the entire pro-

cess has mean 0, the stationary expected cost rate (1) is given
by

Tr

where ¥, € Si is the stationary control covariance.

$(tr(Q ;) + tr(RXy)), )
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III. BOUNDED MEMORYLESS CONTROLLERS
A. Control model

In this section we introduce memoryless controllers with
bounded communication resources. A memoryless controller
is simply a possibly stochastic mapping from its input
observation y; into its output control u; without any memory
of past observations.

Definition 3: A controller is memoryless if the control
depends only on the most recent observation; that is, u; is
independent of (y!~1,u!=!, x!) given y;.

A system including a memoryless controller satisfies the
Bayesian network in Figure 2.

Optimization over the space of all measurable control laws
is hard to analyze and the optimal controller can be hard to
implement. It is therefore practical to require the control law
to have a certain form, most commonly the linear-Gaussian
time-invariant (LTI) form. LTI controllers induce, jointly
with a LTI plant, a Gaussian stochastic process. When the
process is stable, it has a unique stationary distribution that
is independent of any initial conditions. Linear controllers
with limited memory are known not to be optimal for all
control problems [38], [39]. The conditions under which
there exists an optimal memoryless controller which is LTI,
so that no performance is lost by focusing our attention on
such controllers, are beyond the scope of this paper.

Definition 4: A memoryless linear-Gaussian time-invari-
ant (LTI) controller has control law of the form

e~ N(0,5,),

where H € R** %, € S and 7, is independent of y;.

up = Hy + ny; 3)

B. Information considerations

Our controller is bounded and operates under limitations
on its capacity to process the observation and produce the
control. To measure this internal complexity of the controller,
we consider a memoryless communication channel from the
sensor to the actuator with limited capacity (Figure 3).
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For example, we can consider a noiseless binary channel
and measure the controller complexity by the number r of
bits per time step that it transmits from its sensor to its ac-
tuator. This requires the controller’s sensor to perform lossy
source coding of the observation y; by compressing it into a
binary string representation z; € {0, 1}". This representation
is transmitted losslessly and reconstructed by the controller’s
actuator as a control uy. Since the controller is memoryless,
both the encoder and the decoder are memoryless.

In this sense, the dynamical control problem can be
thought of as a sequential rate-distortion (SRD) prob-
lem [28], [36]. Unlike the standard one-shot rate-distortion
(RD) problem [37], [40], in a SRD problem the output
distribution affects the future of the process. This often
creates a coupling between the forward inference process
that determines the marginal distributions and the backward
control process that determines the cost-to-go, i.e. the dis-
tortion. We note that without control [36] the decoder only
affects the controller part of the future trajectory; however,
this distinction is of minor consequence for the SRD aspect
of the problem [41].

Following rate-distortion theory, we find that the bit rate
r required for this process is linked to the Shannon mutual
information between the observation and the control, defined

f (yh ut)

by
f(yt)f(ut)} ’

where f denotes the various probability density functions, as
indicated by their arguments. The bit rate is bounded from
below by the information rate due to the data-processing
inequality [37]

Iye;ue] = E {log

H[yt;ut] < ]I[yt;zt] < H[Zt] <rlog2,
where
H[z] = — E[log Pr(z)]

is the discrete Shannon entropy of z;.

In classic information theory, this bound is made asymp-
totically tight by jointly encoding a long block of observa-
tions and jointly decoding a long block of controls. In our
setting, this is impossible due to the causal nature of the
plant-controller interaction. Thus, unfortunately, the bound is
generally not tight for discrete channels. We can nevertheless
expect it to be a good approximation, if we draw intuition
from the stabilizability problem, where the informational
lower bound is approximated by a known upper bound [42].

In applications, it is often possible to make design choices
regarding the channel itself. If we can design the channel
to be perfectly matched to the optimal LTI control law, no
block coding will be needed [43]. When the controller is
LTI, it is more practical to take the channel in Figure 3
to be itself linear-Gaussian instead of binary. There exists
an additive Gaussian noise channel with a signal power
cost that is perfectly matched to our optimal controller in
Theorem 1. With such a channel, the information rate is
optimally equal to the channel capacity and a constraint on



the information rate I[y;;u;] is equivalent to a constraint on
the expected power available for transmission on the channel.
We develop these results in the Supplementary Material'
(SM), Appendix 1.

We are thus interested in a LTI controller 7 that minimizes
the long-term average

1 I
= T

of the controller’s internal information rate Z, = I[y;; u¢l,
under the constraint that it achieves some guarantee level c
of expected cost rate.

Problem 1: Given a LQG task, the bounded memoryless
LTT controller optimization problem is

“4)

I, = limsup
T—o0

min 7,
s
J= <c¢

with Z,; as in (4), where Z; = I[y;;uq], and with u; as in (3).

S.t.

IV. MAIN RESULT
A. Optimality conditions

In this section we derive the optimality conditions for a
bounded memoryless LTI controller. These conditions are
summarized in Theorem 1 below.

Analysis of Problem 1 starts with considering the mini-
mum mean square error (MMSE) estimators

Ty, = Elze|y] = Ky
G, = Elzeug] = Yoo 2 s,

respectively for the state given the observation and the
control. Here Y., = E[z;u]| is the covariance matrix
between z; and u;. This implies that £,, and %, are also
0-mean and jointly Gaussian with the other variables. At
this point, it is useful to state a few properties of MMSE
estimators of Gaussian variables.

Lemma 1: Let z and & be 0-mean jointly Gaussian ran-
dom variables. The following properties are equivalent:

1) There exists a random variable u, jointly Gaussian with
z, such that 2(u) = arg min; E[||2 — z||?|u] = E[z|u].
Yiw = Ls.
Y1z = Xy — Xz, where X5 is the conditional co-
variance matrix of z given Z, implying ¥, = ¥;.

4) & = Elz|z].
Such Z is called a minimum mean square error (MMSE)
estimator (of u) for x.

Proof: See SM, Appendix II. O

Since the conditional covariance X, of x; given uy is
deterministic, i.e. is not a random variable, the conditional
expectation of z; given w, i.e. ,,, is a sufficient statistic of
u; for xy, satisfying the Markov chain z;, — 2,, — .
This suggests that the stochastic control process satisfies the
Bayesian network in Figure 4, where the control is based on
Z,, instead of directly on ;.

2)
3)

t

! Available at https://arxiv.org/abs/1606.01946
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Fig. 4. Bayesian network of memoryless estimator-based control

Lemma 2: The bounded memoryless LTI controller opti-
mization problem (Problem 1) is solved by a control law of
the form

2y, = Ky, (5a)
Ty, = Wiy, + wy; wr ~N(0,%,)  (5b)
wy = Livy,, (5¢)

where W € R™*" Y, € R™" [ e R™ w, is
independent of y;, £,, is a MMSE estimator for £,, and

]I[yt;ut] = H[i'yz,ai'ut] (6)

Proof: See SM, Appendix III. O

Lemma 2 allows us to derive optimality conditions for
Problem 1. The stationary state covariance satisfies

Ex E‘L,U/ T
Sy Eu] [A B]'+%

=(A+BL)%; (A+BL)T+ AX,;, AT + ¢ .

S, = [4 B [ ™

The mutual information between jointly Gaussian vari-
ables [37] is given by

®)

where | - |; is the pseudodeterminant, i.e. the product of
the positive eigenvalues. This holds if X; and X3 |z,
have the same range and thus the same number of positive
eigenvalues; otherwise, the mutual information between y,
and w; is infinite.

With the target (8) and the constraints (7) and J, < ¢,
where J is given by (2), the Lagrangian of Problem 1 can
be written as

T, 5,058 = 387 (log| Za, |t —log | Xz 1z, 1) (9)
Ftr(QX,) + tr(RLE;, LT)
+tr(S((A+ BL) S, (A+ BL)T

+ AN, AT+ 5~ 5,)).

[[dy,; &u,] = 3(log| T, [ — log| Ts,ja, 1),

Here 5 > 0 is the Lagrange multiplier corresponding to
the constraint 7, < c and serving as the marginal trade-
off coefficient between the external cost and the information
rate, gS € R™*" is the multiplier of the constraint (7) and
for convenience the entire Lagrangian is divided by 3. As
in rate-distortion theory, F can be minimized for any given
value of 5. The ( that corresponds to a specific expected
cost-rate guarantee level ¢ can then be found using a binary



search. The case 5 = 0 corresponds to the minimization of
information without any cost constraint.

Theorem 1: Given f3, the Lagrangian (9) is minimized by
a controller satisfying the forward equations

Y. =(A+BL)%; (A+ BL)T (10a)
+AY, 5, AT+ X
Yy, =C%,CT+ %, (10b)
K=7%,CT%] (10c)
Yi, =KX, KT, (10d)
the backward equations

M=pcTKT(sl L -3l KC (10e)
S=Q+ATSA - M, (10f)
L= —(R+BTSB)'BTSA (10g)
N=L"(R+ B"SB)L (10h)

and the control-based estimator covariance
S, = 2;/5 VDVT 2;/5, (10i)

the latter determined by the eigenvalue decomposition (EVD)

_ w2 Y
VAVT = SN/

Ty

(105)

having V' orthogonal with n —rank(Xz,) columns spanning
the kernel of X3 and A = diag{\;} and by the active mode
D = diag 0 A\ < B

coefficient matrix
Proof: See SM, Appendix IV.
The spectral analysis in (10j)—(10k) implies that in (10e)
the signal-to-noise-ratio (SNR) matrix Z = E; —E;y
satisfies

_ a-1y-1 ) —1
1-8~" A0 A > 8 (100

ylEu

Z=x

Ty|&u

-3l =nlv(U-D)yt -nvTel
_ 1/ 1/:
=B VDAVTE/®

and that the information rate is

I = 3(log| Za, [t — log| 25,12, |t) (11)

—log|I — D| = Zmax(&logﬂ)\i).

As shown in the SM, Appendix I, given an additive
Gaussian noise channel w; — w; with noise covariance
I — D, the optimal encoder and decoder are now given by

wy=DVTE g,
B, = 22 VD iy,
which can be summarized in the form (5b), with
W=23;, z;y
S, =S VD(I - D)V,

o7

Alternatively, the controller can be given in the form (3),
with

H=LWK
S, =L, LT

Interestingly, Theorem 1 also shows that S' corresponds to
the cost-to-go Hessian, with respect to the state, as in classic
control theory. The difference is that here .S also accumulates
the non-quadratic information cost and is only the Hessian
in an average sense. In the form given in Theorem 1, M
is positive semidefinite, but S may not be. This is not
problematic if we view S as the Lagrange multiplier of
the equality constraint (7), but it is undesired for a cost-to-
go Hessian. The positive semidefiniteness of S is discussed
further and restored in Part II [15, Section III-C].

Theorem | gives the first-order necessary conditions for
a solution to be optimal; namely, that the gradient of the
Lagrangian (9) is O with respect to each parameter. It
additionally includes two more conditions, one which is
higher-order and the other non-necessary. First, the condition
on X3 (10i) is necessary but not first-order, being a solution
to a semidefinite program (see SM, Appendix V). Second,
the condition on L (10g) is the least-square solution of a
possibly underdetermined system, which means that it may
not hold for all optimal solutions but that it does hold for
some globally optimal solution.

Problem 1 is highly non-convex and has many local
optima that satisfy the first-order necessary conditions. By
including the two higher-order and non-necessary conditions,
we exclude many of these local optima, although some
remain (see Part II [15, Section IV]). This merits further
study of the fixed-point structure of this problem.

B. Phenomenology

To better understand the optimal solution of Theorem 1,
consider its phenomenology as (8 spans its range from 0 to
oo. The following is the SRD extension of a standard result
in one-shot RD theory [37].

Lemma 3: Let Z(J) be the minimal information rate
achievable by a controller that incurs cost at rate at most 7.
This information-cost function is monotonically decreasing,

convex, and its slope is
071 =5, (12)

for 5 the Lagrange multiplier corresponding to the expected
cost-rate guarantee level ¢ = 7.
Proof: For any S, let

% = argmin{B3 7, + J}.
7* achieves the optimum in Problem | when ¢ = J-. Take
J=Tn;  F=p"T+J.

Then the slope equation follows by fixing 5 while J and 7
vary and noting that at the optimum

8‘7]:=ﬁ718‘71'+1:0.

I:IW*;



Monotonicity follows directly from the definition of Prob-
lem 1. Convexity can also be shown directly; however,
it follows more easily from the slope equation (12) by
considering that [ is non-increasing in S and thus

%I =—-078>0. 0

We now turn to consider how the controller order is
increased as [ is increased from O to co. This phenomenon
is known as a water-filling effect [36], [37], and is made
explicit in the form of the optimal information rate Z, (11).
Note, however, that in the SRD problem the water-filling
effect is self-consistent, in that A itself depends on /.

Definition 5: The order of a LTI controller is rank(X; ).
For the optimal solution (10i), this equals rank(D), the
number of active modes.

Let us consider a stable plant, having all eigenvalues of A
inside the unit circle. We note that our results hold more
generally and extend known results [18] when the plant
is unstable but stabilizable and detectable. However, the
analysis of this case when 8 — 0 is more involved and
is presented separately in an upcoming paper.

When 5 = 0, we are only interested in minimizing Z, and
therefore take an order-O controller, having D =0, ¥;, =0
and M = 0. ¥, and S satisfy the uncontrolled Lyapunov
equations

Se =AY, A+ ¥,
S=Q+ ATSA.

L and N can be set accordingly, despite the fact that
no attention to the observation is spent and no control is
possible. Computing the EVD of Xz and applying (10j),
we can retrieve A.

As we increase (3, this uncontrolled solution remains
constant as long as 8 < )\1_1, the inverse of the largest
eigenvalue in A. At that first critical point, the controller
undergoes a phase transition, where its order increases from
0 to 1 (or higher if A; is not unique in A).

Note that A contains the same eigenvalues as the matrix

ZNl/%y — N2 S, NI/Q,

which represents the value of the information that the ob-
servation has on the state, in terms of the cost reduction it
allows. Thus an order-1 controller observes and controls the
state mode that provides the largest decrease in cost per bit
of observed information, in keeping with (12).

Beyond the first phase transition, the optimal solution
does change with S and so does A. Eventually, 8 meets
A1(B), for each i = 2,...,rank(EN1/f_,jy) in turn and
further phase transitions occur, increasing the controller order
until it reaches rank (X Nl/%y).

As long as [ is finite, even after the last phase transition,
the information rate must be finite. Since the controller lacks
the capacity to attend to any mode with perfect fidelity, it
must maintain some uncertainty in all modes and accordingly
D < I and ¥3, < ¥3,. As 3 — oo, the SNR matrix
Z = ij:yli-u — Z;y grows to infinity in modes having A; > 0,
as does the information rate in these modes.
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The 8 = oo case marks a qualitative change in the
optimization problem. We are no longer concerned with the
information rate and only wish to minimize the expected cost
rate 7. The optimal solution here is underdetermined with
respect to useless modes where \; = 0. Despite having no
value in decreasing 7, at 5 = oo (but not for 5 — o0) these
modes may be observed for free. This allows us to simplify
the solution to

D=1
Si, = %a,
M=CTKTY/?s? N2 0" ko
(L‘y .'L'y l‘y .'L'y
— CTKTNKC.

It is interesting to note the impact of the observability on
M at B = oco. When the plant is unobservable, we have
C = K = 0 and thus M = 0. When observability is full, we
have C'= K = I and thus M = N. For partial observability
models, N — M is not necessarily positive semidefinite,
which will become important in the reduced retentive control
problem (see Part II [15, Section III-C]).

In the classic control problem, where observability is
partial but the memory and the sensory capacities are un-
bounded, the memory state is maintained by the Kalman
filter and we have M = N and

S=Q+ATSA— N,

independent of the forward inference process. Note, however,
that .S in that case is the Hessian of the certainty-equivalent
cost-to-go with respect to 4, instead of x;.

Thus either full and unbounded (3 = oco) observability or
bounded (5 < oco) sensing with unbounded memory [31] are
sufficient for recovering the separation principle of classic
control theory. In the more general case, the backward
control process (10f) is coupled with the forward inference
process (10a).

V. DISCUSSION

In this paper we introduce the problem of optimal mem-
oryless LQG control with bounded channel capacity. We
present the solution and discuss some of its properties and
phenomenology.

Part of our motivation in considering memoryless con-
trollers is that the problem of retentive (memory-utilizing)
control can be reduced to the problem of memoryless
control. This is discussed in detail in Part II of this
work [15, Section III-B]. The two control models are also
compared there (Section IV) using an illustrative example.

One attractive aspect of our solution is its principled
reduction of the controller order. In many applications, the
controller’s information rate is a more natural measure of its
complexity than the dimension of its support. Nevertheless, a
hard constraint on the order is sometimes required, alongside
a soft constraint on the information rate, leading to an
algorithmically challenging open question.

The controllers considered in this paper have linear-
Gaussian control laws. This class of controllers does not



solve optimally all control problems and is particularly prone
to suboptimality in memory-constrained settings [38], [39].
Nevertheless, we conjecture that there exist some moderately
strong conditions under which the bounded memoryless
control problem discussed here is solved optimally by an
LTI controller.
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Minimum-Information LQG Control
Part II: Retentive Controllers

Roy Fox' and Naftali Tishby!

Abstract— Retentive (memory-utilizing) sensing-acting agents
may operate under limitations on the communication between
their sensing, memory and acting components, requiring them
to trade off the external cost that they incur with the capacity of
their communication channels. In this paper we formulate this
problem as a sequential rate-distortion problem of minimizing
the rate of information required for the controller’s operation
under a constraint on its external cost. We reduce this bounded
retentive control problem to the memoryless one, studied in
Part I of this work [1], by viewing the memory reader as one
more sensor and the memory writer as one more actuator.
We further investigate the structure of the resulting optimal
solution and demonstrate its interesting phenomenology.

I. INTRODUCTION

In a feedback-control system, the internal state of the
agent interacts with the external state of the world through
sensors that pay attention to the agent’s environment and
actuators that apply intention to it, in a perception-action
cycle [2]. This interaction is limited by external constraints
on observability and controllability, as well as internal con-
straints on the information-processing resources available to
the controller.

In Part I of this work [1], we focused on memoryless
controllers that have no internal memory and can only attend
to their most recent input observation. We discussed how the
communication from the sensor to the actuator is central to
the agent’s ability to act upon the perceived information.
The degree of this attention, measured by the amount of
Shannon information about the input observation that is
utilized in the output control, is a lower bound on the
required capacity of the communication channel between
the controller’s sensor and its actuator. When this capacity
for internal communication is limited, the agent needs to
trade off some external cost for reducing the rate at which
it transmits information.

A related but often overlooked resource is memory band-
width. We can think of memory as a communication channel
from the past internal state of the controller to its future
internal state. When memory resources are remote, com-
munication constraints apply to them as well. Even local
memory is limited by its capacity to store information and by
the capacity of the internal communication channels to and
from the memory components. This limitation is evidenced
by the hierarchical design of memory in modern digital
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computers, which places larger capacity on the channels to
closer but smaller cache memory components [3].

When the controller is retentive (memory-utilizing), it does
maintain an internal memory state which can have informa-
tion on more than the most recent observation. As in Part I,
our guiding principle in this work is to measure the infor-
mation complexity of the controller’s internal representation
by asking “How much information does the controller have
on the past?”. The retentive controller receives information
of the past through both memory and sensory channels
(Figure 2) and the amount of information that it keeps of
the past is a lower bound on the total capacity of both these
channels [4].

In a sense, we can consider the reader of the memory
state to be one more sensor and the writer of the memory
state to be one more actuator. This suggests a reduction
from the retentive case to the memoryless case, in which the
memory state is considered external and part of the world
state [5], [6]. This memory component is fully observable,
fully controllable, has no process noise and incurs no cost.
Rather than redevelop our results for the retentive controllers
similarly to Part I, this reduction allows us to reuse those
results and underlines the structure of the solution.

In this paper we make two contributions. First, we present
a method for the design of controllers that are optimal under
a constraint on both their memory and sensory channel
capacity. To our knowledge, this is the first explicit treatment
of the channel capacity of the memory process in the context
of continuous state-space systems.

Second, we provide a reduction from the problem of
bounded retentive control to the problem of bounded memo-
ryless control. This reduction is conceptually convenient and
constructive, allowing us to treat both problems using the
same framework and providing insight into the structure of
the optimal retentive controller.

In Section I we define the LQG task and restate the results
of Part I. In Section III we present the retentive control
model, its reduction to memoryless control and the structure
of the resulting optimal solution. In Section IV we illustrate
our results with an example.

II. PRELIMINARIES
A. Control task

We consider the same closed-loop control problem de-
tailed in Part T [1, Section II]. In time ¢, a plant in state
zy € R™ emits an observation y; € R*, takes in a control
input u; € R’ and undergoes a stochastic state transition.
We focus on discrete-time systems with linear dynamics,



Gaussian noise and quadratic cost rate (LQG). For simplicity,
all elements are taken to be homogeneous, i.e. centered at the
origin, and time-invariant. We note that all our results hold
without these assumptions, with the appropriate adjustments,
as usual in LQG problems [7].

Definition 1: A linear-Gaussian time-invariant (LTI) plant
(A, B,C, X¢, X,) has state dynamics

Tpp1 = Azy + Bug + & & ~N(0,%), (D

where A € R™" B € R"™* 0 < X € S and & is
independent of (x?,y*, u'). The observation dynamics are

e ~N(0,%,), 2)

where C € RF*" ¥ € Si and ¢; is independent of

(y'=1, w1, 2t), where we denote z' = {x,}, <, etc.
Definition 2: A linear-quadratic-Gaussian (LQG) task

(A, B,C, %¢, 2, Q, R) involves a LTI plant and the cost rate

T = 3 (2] Qg + uf Ruy),

where ) € S and R € Sﬁ. The task is to achieve a low
long-term average expected cost rate, with respect to the
distribution induced by the plant and the controller 7

Jr = limsup

1 T
T— fZ]EW[%]

As motivated in Part I, we a?r%a particularly interested
in linear-Gaussian time-invariant (LTI) controllers, which
induce, jointly with a LTI plant, a stationary Gaussian pro-
cess, independent of any initial conditions. With >, € S,
¥, €Sk and ¥, € S, respectively the stationary covari-
ances of the state, the observation and the control, we have

2, =C%, CT+%,,

yr = Oy + €43

and the reverse relation

;= Kyi + ky; ke ~ N(0,3,)
K=%,07%]
S =3, -5 CTE] O,

with - the Moore-Penrose pseudoinverse. Assuming that the
process has mean 0, the stationary expected cost rate is

Tr = 1(62(Q 5) + tr(R ).

B. Bounded memoryless control

In this section we restate the main result of Part I [I,
Section IV].

Definition 3: A memoryless linear-Gaussian time-invari-
ant (LTI) controller has control law of the form

e ~N(0,%,), 3)
where H € RY¥F, Xp € Sﬂ and n; is independent of
(ut=1, zt, yt).

The controller is bounded and operates under limitations

on its capacity to process the observation and produce the
control. Namely, with the Shannon information rate

I (e, ug) }
Fye) flue) |

ug = Hy + ny;

T =1ys;ue) = E {log 4)
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where f denotes the various probability density functions,
as indicated by their arguments, we are interested in a LTI
controller 7 that minimizes the long-term average rate

1 X
72 T
t=1
under the constraint that it achieves some guarantee level ¢

of expected cost rate.

Problem 1: Given a LQG task, the bounded memoryless
LTI controller optimization problem is

&)

I, = limsup
T—o0

min 7,
T

st. Jr<cgc,

with Z; as in (5), where Z; = [[y;; u:], and with u; as in (3).
To solve the optimization problem, we consider the mini-
mum mean square error (MMSE) estimators

Ty, = Elzlye] = Ky

Ty = Elzg|ug] = S B g,
respectively for the state given the observation and the
control. Since %, is a sufficient statistic of u; for z;, we

can reverse their causality, basing u; on Z,, instead of vice
versa. This puts the control law in the form

jjyt - Kyt
Gy, = Wiy, +wi; wi ~ N(0,5,,)
Uy = Li’ut

The optimal memoryless controller satisfies the conditions
of Theorem 1 in Part I, Section IV-A, restated below in
algorithmic form. To numerically find the optimal solution,
we can interpret these conditions as update equations, which
we apply iteratively until a fixed point is reached.

We split the equations into three parts, a forward iteration
(Algorithm 1) updating the marginal distributions, a back-
ward iteration (Algorithm 2) updating the cost-to-go and the
control policy, and an eigenvalue decomposition (EVD) for
finding the control-based estimator covariance (Algorithm 3).
We can alternate between Algorithms 1, 2 and 3, iterating
until the solution converges to a fixed point of the equations.

III. BOUNDED RETENTIVE CONTROLLERS
A. Control model

In this section we discuss retentive (memory-utilizing)
controllers with bounded communication resources. A reten-
tive controller has an internal memory state z; in some space
Z. The memory allows the controller to output a control that
indirectly depends on past input observations rather than only
on the most recent observation. The controller takes as input
an observation y; and outputs a control u;, while also making
a memory state transition from z;_; to z;. Thus, in each time
step, there are two inputs, z;—; and ¥, and two outputs, 2,
and ug.

Definition 4: A controller is retentive if it satisfies the
following independence properties:



Algorithm 1 Forward iteration

function FORWARD(X,, Yz, , L)
Update
Y, (A+BL)%; ,(A+BL)T
+ A, -3, )AT + X
5, C%, CT+7%,
K+ %,CTs]
S, — K%, KT

end function

Algorithm 2 Backward iteration

function BACKWARD(®; , %5, , K, S; 8)
Update
M B CTKT(SL
S+ Q+ATSA-M
L+ —(R+BT7SB)'BTSA
N« LT(R+B7SB)L

st )KC

end function

Algorithm 3 Activation of control-based estimator modes

function ACTIVATION(X;, , N; )
Update

VA« BVD(S*N B
with n — rank(X;, ) columns of V' spanning ker(X;,)

L—B7IA N >p7t
0 N < Bt

i, ¢ BLVDVTR)

D «+ diag{

end function

1) The memory state depends only on the previous mem-
ory state and the current observation; that is, z; is
independent of (272 y!=1 w!=1 ') given 2z;_; and
Y-

2) The control depends only on the memory state; that is,
uy is independent of (z!=1, ut~1 xt y*) given z.

A system including a retentive controller satisfies the

Bayesian network in Figure 1.

As motivated in Part I for the memoryless case, we are
particularly interested in controllers where both the memory
state update and the control are linear-Gaussian and time-
invariant (LTI), since they are easier to optimize and imple-
ment. Linear controllers with limited memory are known not
to be optimal for all control problems [8], [9]. The conditions
under which such controllers are optimal for our bounded
control problem are beyond our current scope.

Definition 5: A retentive linear-Gaussian time-invariant
(LTI) controller has memory state space that is a vector space
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Fig. 1.

Bayesian network of retentive control

Observation
Yt

Sensor
encode

Fig. 2. Block diagram of a closed-loop retentive control system, with a
communication channel from the sensor-reader to the actuator-writer

Z = R? and control law of the form

Ct ~ N(O, Eg) (6a)
vy ~ N(0,%,) (6b)

where F € R4 G € R 3. € S§4, L € R™*4,
3, € 8%, (; is independent of (z;_1,y:) and vy is indepen-
dent of z;.

We are interested in reducing the information complexity
of implementing this controller. To measure this complexity,
we consider the capacity of a memoryless communica-
tion channel from the sensor-reader to the actuator-writer
(Figure 2). The encoder and the decoder themselves are
memoryless, but the memory component has perfect fidelity,
making everything written by the actuator available for the
sensor to read in the next step.

We could use Z = {0,1}", the set of r-bit strings, instead
of the vector space R, to indicate that the controller can
process at most r bits of information per time step

2z = Fziq + Gy + (s

uy = Lzy + vy

H[thlayﬁ Zt7ut] = ]I[thlayﬁzt] < H[Zt] <rlog2.

As in the memoryless case (Part I [1, Section III-B]), the in-
formation rate is generally not a tight lower bound on the ca-
pacity of a discrete memory, but here again, if the controller
is LTI, there exists a perfectly matched memoryless additive
Gaussian noise channel. As shown in the Supplementary
Material' (SM), Appendix I, the capacity of this channel
optimally equals the information rate I[z;_1, y:; 2+, u¢] and a
constraint on the information rate is equivalent to a constraint
on the power available for transmission on the channel.

The retentive controller optimization problem is therefore
similar to Problem 1, but with the information rate including
both the memory and the sensory channels.

!Available at https://arxiv.org/abs/1606.01947



Problem 2: Given a LQG task, the bounded retentive LTI
controller optimization problem is

min 7,
™

sit.  Jr <eg,

with Z; as in (5), where

It - H[thhyt; ztvut]7

)

and with z; and wu; as in (6).
Note that here there is no additional constraint or cost on
the precision of u; given z;, implying that optimally 3, = 0.
There is an interesting connection between the retentive
information rate Z,; and the long-term average of the directed
information rate [10], [11], defined by

. 1
I[{y:} — {2t}] = limsup T Iy" — 27]
T—o0
T
= limsup — Z]I [yt; 2|21

T—o0 t 1

By the independence properties of the retentive controller
and by the chain rule for information [12], we have

]I[Zt 1,yt,zt]
21yt 2]
(2% 2] + Iyt 2|21

]I[thlayt;ztaut}

I
I

We can thus define the following extension of the concept
of directed information.

Definition 6: The retentive directed information from the
sequence of observations 37 to the sequence of memory
states 27 is

ZH

Since I[y? — 27] > ]I[y —> 2T], the retentive directed
information rate is always a tighter lower bound on the
capacity of the channel in Figure 2. Despite the apparent
similarity to Figure 2 in [11], notice that their encoder and
decoder have unlimited memory of z! and u!. This justifies
their use of directed information, regardless of the residual
term I[2*~1; 2;] being infinite in their optimal controller.

Some further properties of the retentive directed informa-
tion can be found in the SM, Appendix VI.

]I[yTA»Z 7y Zt

B. Reduction to memoryless controllers

We can analyze the bounded retentive control problem
(Problem 2) directly using the same tools developed in
Part T [1, Section IV-A] for Problem 1. Fortunately, there
is no need to repeat that entire treatment, since a simple and
insightful reduction will allow us to reuse the results obtained
there.

We start by reformulating the problem. The following
relaxation and Lemma 1 that shows its equivalence to the
original problem allow us to reverse the causality between
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Fig. 3. Bayesian network of relaxed retentive control

Fig. 4. Bayesian network of relaxed retentive control, redrawn in the form
of memoryless control

u; and z;. We need a new notation for the resulting time-
shifted memory state sequence and define for each ¢

my = Z¢—1.

Definition 7: A retentive controller is relaxed if u; is not
required to be independent of (my,y;) given myy;. Thus the
relaxed controller satisfies the Bayesian network in Figure 3
and its control law is given by 7(us, mit1|me, yi).

Lemma 1: The relaxed controller optimization problem is
equivalent to the original Problem 2.

Proof: The following proof does not assume that the
controller is linear-Gaussian and holds for the LTT controller
as a special case.

Let 7 be a controller satisfying the Bayesian network in
Figure 3. We construct a controller 7 with Z; = (ug, myy1)
for each t, such that

T(Ze| Ze—1, yt) = T(we, Mygr|me, Ye)
T(ut ) = 0z,=(u,,.)-

This controller satisfies the Bayesian network in Figure 1|
and

La [Ze—1,yes 2o, we] = Ln (w1, ), yes (we, mey1)]
= L [my, yes we, Mg

Thus the controller 7 is feasible for the unrelaxed Problem 2
and has the same performance as the relaxed controller
m, since it induces a stochastic process with the same
distribution and information rate. O

The structure in Figure 3 can now be redrawn as in Fig-
ure 4. Comparing this Bayesian network to the one in Part I,
Figure 2, we have clearly reduced the bounded retentive
control problem to a special case of the bounded memoryless
control problem, as stated formally in the following lemma.

Lemma 2: The bounded retentive LTI controller
optimization problem (Problem 2) for the LQG task
(Az, Baw, Cyizy L, Xe, Qu, Ry)  is equivalent to the



bounded memoryless LTI controller optimization problem
(Problem 1) for the LQG task (A, B,C, E@Zg,@,R},

where
o[ 3 ol ) el
m[3 e[
o[t n-fr

Here all matrices are extended by d rows and d columns.
Proof: Given the retentive control stochastic pro-
cess {xy, my, ys, ur}, we consider the memoryless control
stochastic process {Z, g, 4y } with
T U
t iy = t } .

N A

The dynamics for this process can easily be seen to be given
by (1), (2), with A, B, C, Eé and >; as in the lemma. The
cost rate applies only to the x; and u,; parts

6 il

([
1 i)

|:mt+1
I, = H[gﬁﬂt] = ]I[mt»yt§ut7mt+1],

Yt

\.7t:

1
2

The information rate is

where the left-hand side is taken as in (4) and the right-hand
side as in (7), as required. O

C. Structure of the optimal solution

We can substitute the form of the reduction in Lemma 2
into the optimal solution in Section II-B, to study more
explicitly the structure of the optimal solution in the retentive
case. The detailed derivations can be found in the SM,
Appendix VIIL.

For the backward process, it is useful to borrow notation
from the forward process and denote

Sem = Se = SeimSH,Smia
Sum = R+ BTSy,B.
Then we can find the feedback gain
L=—(R+B7SB)'BTSA

N _S'Z'LSm@ (ACE + BZIJ;uLu;m|m) o[’
with a memory-conditioned form of the classic feedback gain
Lu;x\m = 7Sl|mB.xr,uSJL|mAz

The memory-conditioned cost reduction matrix is

0
O )

N =LT(R+BTSB)L = [Nvélm
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with

Noyjm = AL(S, — St BI

u|lm T Tu

Sz|m +Sw\me;u :p\m)A:c-

Thus rank(D) < rank(N) < n, with D the mode activation
matrix (see Algorithm 3), implying that at most » modes can
be active.

The d rightmost columns in (8) are 0, implying that
depends only on the state estimator &z, = E[z¢|@s] of
and not on an estimator of the memory component m;. Since
25, = E[z|y,] is a sufficient statistic of g, for x;, we also
have the Markov chain

— Zg — Za

|3

and similarly for Ig , This implies that we need only consider
the first component 3, of Ty,, which is obtained from the
observation gy; using

K=%,07x!
= [Kw;ylm (I - Kz;y\mcy;w) Yzim Ein] )

Ty — Ty, — Yt — Ty, e T Ut

with
Tt
my

Zg, = E[T:|5:] = E H

where
t

is the Kalman gain that performs optimal inference in the
classic LQG task [7].

Crucially, we see that £, depends on m; only through
im,, = E[It|mt] = E."c;m Zln myg.

This implies that, for a controller m, we can design an
equivalent controller 77/ whose memory state is the MMSE
estimator m} = &,,,. The feedback gain for 7’ is

L’:[I 0 ]L.

0 Sem2h
Note that, since mj} is a sufficient statistic of m; for x;, we
have ¥ = Xgm and Kooy = Kgyyjm- Thus

K'= [Kr;y\m I— Kmsylmcy;w] )

with ../ Zjn, = Y Ein, in the second component
omitted due to its redundancy.

The controllers 7 and 7’ generate the same control u; and
thus incur the same external cost. At the same time, since
my, is a function of my, by the data-processing inequality the
information rate of 7’ is at most that of 7. Thus any controller
can be converted into a MMSE controller without loss of
performance, allowing us to consider the MMSE controller
canonical. In particular, this proves again that d = n is
always sufficient for representing the memory state.

We now diverge from the solution given in Section II-B,
which has freedom in its choice of memory representation,
and is therefore not guaranteed to be a MMSE controller.
Instead, we explicitly constrain the controller to be MMSE,
which in return enables us to relax some of the conditions



given in Section II-B, which are now not necessary (and
indeed do not hold at the optimum), as discussed below.

Constraining the controller to be MMSE imposes the
structure

parameterized by Y., and X,,. The reduced number of
independent parameters leaves M overparameterized (see
SM, Appendix VII) and we can choose, without loss of
performance, the structure

237”

o Zm|m +Xm
= [P B B

E'ln

with
Mgy = stz
M,, = 5—1(C;wK;;ylmZKm;mch —2),
where Z = Eji’glfcﬁ — Zly is the signal-to-noise-ratio (SNR)

matrix for the channel Z7, — #3,. Due to the shrinkage
effect of Ky.y|mCyiz

The Hessian of the cost-to-go now has the form
S=Q+ATSA-M

My,

M’ﬂl MH’L

*Mnl

and the second-order expansion of the cost-to-go, at the
optimum, has the form

T
t

(Qu + ATS Ay — B Z)ay

— (mt — :ct)TMm(mt — :ct).

i’gs.’ft =X

The first term measures the divergence of the state x; from
0 and the second the divergence of the controller’s estimator
my from the true state x;, which is the expected form for a
MMSE controller. Both terms link the SNR matrix Z to the
cost reduction. In this form, S is again positive semidefinite,
while now M is generally not.

Finally, when 8 = oo, we can recover the classic LQG re-
sults. Similarly to Part I [1, Section IV-B], we can substitute
Ng|m for B~1Z, to recover the algebraic Riccati equation

= Qz + A;(Sz\m - Sgc|m-B:Jc;uS'r Bl Sm|m)Am

ulm" T
IV. EXAMPLE

As a simple example, consider the double mass-spring-
damper system in Figure 5, adapted from [13]. The
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Fig. 5. Double mass-spring-damper system; masses: m1 5kg,
mo = V/15kg; spring constants: k1 = 1N/m, k2 = 0.5N/m; damping
coefficients: ¢; = cg = 1 N-sec/m

continuous-time dynamics of this system are given by

0 1 0 0
_kitks _citer ko co
_ mi mi mi mi
4 0 0 0 1
ko C2. _kitks __citea
m2 mso mo mo
0 0
1
prony 0 10 0 0
B=17% o C‘[0010}’
o L
mo

with my = 5kg, mo = \/ﬁkg, ]{31 = 1N/m, kg = 0.5N/m
and ¢; = co 1 N-sec/m. We discretize the time using the
Tustin transformation with sampling frequency 20Hz and
consider the isotropic noises and cost rates

Q=1

For the memoryless control problem, we initialize a solu-
tion with X, = S = 0. For the retentive control problem, we
apply the reduction in Lemma 2 to obtain a reduced plant and
then initialize a solution using the classic LQG controller, as
described in Section III-C. To the initial solution, we apply
the forward-backward iterations of Section II-B, with fixed
5, until convergence to a fixed point, suspected as a global
optimum. To improve running time, we employ a reverse-
annealing scheme, decreasing [ gradually over its range and
using the fixed point for one value of § to initialize the
iterations for the next value of .

Figures 6 and 7 show, respectively, the resulting cost-log-
beta and cost-information curves, demonstrating that even
this simple example exhibits interesting phenomenology.

We see that both the memoryless (blue) and the retentive
(green) controllers undergo phase transitions as (3 increases.
The system is controllable and observable, allowing the
retentive controller to undergo 4 phase transitions, until
it fully remembers and controls all modes of the system.
However, the rank-2 matrices B and C' only allow the
memoryless controller to undergo 2 phase transitions and
reach order d = 2.

In the first phase transition, the controllers begin control-
ling a single mode, in order to reduce the external cost, at the
expense of communication resources. This is not depicted in
the cost-information plot (Figure 7), since below this critical
point the information is O and the cost is fixed.

The second and fourth phase transitions involve memory
and only occur in the retentive controller. Below these critical

Se=1  S.=1 R=1
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Fig. 6. Cost-log-beta curve for the double mass-spring-damper problem.

Memoryless control (blue) generally incurs higher cost than retentive control
(green). The Lagrangian F (solid) is continuous, whereas the external cost
J (dashed) is discontinuous in the retentive case in phase transitions 2
(red dots) and 4. Background shades indicate the controller order d, with
boundaries at critical points.

point, a hypothetical order-2 retentive controller is worse
than the order-1 controller, in terms of the target JF, the
total external and internal cost-to-go it incurs. At the critical
point, the order-2 controller overtakes the order-1 controller,
already with a significantly reduced cost rate and a significant
information rate (see red dots in Figures 6 and 7). The critical
point is where the ratio between these costs is 371 (see (12)
in Part I [1, Section IV-B]).

The third phase transition is again common to the mem-
oryless and the retentive controllers, although by now the
retentive controller has committed to memory much valuable
information, reducing the cost much beyond the capabilities
of the memoryless controller.

V. DISCUSSION

In this paper we introduce the problem of optimal LQG
control with bounded channel capacity in both the memory
and the sensory channels. We show how to reduce this prob-
lem to that of bounded memoryless LQG control, study the
structure of the resulting solution and illustrate its interesting
phenomenology with a simple example.

One aspect of this phenomenology that merits further
study is the existence of suboptimal fixed points of the itera-
tive algorithm (Section II-B). For example, around the second
critical point in the double mass-spring-damper system (Sec-
tion IV), both an order-1 controller and a retentive order-2
controller are fixed points. Before the phase transition, one
of these solutions is stable, while the other is metastable
and suboptimal, and at the phase transition they switch. This
resembles well-studied phenomena in statistical physics.

LQG control with constraints on the sensory channel
capacity has now been studied in the regime of unlimited
memory [11], no memory (Part I of this work [1]) and in
this paper, a shared channel capacity for sensing and memory.
More generally, the memory and the sensory channels can
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Fig. 7. Cost-information curve for the double mass-spring-damper problem.
Memoryless control (blue) incurs higher cost than retentive control (green)
after phase transition 2 (red dots). The asymptotic costs at 5 = oo (dashed
black) can be approximated with very little information and a reduced order.

be separate, with their relative costs ranging from 0 (no
memory) to 1 (shared capacity) to oo (unlimited memory) in-
cluding any intermediate value. This memory-sensory trade-
off has been studied in the context of finite-state systems [4]
and further insight can be gained from studying this more
general problem in the LQG context.
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APPENDIX |
PERFECTLY MATCHED CHANNEL

In this appendix we construct a channel that is perfectly
matched to the sequential source code derived in Theorem 1,
in Part I of this paper [1, Section III-B]. Recall that in a
perfectly matched source-channel pair the optimal source
coding and the optimal channel coding can be implemented
jointly for single letters, without requiring longer blocks.
This allows us to use them in a perception-action cycle,
where we cannot accumulate a block of inputs before emit-
ting an output.

The main results of [2], applied to our setting, can be
summarized as follows. We wish to find a memoryless
channel into which we can input an encoding w; = g(&,,),
such that Z,, = h(w:) can be decoded from the channel
output w;. Suppose that we are concerned with the power
needed to transmit w; and thus the input cost is w]w.
Then the source &,, and the channel w; — ; are perfectly
matched if there exist an encoder and a decoder such that

1) The Kullback-Leibler divergence D[f (w:|wy)||f (1))

between the conditional and marginal densities of wy,
as a function of wy, equals ciw]w; + co, for some
constants ¢; > 0 and c5; and

2) f(&u,|Zy,) satisfies the conditions in Theorem 1.

To meet these conditions, we can choose the channel, the
encoder and the decoder to have

1/2 /2 A
wy = DPVT &,
Wy = wy + Vy;

b, = S VD,

UtNN(O,I—D)

with D and V as in Theorem 1. Then
Sw=0D
Yo=1
S, =S VDVTE =55 0,
and it can be verified that
DIf (||| f (100)] = Seo] £t wy + const,

as required.
The capacity of the additive Gaussian noise channel with
noise covariance I — D, under the appropriate expected

TSchool of Computer Science and Engineering, The Hebrew University,
{royf,tishby}@cs.huji.ac.il

*This work was supported by the DARPA MSEE Program, the Gatsby
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power constraint, is indeed achieved by a Gaussian input
with covariance D and is equal to the information rate in
Theorem 1. As shown in [2], this means that constraining
the expected power X, is equivalent to constraining the
information rate 1[Z,,; &,,].

Note, however, that the matched channel noise covariance
depends on the constraint, through the solution in Theorem 1.
Moreover, this result is not applicable when the best channel
available to the designer of the controller is not the matched
channel above, in which case both the channel and the
sequential source coding generally need to be adapted.

APPENDIX II
PROOF OF LEMMA 1 OF PART I

In this appendix we restate and prove Lemma 1 of
Part I [1, Section IV-A].

Lemma 1: Let x and & be 0-mean jointly Gaussian ran-
dom variables. The following properties are equivalent:

1) There exists a random variable u, jointly Gaussian with
x, such that Z(u) = arg min, E[|Z — z||?|u] = E[z|u].
Yz = 2g.
Yelz = X — Xz, where 3,5 is the conditional co-
variance matrix of z given &, implying ¥, > ;.

4) & =E[z|z].
Such % is called a minimum mean square error (MMSE)
estimator (of u) for x.

Proof: (1 = 2) Assume without loss of generality

that w has mean 0. Then

2)
3)

&= Yy Ol u,
implying
IFNESS D HID INESS I
2 = 3
Sals = Bo — Lz Of Dow = B — s -

(3 = 4) Since x and 2 are 0-mean and jointly Gaussian,
we can write for some T’

implying
Zx :TZiTT+Zw_Z:f7

thus without loss of generality 7' = I.



(4 = 1) Taking u = &, we have
arg min E[||2" — x| |u]

= argmin(2'73’ — 22’7 E[z|u]) + E[zTx|u],

which is optimized by &’ = E[z|u].

APPENDIX III
PROOF OF LEMMA 2 OF PART I

In this appendix we restate and prove Lemma 2 of
Part I [1, Section IV-A].

Lemma 2: The bounded memoryless LTI controller opti-
mization problem (Problem 1) is solved by a control law of
the form

i'yt = Kyt (Sa)

Ty, = VViyt + Wy} wy ~ N(O, Ew) (5b)

Uy = Ly, (5¢)

where W € R™" ¥, € R"™" L[ e R*" w, is

independent of y;, £,, is a MMSE estimator for ,, and

Mye; we) = U[y,; Tu,]- (6)
Proof: Consider a LTI controller 7 of the form
up = Hyy + ny; ne ~N(0,%,), (IIL.1)

satisfying the Markov network

Ty — Y¢ — Ut
Ty, Ty
We now construct a controller 7" with control law w} based
on the estimator Z,, by defining the Markov chain

"
J— ut

v
l‘ut

!/
_ut

Ty — Yt — Ty,

such that each consecutive pair of variables has the same
joint distribution as their unprimed namesakes. Since &, is
a sufficient statistic of y; for x;, we have the Markov chain
r; — &y, — Y+ — ug, implying that uy has the same
joint distribution with x; as u; does. Likewise, :ﬁ;t has the
same joint distribution with z; as Z,, does. Since Z,, is a
sufficient statistic of u; for x;, we have that u; also has the
same joint distribution with z; as w; does.

Thus the controller 7’ induces the same stochastic process
{z¢,u}} and the same external cost. Note that u, may not
have the same joint distribution with y, as u; does and due
to the data-processing inequality [3]

Lys; ue] > Uiy, ; us] = Uiy, ; uy]
> Uy, ; @, ] > Ilye ug].
Therefore 7’ performs at least as well as 7 and equally well
when 7 is optimal, proving (6).
7, is a MMSE estimator for #,, since
E[Zy,|%y,] = E[E[z]y]| ]

= Elz|2,,] =2

A
Ty,

!/
Loy
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where the second equality follows from z; — y; — 7.

Finally, it may not be clear from the above analysis that
uy is optimally deterministic in 27, . If u; has covariance 3,
given I, , the Lagrangian of the optimization problem ((9)

in Part I) depends on X, only through the terms
$(tr(RY,) + tr(SBX, BT)).

Since R + BTSB > 0 is positive semidefinite, we can
take >, = 0 without loss of performance, recovering the
structure (5). Intuitively, the argument is that any noise
added to uj, beyond 7, , is not helpful in compressing z;
and can only increase the external cost without saving any
communication cost.

In the other direction, let u, satisfy the form of Lemma 2.
We can rewrite u; in the form (III.1), with

H=LWK
Y,=LY,LT.
APPENDIX IV
PROOF OF THEOREM 1 OF PART I

In this appendix we restate and prove Theorem 1 of
Part T [1, Section IV-A], which relies on the following
Lagrangian developed there.

Fs, 3a,.0.58 = 5(B7 (og| Zz, [+ —log | Tz, 2, 1) (9)
+tr(Q %) + tr(RL S, LT)
+te(S((A+ BL) S, (A+ BL)T

+AY 5, AT+ X — 5,))).

Theorem 1: Given 3, the Lagrangian (9) is minimized by
a controller satisfying the forward equations

Y. =(A+BL)Y;, (A+ BL)T (10a)
+AY e, AT+ X
Y, =CYX,CT+ % (10b)
K=7%,CT%} (10c)
¥z, =KX, KT, (10d)
the backward equations

M= 6‘1CTKT(E;yliu — z;y)Kc (10e)
S=Q+ ATSA - M, (10f)
L= —(R+B'SB)'BTSA (10g)
N=LT(R+ BTSB)L (10h)

and the control-based estimator covariance
I 2;/; VDVT 2;/;, (10i)

the latter determined by the eigenvalue decomposition (EVD)
VAVT = S22 N2 (10j)

having V' orthogonal with n —rank(3;,) columns spanning
the kernel of X3 and A = diag{\;} and by the active mode
coefficient matrix

(10k)



Proof: The minimum of the Lagrangian (9) must satisfy
the first-order optimality conditions, i.e. that the gradient
with respect to each parameter is O at the optimum. We start
by differentiating F by the feedback gain L

or, .FgmygiuvLs;g = RL E;@u JrBTS(A + BL) E@u =0,
which we rewrite as
(R + BTSB)L ¥z, = —BTSAY;, .

As this equation shows, L is underdetermined in the kernel
of ¥; , since these modes are always O in Z,, and have
no effect on u;. L is also underdetermined in the kernel of
R + BTSB, since these modes have no cost (immediate or
future) and can be controlled in any way without affecting
the solution’s performance. Thus without loss of performance
we can take

L=—(R+BTSB)'BTSA.
We substitute this solution back into the Lagrangian, to
get
Fr, 55,50 = 587 (log| Bz, [t —log| Xz, |+) (AV.D)
+tr(M ;) —tr(N Xz,) + tr(S X¢)),
with
M=Q+ATSA-S
N=LT(R+B7SB)L
= ATSB(R+ BTSB)'BTSA.
The problem of optimizing over X3, given the other param-

eters can now be written, up to constants, as the semidefinite
program (SDP)

max
P

oy

log | ¥z, — X3, |y + Btr(N z,)

S.t. 0= Z@u = Ziy .

By Lemma V.1 in Appendix V, the optimum is achieved
when Y;  satisfies (101)—(10k).

Finally, with P = 33 Z; the projection onto the support
of #,, and since the rangg: of X3, is contained in that
subspace, we have

A5, (log| Za, |+ — log | S, It)
= — 8(Zm)lj IOg |P — Efu E»Tiy |T

= — 9z, log|I — Sz, (P, P)T|

=tr((I =%, L)™' 0a, 0w, (P 3s, P)).

The purpose of introducing P is to notice that even if
the range of X; is increased, this has no effect on the
Lagrangian, because these modes are orthogonal to the range
of ¥;,. This allows us to treat P as constant, so that the
range of PY; P is constant in a neighborhood of the
solution, and the derivative of the pseudoinverse is simplified
in this case to

Oy, (PZs, P)T = =51 0z, Ta,) =L

Ty

=-x! KCJ,,CTKTx! |
Ty 3] Ty

71

with J; ; the matrix with 1 in position (¢, j) and O elsewhere.
This yields
Os, Fs,.5:..5:8
=M -B'CTKTEL (-3, 2 )7 e, B KC)
=3(M-B7'CTKTEL (I1-%5, 3L )™ = DKC)
=M —-pCTKT(s] . -2l KC) =0,

|&
implying (10e). O
APPENDIX V
SEMIDEFINITE PROGRAM SOLUTION

In this appendix we state and prove the following solution
to our SDP problem.
Lemma V.I: The semidefinite program

log [My — X |t + tr(Ma X
max log My = Xlp + tr(MoX)
S.t. Xle,

with M7, My = 0, is optimized by
X = M*VDVTM,”,
with the eigenvalue decomposition (EVD)
VAVT = M, My M,

such that V' is orthogonal with n — rank(M;) columns
spanning the kernel of M; and A = diag{)\;} and with

L L=A10 A>1
D = diag 0 n <1 }
Proof: Let the EVD of M; be
UvUT = M,

with U orthogonal and ¥ diagonal, having

S
0 0(n7m)><(n7m)

with m = rank(M7). Let

vt
gt _ytyg= |+
v U+ 7 -9'w [ 0 I} .
By changing the variable to
Y = UUTXUOY?,
the constraint of the SDP becomes

0 O(nfm)x(nfm)

Y must therefore be 0 outside the upper-left m x m block,
and the SDP is equivalent, up to constants, to

max  log |l — Y|i + tr(T2UTM,UW?Y)
Yesy

st. Y =1,
Let the EVD of the linear coefficient be

VAVT = URUTMU Y2,



Fig. VI.I.  Bayesian network of online inference from a sequence of
independent observations

with
. Fa 0
0 I(n—m)x(n—m)
orthogonal and preserving the kernel of ¥ and
A = diag{\;}. We can again change the variable to

D=VTYV,
to get
jrjneasé log |1, n — D|; + tr(AD)
st. D=XInn,

which can easily be solved using Hadamard’s inequality [3],
to find

o L-A1 N>l
D—dlag{0 )\¢<1}

Finally, the lemma follows by unmaking the variable
changes and taking

V=UV. O
APPENDIX VI
PROPERTIES OF THE RETENTIVE DIRECTED INFORMATION

In this appendix we show how the retentive directed
information (Definition 6 of Part II [4, Section III-A]) relates
to the multi-information of Bayesian networks [5].

Consider the Bayesian network in Figure VI.I, which
describes the process of online inference from a sequence
of independent observations. The multi-information of this
network, for horizon 7, is equal to the retentive directed
information

Iy", 2" =E |1

o8 fT,27) ]
T, flye) f(z)

T t—1 .t

2|z

= Sl L] gy
— f(z)

An important property of the directed information is
that the mutual information between two sequences can be
decomposed into the sum of directed information in both
directions [6]

Iz?; 27 = 1z” = 27 + 17 — 27].
Interestingly, retentive directed information extends this

property to the retentive control process (Figure 1 in Part II).
This process can be thought of as consisting of four phases:

72

observation, inference, control and state transition. Its multi-
information can accordingly be decomposed [7] into the sum

Ilz",y", 2" u’] = T — y" ]+ 1[y" — 27
+ 12T = 7] 4+ Tu? — 27
APPENDIX VII
STRUCTURE OF THE OPTIMAL RETENTIVE CONTROLLER

In this appendix we derive the structure of the optimal
retentive controller summarized in Part II [4, Section III-C].

For the structured feedback gain L we find using the Schur
complement that

Ru+ BL,S:Buw BL,Skm]'
Sm;sz;u Sm
-st Br Sr;msgll

(R+BTSB)T = {

ST‘

_SJnSm,sz,uST

u|m

ulm T

ST

m|u

with
st =gt v+ st s B,.S' BT S .. Sf

m\u m m 3 5 u|m, Tiu 3 m?

and so

L

—(R+BTSB)'BTSA

BI.,S:As 0

Sy 0

St BLuSzim As 0

SyTnSm;:v(I_Bw;uST BI S$|m)Aw 0

ulm =" Tu

_ Lu,x\m 0
7S;rnsm,x(A"c + Bm;uLu;a:|m) 0]’

—(R+ B'SB)! [

with
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Now constraining the controller to be MMSE, we have the
structure
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which we employ in differentiating F (IV.1), to get
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This leaves M overparameterized and we can choose to give
it the structure

_ Mw\m + My —Mpy,
M= |: *Mm Mm,
with
Mz\m = ﬂilZ
My, = 571(CJ;wK;;ymZKm;ylmcy;w - 2).
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Abstract

Model-free reinforcement learning algorithms,
such as Q-learning, perform poorly in the early
stages of learning in noisy environments, because
much effort is spent unlearning biased estimates
of the state-action value function. The bias re-
sults from selecting, among several noisy esti-
mates, the apparent optimum, which may actu-
ally be suboptimal. We propose G-learning, a
new off-policy learning algorithm that regular-
izes the value estimates by penalizing determin-
istic policies in the beginning of the learning pro-
cess. We show that this method reduces the bias
of the value-function estimation, leading to faster
convergence to the optimal value and the optimal
policy. Moreover, G-learning enables the natural
incorporation of prior domain knowledge, when
available. The stochastic nature of G-learning
also makes it avoid some exploration costs, a
property usually attributed only to on-policy al-
gorithms. We illustrate these ideas in several ex-
amples, where G-learning results in significant
improvements of the convergence rate and the
cost of the learning process.

1 INTRODUCTION

The need to separate signals from noise stands at the cen-
ter of any learning task in a noisy environment. While a
rich set of tools to regularize learned parameters has been
developed for supervised and unsupervised learning prob-
lems, in areas such as reinforcement learning there still ex-
ists a vital need for techniques that tame the noise and avoid
overfitting and local minima.

One of the central algorithms in reinforcement learning is
Q-learning [1], a model-free off-policy algorithm, which
attempts to estimate the optimal value function @), the

*These authors contributed equally to this work.
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cost-to-go of the optimal policy. To enable this estima-
tion, a stochastic exploration policy is used by the learn-
ing agent to interact with its environment and explore the
model. This approach is very successful and popular, and
despite several alternative approaches developed in recent
years [2, 3, 4], it is still being applied successfully in com-
plex domains for which explicit models are lacking [5].

However, in noisy domains, in early stages of the learn-
ing process, the min (or max) operator in Q-learning brings
about a bias in the estimates. This problem is akin to the
“winner’s curse” in auctions [6, 7, 8, 9]. With too little ev-
idence, the biased estimates may lead to wrong decisions,
which slow down the convergence of the learning process,
and require subsequent unlearning of these suboptimal be-
haviors.

In this paper we present G-learning, a new off-policy
information-theoretic approach to regularizing the state-
action value function learned by an agent interacting with
its environment in model-free settings.

This is achieved by adding to the cost-to-go a term that pe-
nalizes deterministic policies which diverge from a simple
stochastic prior policy [10]. With only a small sample to
go by, G-learning prefers a more randomized policy, and as
samples accumulate, it gradually shifts to a more determin-
istic and exploiting policy. This transition is managed by
appropriately scheduling the coefficient of the penalty term
as learning proceeds.

In Section 4 we discuss the theoretical and practical as-
pects of scheduling this coefficient, and suggest that a sim-
ple linear schedule can perform well. We show that G-
learning with this schedule reduces the value estimation
bias by avoiding overfitting in its selection of the update
policy. We further establish empirically the link between
bias reduction and learning performance, that has been the
underlying assumption in many approaches to reinforce-
ment learning [11, 12, 13, 14]. The examples in Section 6
demonstrate the significant improvement thus obtained.

Furthermore, in domains where exploration incurs signif-
icantly higher costs than exploitation, such as the classic



cliff domain [2], G-learning with an e-greedy exploration
policy is exploration-aware, and chooses a less costly ex-
ploration policy, thus reducing the costs incurred during
the learning process. Such awareness to the cost of explo-
ration is usually attributed to on-policy algorithms, such as
SARSA [2, 4] and Expected-SARSA [15, 16]. The remark-
able finding that G-learning exhibits on-policy-like proper-
ties is illustrated in the example of Section 6.2.

In Section 2 we discuss the problem of learning in noisy en-
vironments. In Section 3 we introduce the penalty term, de-
rive G-learning and prove its convergence. In Section 4 we
determine a schedule for the coefficient of the information
penalty term. In Section 5 we discuss related work. In Sec-
tion 6 we illustrate the strengths of the algorithm through
several examples.

2 LEARNING IN NOISY
ENVIRONMENTS

2.1 NOTATION AND BACKGROUND

We consider the usual setting of a Markov Decision Process
(MDP), in which an agent interacts with its environment
by repeatedly observing its state s € S, taking an action
a € A, with A and S finite, and incurring cost ¢ € R. This
induces a stochastic process s, ag, cg, S1, - - ., where sq is
fixed, and where for t > 0 we have the Markov properties
indicated by the conditional distributions a; ~ m¢(at|st),
Ct ~ 9(6t|8t, CLt) and St+1 ™~ p(st+1|st, at).

The objective of the agent is to find a time-invariant pol-
icy 7 that minimizes the total discounted expected cost

V7(s) =Y~ Eleilso = 5], )

t>0

simultaneously for any s € S, for a given discount factor
0 < v < 1. For each t, the expectation above is over all
trajectories of length ¢ starting at sp = s. A related quantity
is the state-action value function

Q7 (s,a) = Z’ytE[ctho = s,a0 = aj

>0
= Eg[cls,a] + YE,[V™(s')|s, al, )

which equals the total discounted expected cost that follows
from choosing action a in state s, and then following the
policy 7.

If we know the distributions p and 6 (or at least Eg|[c|s, a]),
then it is easy to find the optimal state-action value function

Q" (s,a) = min Q" (s, a) ©)

using standard techniques, such as Value Iteration [17].
Our interest is in model-free learning, where the model pa-
rameters are unknown. Instead, the agent obtains samples
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from p(s¢11]8¢, ar) and 0(c|se, at) through its interaction
with the environment. In this setting, the Q-learning algo-
rithm [1] provides a method for estimating Q*. It starts
with an arbitrary @, and in step ¢ upon observing s, as, ¢t
and s, 1, performs the update

Q(st;ar) < (1 — ar)Q(s1, ar) 4)
+ oy (Ct +7 ) m(d]s01)Q(se41, a’)) ;

with some learning rate 0 < a; < 1, and the greedy policy
for @) having

7(a]s) = duae(o;  a*(s) = argmin Q(s,a).  (5)
Q(s, a) is unchanged for any (s, a) # (s, at). If the learn-
ing rate satisfies

E y = OQ;
t

and the interaction itself uses an exploration policy that re-
turns to each state-action pair infinitely many times, then )
is a consistent estimator, converging to (Q* with probabil-
ity 1 [1, 17]. Similarly, if the update rule (4) uses a fixed
update policy m = p, we call this algorithm Q”-learning,
because () converges to ()” with probability 1.

> af <o, ©6)
t

2.2 BIAS AND EARLY COMMITMENT

Despite the success of Q-learning in many situations, learn-
ing can proceed extremely slowly when there is noise in the
distribution, given s; and a;, of either of the terms of (2),
namely the cost ¢; and the value of the next state s;1. The
source of this problem is a negative bias introduced by the
min operator in the estimator min,s Q(s¢+1, a’), when (5)
is plugged into (4).

To illustrate this bias, assume that Q(s, a) is an unbiased
but noisy estimate of the optimal Q*(s,a). Then Jensen’s
inequality for the concave min operator implies that

Efmin Q(s, )] < minQ*(s,a), )

with equality only when () already reveals the optimal pol-
icy by having arg min, Q(s,a) = argmin, Q*(s, a) with
probability 1, so that no further learning is needed. The
expectation in (7) is with respect to the learning process,
including any randomness in state transition, cost, explo-
ration and internal update, given the domain.

This is an optimistic bias, causing the cost-to-go to appear
lower than it is (or the reward-to-go higher). It is the well
known “winner’s curse” problem in economics and deci-
sion theory [6, 7, 8, 9], and in the context of Q-learning
it was studied before in [3, 11, 12, 13]. A similar prob-
lem occurs when a function approximation scheme is used



for () instead of a table, even in the absence of transition
or cost noise, because the approximation itself introduces
noise [18].

As the sample size increases, the variance in Q(s,a) de-
creases, which in turn reduces the bias in (7). This makes
the update policy (5) more optimal, and the update increas-
ingly similar to Value Iteration.

2.3 THE INTERPLAY OF VALUE BIAS AND
POLICY SUBOPTIMALITY

It is insightful to consider the effect of the bias not only on
the estimated value function, but also on the real value V'™
of the greedy policy (5), since in many cases the latter is the
actual output of the learning process. The central quantity
of interest here is the gap Q* (s, a’) —V™*(s), in a given state
s, between the value of a non-optimal action a’ and that of
the optimal action.

Consider first the case in which the gap is large compared
to the noise in the estimation of the Q(s, a) values. In this
case, a’ indeed appears suboptimal with high probability, as
desired. Interestingly, when the gap is very small relative
to the noise, the learning agent should not worry, either.
Confusing such a’ for the optimal action has a limited effect
on the value of the greedy policy, since choosing a’ is near-
optimal.

We conclude that the real value V'™ of the greedy policy (5)
is suboptimal only in the intermediate regime, when the gap
is of the order of the noise, and neither is small. The effect
of the noise can be made even worse by the propagation of
bias between states, through updates. Such propagation can
cause large-gap suboptimal actions to nevertheless appear
optimal, if they lead to a region of state-space that is highly
biased.

2.4 A DYNAMIC OPTIMISM-UNCERTAINTY
LOOP

The above considerations were agnostic to the exploration
policy, but the bias reduction can be accelerated by an ex-
ploration policy that is close to being greedy. In this case,
high-variance estimation is self-correcting: an estimated
state value with optimistic bias draws exploration towards
that state, leading to a decrease in the variance, which in
turn reduces the optimistic bias. This is a dynamic form
of optimism under uncertainty. While in the usual case the
optimism is externally imposed as an initial condition [19],
here it is spontaneously generated by the noise and self-
corrected through exploration.

The approach we propose below to reduce the variance is
motivated by electing to represent the uncertainty explic-
itly, and not indirectly through an optimistic bias. We no-
tice that although in the end of the learning process one
obtains the deterministic greedy policy from Q(a,s) as
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in (5), during the learning itself the bias in () can be ame-
liorated by avoiding the hard min operator, and refraining
from committing to a deterministic greedy policy. This can
be achieved by adding to (), at the early learning stage, a
term that penalizes deterministic policies, which we con-
sider next.

3 LEARNING WITH SOFT UPDATES

3.1 THE FREE-ENERGY FUNCTION G AND
G-LEARNING

Let us adopt, before any interaction with the environment,
a simple stochastic prior policy p(a|s). For example, we
can take the uniform distribution over the possible actions.
The information cost of a learned policy 7 (a|s) is defined
as

9" (s,a) = log 24l 8)

and its expectation over the policy 7 is the Kullback-
Leibler (KL) divergence of w4 = m(-|s) from ps = p(-|s),

Eﬂ[gﬂ(svaﬂs] = DKL[ﬂ—s”ps}- )

The term (8) penalizes deviations from the prior policy and
serves to regularize the optimal policy away from a de-
terministic action. In the context of the MDP dynamics
p(St41]8¢,ar), similarly to (1), we consider the total dis-
counted expected information cost

I"(s) = th E[g™ (s¢,a¢)|s0 = s]. (10)

t>0

The discounting in (1) and (10) is justified by imagining a
horizon T' ~ Geom(1 — «), distributed geometrically with
parameter 1 — . Then the cost-to-go V™ in (1) and the
information-to-go I™ in (10) are the total (undiscounted)
expected T'-step costs.

Adding the penalty term (10) to the cost function (1) gives
FT(s) =V7™(s) + 517 (s), a1
=S A E[Lg (1, a0) + ealso = 5],
t>0

called the free-energy function by analogy with a similar
quantity in statistical mechanics [10].

Here [ is a parameter that sets the relative weight between
the two costs. For the moment, we assume that [ is fixed.
In following sections, we let 5 grow as the learning pro-
ceeds.

In analogy with the Q™ function (2), let us define the state-
action free-energy function G™ (s, a) as

G™(s,a) = Eglc|s,a] + yE,[F7(s)]s, a] (12)
=Y ' Bler + 397 (se11, a41))[s0 = s, a0 = al,
>0



and note that it does not involve the information term at
time ¢ = 0, since the action ayp = a is already known.
From the definitions (11) and (12) it follows that

F™(s) = Zw(a|s) [ log ”((ZIS) + G™ (s, a)} . (13)

a

It is easy to verify that, given the G function, the above
expression for F'™ has gradient O at

plals)e
2o pld'|s)e

which is therefore the optimal policy.

—BG(s,a)
—BG(s,a’)’

m(als) = (14)

The policy (14) is the soft-min operator applied to GG, with
inverse-temperature 5. When [ is small, the information
cost is dominant, and 7 approaches the prior p. When 3
is large, we are willing to diverge much from the prior to
reduce the external cost, and 7 approaches the deterministic
greedy policy for G.

Evaluated at the soft-greedy policy (14), the free en-
ergy (13)1is

F™(s) = —% logZp(a s

and plugging this expression into (12), we get that the op-
timal G* is a fixed point of the equation

G*(s,a) = Eg

)e—ﬂGw(s,a), (15)

[cls, a] (16)

logzp '|s)e AT (e
E [G*](s,a)~ (17)

Based on the above expression, we introduce G-learning
as an off-policy TD-learning algorithm [2], that learns the
optimal G* from the interaction with the environment by
applying the update rule

G(st,at) <— (1 — ozt)G(st,at) (18)

+ <Ct - 710g <ZP "Isir1)e BG(S“l’al))) .

3.2 THE ROLE OF THE PRIOR

Clearly the choice of the prior policy p is significant in the
performance of the algorithm. The prior policy can en-
code any prior knowledge that we have about the domain,
and this can improve the convergence if done correctly.
However an incorrect prior policy can hinder learning. We
should therefore choose a prior policy that represents all of
our prior knowledge, but nothing more. This prior policy
has maximal entropy given the prior knowledge [20].

In our examples in Section 6, we use the uniform prior pol-
icy, representing no prior knowledge. Both in Q-learning
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and in G-learning, we could utilize the prior knowledge
that moving into a wall is never a good action, by elimi-
nating those actions. One advantage of G-learning is that
it can utilize softer prior knowledge. For example, a prior
policy that gives lower probability for moving into a wall
represent the prior knowledge that such an action is usually
(but not always) harmful, a type of knowledge that cannot
be utilized in Q-learning.

We have presented G-learning in a fully parameterized for-
mulation, where the function G is stored in a lookup table.
Practical applications of Q-learning often resort to approx-
imating the function @ through function approximations,
such as linear expansions or neural networks [2, 3, 4, 21, 5].
Such an approximation generates inductive bias, which
is another form of implicit prior knowledge. While G-
learning is introduced here in its table form, preliminary
results indicate that its benefits carry over to function ap-
proximations, despite the challenges posed by this exten-
sion.

3.3 CONVERGENCE

In this section we study the convergence of GG under the up-
date rule (18). Recall that the supremum norm is defined as
|£|oo = max; |z;|. We need the following Lemma, proved
in the Supplementary Material.

Lemma 1. The operator B*[G](,,q) defined in (17) is a

contraction in the supremum norm,

IB*[G1] - B*[Ga]|  <9|G1—Ga| . (19

The update equation (18) of the algorithm can be written as

a stochastic iteration equation

(1 — Oét)Gt(St, at) (20)
+ at(B*[Gt](st,at) + zi(ct, S¢41))

Gt+1(8t, at) =

where the random variable z; is
- B*[Gt](smat) (21)
+e = plog > p(a'|spyr)e PG ned,

Zt(Ch 8t+1) =

Note that z; has expectation 0. Many results exist for iter-
ative equations of the type (20). In particular, given condi-
tions (6) for a4, the contractive nature of B*, infinite visits
to each pair (s¢,a;) and assuming that |z;| < oo, Gy is
guaranteed to converge to the optimal G* with probabil-
ity 1 [17, 22].

4 SCHEDULING 3

In the previous section, we showed that running G-learning
with a fixed S converges, with probability 1, to the opti-
mal G* for that 3, given by the recursion in (12)-(14).



When 3 = oo, the equations for G* and F™* degenerate
into the equations for @* and V*, and G-learning becomes
Q-learning. When 3 = 0, the update policy 7 in (14) is
equal to the prior p. This case, denoted Qf-learning, con-
verges to QQ”.

In an early stage of learning, Q”-learning has an advan-
tage over Q-learning, because it avoids committing to a de-
terministic policy based on a noisy ) function. In a later
stage of learning, when () is a more precise estimate of Q*,
Q-learning gains the advantage by updating with a better
policy than the prior. This is demonstrated in section 6.1.

We would therefore like to schedule 3 so that G-learning
makes a smooth transition from Q”-learning to Q-learning,
just at the right pace to enjoy the early advantage of the
former and the late advantage of the latter. As we argue
below, such a 3 always exists.

4.1 ORACLE SCHEDULING

To consider the effect of the 3 scheduling on the correction
of the bias (7), suppose that during learning we reach some
G that is an unbiased estimate of G*. G (s, a;) would re-
main unbiased if we update it towards

¢t +7G(St41,0") (22)
with

a* = argmin G*(s¢41,0’), (23)
but we do not have access to this optimal action. If we
use the update rule (18) with 8 = 0, we update G(s¢, at)
towards

ct +VZP(G/|St+1)G(5t+1aa/)> (24)

a

which is always at least as large as (22), creating a positive
bias. If we use 8 = oo, we update G(s¢, a;) towards

¢y + 'le,n G(St+1,a/), (25)

which creates a negative bias, as explained in Section 2.2.
Since the right-hand side of (18) is continuous and mono-
tonic in 3, there must be some [ for which this update rule
is unbiased.

This is a non-constructive proof for the existence of a (8
schedule that keeps the value estimators unbiased (or at
least does not accumulate additional bias). We can imagine
a scheduling oracle, and a protocol for the agent by which
to consult the oracle and obtain the 3 for its soft updates.
At the very least, the oracle must be told the iteration index
t, but it can also be useful to let 8 depend on any other as-
pect of the learning process, particularly the current world
state s;.
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4.2 PRACTICAL SCHEDULING

A good schedule should increase 3 as learning proceeds,
because as more samples are gathered the variance of G
decreases, allowing more deterministic policies. In the ex-
amples of Section 6 we adopted the linear schedule

B = kt, (26)

with some constant £ > 0. Another possibility that we
explored was to make [ inversely proportional to a running
average of the Bellman error, which decreases as learning
progresses. The results were similar to the linear schedule.

The optimal parameter k£ can be obtained by performing
initial runs with different values of & and picking the value
whose learned policy gives empirically the lower cost-to-
go. Although this exploration would seem costly com-
pared to other algorithms for which no parameter tuning
is needed, these initial runs do not need to be carried for
many iterations. Moreover, in many situations the agent is
confronted with a class of similar domains, and tuning k&
in a few initial domains leads to an improved learning for
the whole class. This is the case in the domain-generator
example in Section 6.1.

S RELATED WORK

The connection between domain noise or function ap-
proximation, and the statistical bias in the () function,
was first discussed in [18, 3]. An interesting modifica-
tion of Q-learning to address this problem is Double-Q-
learning [11, 14], which uses two estimators for the ()
function to alleviate the bias. Other modifications of Q-
learning that attempt to reduce or correct the bias are sug-
gested in [12, 13].

An early approach to Q-learning in continuous noisy do-
mains was to learn, instead of the value function, the ad-
vantage function A(s,a) = Q(s,a)—V(s) [23]. The algo-
rithm represents A and V' separately, and the optimal action
is determined from A(s,a) as a*(s) = argmin, A(s,a).
In noisy environments, learning A is shown in some exam-
ples to be faster than learning ) [23, 24].

More recently, it was shown that the advantage learning al-
gorithm is a gap-increasing operator [25]. As discussed in
Section 2.2, the action gap is a central factor in the genera-
tion of bias, and increasing the gap should also help reduce
the bias. In Section 6.1 we compare our algorithm to the
consistent Bellman operator 7¢, one of the gap-increasing
algorithms introduced in [25].

For other works that study the effect of noise in Q-learning,
although without identifying the bias (7), see [26, 27, 28].

Information considerations have received attention in re-
cent years in various machine learning settings, with the
free energy F™ and similar quantities used as a design



principle for policies in known MDPs [10, 29, 30]. Other
works have used related methods for reinforcement learn-
ing [31, 32, 33, 34, 35]. A KL penalty similar to ours is
used in [35], in settings with known reward and transition
functions, to encourage ‘“curiosity”.

Soft-greedy policies have been used before for explo-
ration [2, 36], but to our knowledge G-learning is the first
TD-learning algorithm to explicitly use soft-greedy poli-
cies in its updates.

Particularly relevant to our work is the approach studied
in [32]. There the policy is iteratively improved by optimiz-
ing it in each iteration under the constraint that it only di-
verges slightly, in terms of KL-divergence, from the empir-
ical distribution generated by the previous policy. In con-
trast, in G-learning we measure the KL-divergence from a
fixed prior policy, and in each iteration allow the divergence
to grow larger by increasing 5. Thus the two methods
follow different information-geodesics from the stochastic
prior policy to more and more deterministic policies.

This distinction is best demonstrated by considering the -
learning algorithm presented in [33, 34], based on the same
approach as [32]. It employs the update rule

\Ij(St, at) — \P(St7at) (27)
+ (e +7¥(se1) — ¥(se)),

with

U(s) = — logZp(a|s)67\I’(s’a), (28)

which is closely related to our update of G in (18).

Apart from lacking a § parameter, the most important
difference is that the update of W involves subtracting
a;¥(s¢), whereas the update of G involves subtracting
;G (8¢, ar). This seemingly minor modification has a large
impact on the behavior of the two algorithms. The up-
date of G is designed to pull it towards the optimal state-
action free energy G, for all state-action pairs. In contrast,
subtracting the log-partition W(s;), in the long run pulls
only U(s;,a*), with a* the optimal action, towards its true
value, while for the other actions the values grow to infinity.
In this sense, the ¥-learning update (27) is an information-
theoretic gap-increasing Bellman operator [25].

The growth to infinity of suboptimal values separates them
from the optimal value, and drives the algorithm to conver-
gence. In G-learning, this parallels the increase in 3 with
the accumulation of samples. However, there is a major
benefit to keeping G reliable in all its parameters, and con-
trolling it with a separate 5 parameter. In W-learning, the
U function penalizes actions it deems suboptimal. If early
noise causes an error in this penalty, the algorithm needs
to unlearn it - a similar drawback to that of Q-learning. In
Section 6, we demonstrate the improvement offered by G-
learning.
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Figure 1: Gridworld domain. The agent can choose an ad-
jacent square as the target to move to, and then may end up
stochastically in a square adjacent to that target. The color
scale indicates the optimal values V* with a fixed cost of 1
per step.

6 EXAMPLES

This section illustrates how G-learning improves on exist-
ing model-free learning algorithms in several settings. The
domains we use are clean and simple, to demonstrate that
the advantages of G-learning are inherent to the algorithm
itself.

We schedule the learning rate o as
oy = ny(se,ar) ", (29)

where n:(s;, a;) is the number of times the pair (s;, a;)
was visited. This scheme is widely used, and is consistent
with (6) for w € (1/2,1]. We choose w = 0.8, which is
within the range suggested in [37].

We schedule § linearly, as discussed in Section 4.2. In each
case, we start with 5 preliminary runs of G-learning with
various linear coefficients, and pick the coefficient with the
lowest empirical cost. This coefficient is used in the subse-
quent test runs, whose results are plotted in Figure 2.

In all cases, we use a uniform prior policy p, a discount
factor v = 0.95, and O for the initial values (Qy = 0
in Q-learning, and similarly in the other algorithms). Ex-
cept when mentioned otherwise, we employ random explo-
ration, where s; and a; are chosen uniformly at the begin-
ning of each time step, independently of any previous sam-
ple. This exploration technique is useful when comparing
update rules, while controlling for the exploration process.

6.1 GRIDWORLD

Our first set of examples occurs in a gridworld of 8 x 8
squares, with some unavailable squares occupied by walls
shown in black (Figure 1). The lightest square is the goal,
and reaching it ends the episode.

At each time step, the agent can choose to move one square
in any of the 8 directions (including diagonally), or stay in
place. If the move is blocked by a wall or the edge of the



board, it effectively attempts to stay in place. With some
probability, the action performed by the agent is further fol-
lowed by an additional random slide: with probability 0.15
to each vertically or horizontally adjacent available posi-
tion, and with probability 0.05 to each diagonally adjacent
available position.

The noise associated with these random transitions can be
enhanced further by the possible variability in the costs in-
curred along the way. We consider three cases. In the first
case, the cost in each step is fixed at 1. In the second case,
the cost in each step is distributed normally i.i.d, with mean
1 and standard deviation 2. In the third case we define a
distribution over domains, such that at the time of domain-
generation the mean cost for each state-action is distributed
uniformly i.i.d over [1, 3]. Once the domain has been gen-
erated and interaction begins, the cost itself in each step is
again distributed normally i.i.d, with the generated mean
and standard deviation 4.

We attempt to learn these domains using various algo-
rithms. Figure 2 summarizes the results for Q-learning,
G-learning, Double-Q-learning [11], W¥-learning [33, 34]
and the consistent Bellman operator 7o of [25]. We also
include Qf-learning, which performs updates as in (4) to-
wards the prior policy p. Comparison with Speedy-Q-
learning [12] is omitted, since it showed no improvement
over vanilla Q-learning in these settings. In our experi-
ments, these algorithms had comparable running times.

The S scheduling used in G-learning is linear, with the co-
efficient k equal to 1072, 1074, 5- 10~° and 1075, respec-
tively for the fixed-cost, noisy-cost, domain-generator and
cliff domains (see Section 6.2).

For each case, Figure 2 shows the evolution over 250,000
algorithm iterations of the following three measures, aver-
aged over N = 100 runs:

1. Empirical bias, defined as

N n
T D (Vials) = Vi (s)), (30)
i=1 s=1

where 7 indexes the IV runs and s the n states. Here
Vi ¢ is the greedy value based on the estimate obtained
by each algorithm (Q, G, etc.), in iteration ¢ of run 1.
The optimal value V;*, computed via Value Iteration,
varies between runs in the domain-generator case.

2. Mean absolute error in V'

N n
TN Vials) = Vi (s)l- 31)

i=1 s=1

A low bias could result from the cancellation of terms
with high positive and negative biases. A convergence
in the absolute error is more indicative of the actual
convergence of the value estimates.
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3. Increase in cost-to-go, relative to the optimal policy

N n
M2 D (VT (s) = Vi) (32)
i=1 s=1
This measures the quality of the learned policy. Here
m; ¢ 1S the greedy policy based on the state-action
value estimates, and V™t is its value in the model,
computed via Value Iteration.

An algorithm is better when these measures reach zero
faster. As is clear in Figure 2, in the domains with noisy
cost (Rows 2 and 3), G-learning dominates over all the
other competing algorithms by the three measures. The
results are statistically significant, but plotting confidence
intervals would clutter the figure.

An important and surprising point of Figure 2 is that Qf-
learning always outperforms Q-learning initially, before
degrading. The reason is that the Q-learning updates ini-
tially rely on very few samples, so these harmful updates
need to be undone by later updates. QF-learning, on the
other hand, updates in the direction of a uniform prior. This
gives an early advantage in mapping out the local topology
of the problem, before long-range effects start pulling the
learning towards the suboptimal Q.

The power of G-learning is that it enjoys the early advan-
tage of Q”-learning, and smoothly transitions to the conver-
gence advantage of Q-learning. When f3 is small, the infor-
mation cost g; (8) outweighs the external costs c;, and we
update towards p. As samples keep coming in, and our esti-
mates improve, ( increases, and the updates gradually lean
more towards a cost-optimizing policy. Unlike early stages
in Q-learning, at this point G; is already a good estimate,
and we avoid overfitting. As mentioned above, Figure 2
shows that this effect is more manifest in noisier scenarios.

Finally, Figure 3 shows running averages of the Bellman
error for the different algorithms considered. The Bellman
error in G-learning is the coefficient multiplying o in (18),

AGr=c, — jlog (Z P(a’|8t+1)eﬁct(sf+1*“/)>

— Gy(s¢4,0). (33)

When learning ends and G = G*, the expectation of AG,
is zero (see (16)). Similar definitions hold for the other
learning algorithms we compare with. As is clear from Fig-
ure 3, G-learning reaches zero average Bellman error faster
than the competing methods, even while f is still increas-
ing in order to make G* converge to (Q*.

6.2 CLIFF WALKING

Cliff walking is a standard example in reinforcement learn-
ing [2], that demonstrates an advantage of on-policy algo-
rithms such as SARSA [2, 4] and Expected-SARSA [15,
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Figure 2: Gridworld (Rows 1-3): Comparison of Q-, G-, Q”-, Double-Q-, ¥- and 7¢-learning. Row 1: The cost in each
step is fixed at 1. Row 2: The cost in each step is distributed as N/ (1,22). Row 3: In each run, the domain is generated
by drawing each E[c|s, a] uniformly over [1, 3]. The cost in each step is distributed as N'(E|c|s, a],4?). Note that in the
noisy domains (Rows 2 and 3), G-learning dominates over all the other algorithms by the three measures. Cliff (Row 4):
Comparison of Q- and G-learning, and Expected-SARSA. The cost in each step is 1, and falling off the cliff costs 5.
Left: Empirical bias of V, relative to V'* (30). Middle: Mean absolute error between V and V* (31). Right: Value of
greedy policy, with the baseline V* subtracted (32); except in Row 4, which shows the value of the exploration policy.

16] over off-policy learning approaches such as Q-learning.
We use it to show another interesting strength of G-
learning.

In this example, the agent can walk on the grid in Fig-
ure 4 horizontally or vertically, with deterministic transi-
tions. Each step costs 1, except when the agent walks off
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the cliff (the bottom row), which costs 5, or reaches the
goal (lower right corner), which costs 0. In either of these
cases, the position resets to the lower left corner.

Exploration is now on-line, with s; taken from the end of
the previous step. The exploration policy in our simulations
is e-greedy with ¢ = 0.1, i.e. with probability ¢ the agent
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Figure 3: Running average of the Bellman error in the grid-
world domain-generator example for Q-, G-, Q”-, Double-
Q-, ¥- and 7¢-learning. The results for the other two grid-
worlds of Figure 2 are similar.

chooses a random action, and otherwise it takes determin-
istically the one that seems optimal. In practice, € can be
decreased after the learning phase, however it is also com-
mon to keep e fixed for continued exploration [2].

In this setting, as shown in the bottom row of Figure 2,
an off-policy algorithm like Q-learning performs poorly in
terms of the value of its exploration policy, and the empiri-
cal cost it incurs. It learns a rough estimate of Q* quickly,
and then tends to use it and walk on the edge of the cliff.
This leads to the agent occasionally exploring the possibil-
ity of falling off the cliff. In contrast, an on-policy algo-
rithm like Expected-SARSA [15, 16] learns the value of its
exploration policy, and quickly manages to avoid the cliff.

Figure 4 compares Q-learning, G-learning and Expected-
SARSA in this domain, and shows that G-learning learns
to avoid the cliff even better than an on-policy algorithm,
although for a different reason. As an off-policy algorithm,
G-learning does learn the value of the update policy, which
prefers trajectories far from the cliff in the early stages of
learning. This occurs because near the cliff, avoiding the
cost of falling requires ruling out downward moves, which
has a high information cost. On the other hand, trajecto-
ries far from the cliff, while paying a higher cost in overall
distance to the goal, enjoy lower information cost because
acting randomly is not costly for them.

As shown in the bottom row of Figure 2, by using a greedy
policy for G as the basis of the e-greedy exploration, we
enjoy the benefits of being aware of the value of the ex-
ploration policy during the learning stage. At the same
time, G-learning converges faster than either Q-learning or
Expected-SARSA to the correct value function. In this case
the “noise” that G-learning mitigates is related to the vari-
ability associated with the exploration.

7 CONCLUSIONS

The algorithm we have introduced successfully mitigates
the slow learning problem of early stage Q-learning in
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Figure 4: Cliff domain. The agent can choose a horizon-
tally or vertically adjacent square, and moves there deter-
ministically. The color scale and the arrow lengths indi-
cate, respectively, the frequency of visiting each state and
of making each transition, in the first 250,000 iterations of
Q-learning, Expected-SARSA and G-learning. The near-
greedy exploration policy of Q-learning has higher chance
of taking the shortest path near the edge of the cliff at the
bottom, than that of G-learning. As an off-policy algo-
rithm, Q-learning fails to optimize for the exploration pol-
icy, whereas G-learning succeeds.

noisy environments, that is caused by the bias generated
by the hard optimization of the policy.

Although we have focused on Q-learning as a baseline, we
believe that early-stage information penalties can also be
applied to advantage in more sophisticated model-free set-
tings, such as TD(\), and combined with other incremental
learning techniques, such as function approximation, expe-
rience replay and actor-critic methods.

G-learning takes a Frequentist approach to estimating the
optimal @) function. This is in contrast to Bayesian
Q-learning [38], which explicitly models the uncertainty
about the () function as a posterior distribution. It would be
interesting to study the bias that hard optimization causes
in the mean of this posterior, and to consider its reduction
using methods similar to G-learning.

An important next step is to apply G-learning to more chal-
lenging domains, where an approximation of the G func-
tion is necessary. The simplicity of our linear 3 sched-
ule (26) should facilitate such extensions, and allow G-
learning to be combined with other schemes and algo-
rithms. Further study should also address the optimal
schedule for 3. We leave these important questions for fu-
ture work.
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Chapter 5

Discussion

In this thesis we studied bounded agents that operate in dynamical systems
under intrinsic informational constraints. This setting can be modeled as
a sequential rate-distortion problem, and solved with a forward-backward
algorithm. We investigated the convergence properties of the algorithm, ex-
ploited the structure of the special LQG case, and simplified the setting to
be usable for learning. In this section we summarize and discuss some of the

insights gained in our work.

A Principle for the Tradeoff of Informational Resources and Costs

There are various ways to model bounded agents with limited information-
processing resources. Our approach, introduced in Section 2.1, is to identify
distinct components within the agent, such as sensors, memory and actuators,
and consider the information rates on the communication channels between
these components.

The reduction of extrinsic costs is usually taken as the optimization tar-
get, with extrinsic dynamical constraints, to which we add intrinsic con-
straints on the rates at which information can be communicated between
sensors, memory and actuators. In the Lagrangian form of this optimization
problem, the latter become intrinsic informational costs, which are traded off
with extrinsic expectational costs.

As an alternative formulation of the optimization problem, we can set

an upper constraint on the extrinsic cost, and seek the simplest agent that
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achieves this cost level. With a fixed prior behavior, simplicity of a policy can
be measured as the Kullback-Leibler (KL) divergence of the solution policy
from the prior. On an evolutionary timescale, the prior itself is adaptive, and
the optimization target becomes the information rate.

Interpreting informational constraints as costs is insightful, in that it al-
lows trading off the informational costs of various channels among themselves.
For example, when memory resources are scarce, it may be easier to extract
some information from observations again and again, rather than remember
it. On the other hand, when memory has a high enough capacity, it can help
process the sensory input by generating a good prediction of the observation,
and only attending to some surprises.

To illustrate this point further, consider the optimal policy for a fully
observable MDP. Without informational constraints, there is always an op-
timal policy which is reactive (memoryless), and simply depends on the cur-
rent state |2]. However, if attending the state spends precious informational-
processing resources, and thus incurs informational costs, the setting becomes
partially attendable, even though it remains fully observable. If we allow a
memory channel from past internal agent states to future ones that is cheaper
than the sensory channel, it may be beneficial to make up for unattended

sensory input using remembered information.

Periodicity and Instability of the Optimization Principle

The algorithm presented in Section 2.1 is applicable to general POMDPs.
However, it is only demonstrated there on passive POMDPs, where actions
incur costs but do not affect the state of the world. Experiments with other
types of examples exhibited poor convergence that seemed to be the result of
periodicity or instability of the solution under the update operator, particu-
larly after phase transitions that increase the support of the agent policy.
We have thus taken the first steps in the study of the bifurcation struc-

ture of the learning dynamics around critical values of the tradeoff param-
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eter 5. Section 2.2 analyzes examples that illustrate this structure. The
phenomenology of planning in partial observability under informational con-
straints includes period doubling through supercritical pitchfork bifurcations.
The optimal solution at these critical points becomes periodic, requiring the
agent to start paying attention to a clock signal. The optimal stationary
(aperiodic) solution remains a fixed point, but loses its stability to perturba-
tions.

The conclusion is that for reinforcement learning algorithms to converge
in partially observable domains (or, indeed, under partial attendability or
approximate inference), they must allow for periodicity of the solution policy.
This holds true for value iteration and gradient methods alike. We also note
that the periodicity itself is a channel from the clock to the controller, and

may be subject to information constraints.

The Linear-Quadratic-Gaussian Case

The general algorithm presented in Section 2.1 is polynomial in the sizes
of the world state, memory state, observation and action spaces involved.
When these spaces are very large or continuous, we can no longer apply the
algorithm in this tabular form. Instead, the solution must be parameterized
in a tractable manner, and the gradient must be taken with respect to these
parameters.

A particularly important and insightful parametric family, studied in
Chapter 3, is the Gaussian distributions (for p), the linear-Gaussian con-
ditional distributions (for p, o, ¢ and ) and the quadratic functions (for
c and v). This family has special properties when considering unbounded
agents. It is self-conjugate, meaning that under linear-Gaussian dynamics,
a Gaussian marginal remains Gaussian, and a quadratic cost-to-go function
remains quadratic when the cost rate is quadratic. There is also separation
of the forward inference process and the backward control process.

It comes as no surprise that this case is also special when considering
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bounded agents. Although the cost-to-go is not quadratic when considering
informational costs, the solution method only involves its second-order ex-
pansion. The forward and backward processes are coupled, but many local
optima of the type that plagues the discrete case are avoided by the tools
available to treat second-order systems.

In particular, the sequential rate-distortion problem can be formulated in
the LQG case as a sequential semidefinite program. Its solution provides not
only first-order necessary conditions for a solution to be optimal, i.e. having
gradient 0, but also higher-order necessary conditions. This prevents some
local optima where the inference and control policies are optimal given each

other, but jointly suboptimal as a pair.

Learning and 3 Scheduling

Learning is the process of gaining useful information about the world through
interaction. An agent in interaction with an environment whose state is
partially observable has to perform learning, whether or not it has a model
of the dynamics. The setting where no such model is available is particularly
interesting, since it illustrates how the tradeoff between cost and simplicity
changes as the algorithm progresses, as shown in Section 4.1.

The maximum relative entropy principle states that a solution should
minimize the KL divergence to a simple prior, under the constraint that it
fits any additional information we have about the solution. In the MDP
learning setting, this additional information is represented by the value func-
tion, which is iteratively improved by sample-based updates. An imperfect
value function cannot generally be used to select an optimal policy, and we
must settle for a suboptimal value guarantee. The policy used in each up-
date should thus be the simplest one, in terms of KL divergence, under the
constraint that this value guarantee level is achieved. As learning progresses,
the value function becomes more accurate, the guarantee can be improved,

and hence the tradeoff coefficient [ is increased to reflect a larger emphasis
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on the extrinsic cost.

The principle that 8 should generally increase as the learned parameters
improve is not unique to sample-based methods. The goal of any computa-
tion is to reduce the uncertainty about its output, and iterative algorithms
generally reduce this uncertainty gradually. If the partially optimized solu-
tion is used to obtain an improved solution, it may be beneficial to consider
soft-optimization, by taking the simplest solution under the constraint that
a gradually increasing guarantee level is achieved. For example, 3 scheduling
can also be used in this manner to improve convergence in value iteration,

and many other algorithms.
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(Glossary

Action, Control signal Input to the POMDP state transition. Output of
the agent control policy.

Notation: q;.

Backward process Computation of the cost-to-go function through the ap-

plication of the Bellman operator backward in time.

Bayesian network Graphical model of a distribution as a directed acyclic
graph with a variable in each node. The joint distribution of all variable
is given by the product of the distributions of each variable given its
parents.

Notation: p(zy,...,z,) = [ [, p(z;|parents(z;)).

Belief Probability distribution over world states that is represented in the
agent memory state.

Notation: objective: P(w|m); subjective: by, (w).

Capacity-cost problem Optimization of the tradeoff between the capacity
I[x;y] for information on the channel and the expected cost E[c(z)].

Notation: inputs: py|x(y|z), c(z); output: g(x).

Channel Stochastic mapping of the channel input x to the channel output
y. A cost ¢(x) on the channel input is sometimes also considered part
of the definition of the channel.

Notation: pyx(y|z).

Channel coding Encoding of an input signal s into the channel input x
and decoding of the channel output y as a reconstruction signal 5.

Notation: encoder: x = g(s); decoder: § = h(y).
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Control policy Probability distribution of the agent’s action given its mem-
ory state.

Notation: m(a;|m;).

Cost Real function of the system’s state, usually the world state and the
action, whose expectation is used as the minimization target.

Notation: c(wy, a;).

Exploitation Agent behavior aimed at achieving good value, based on known

aspects of the world.

Exploration Agent behavior aimed at learning unknown aspects of the

world.

Finite horizon Minimization target that considers the total cost of the pro-
cess. Meaningful when the process has a finite expected termination
time, such as in the episodic, discounted and fixed-horizon settings.
Notation: > 7 E[c(w, a;)].

Forward process Computation of the marginal state distribution through

the application of the dynamics operator forward in time.

Full controllability Complete determination of the next state by the input
action.

Notation: p(wt+1|wt7 at) = 6wt+1:at'

Full observability Complete revelation of the state as an observation.

Notation: o(oi|w;) = do,—w, -

History-based policy Most general form of an agent policy, where its out-
put action depends arbitrarily on its past inputs, the observable history.

Notation: 7(ai|o<;).
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Inference policy Probability distribution of the agent’s next memory state
given its current memory state and the new observation.

Notation: q(m1|my, 0441).

Infinite horizon Minimization target that considers the long-term average
cost of the process. Meaningful when the process is stationary.

Notation: limsup;_,., = S Ele(w, ar))-

Marginal distribution Distribution induced by a stochastic process on a
subset of its random variables, often a state.

Notation: p(s;), 7(a;).

Model-based learning Learning based on update equations that involve a

model of the world dynamics.

Objectively consistent inference Inference policy that induces subjec-

tive beliefs which are consistent with the objective beliefs. Notation:

by (w) = P(w|m).

Observation Output emitted by the POMDP depending on its state. Input
to the agent inference policy.

Notation: o;.

Observation dynamics Probability distribution of the observation given
the state.

Notation: o(o4|s;).

Partial attendability Intrinsic limitation on the agent’s ability to attend
to its inputs when performing inference. For example, the constraint
of a low mutual information I[my, 0s41;m41] between the inputs and

the outputs of the inference step.

Partial controllability Extrinsic limitation on the agent’s ability to de-
termine the world state transition. In particular, the constraint that

P (w1 |wy, my) belongs to the convex hull of {p(w; 1|wy, a;) : a; € A}.
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Partial intendability Intrinsic limitation on the agent’s ability to intend
its outputs when performing control. For example, the constraint of a
low mutual information I[my;a;] between the inputs and the outputs

of the control step.

Partial observability Extrinsic limitation on the agent’s ability to observe
the world state. In particular, the constraint that P(my1|my, wyiq) is

induced by the mixture o(o;|w;), applied to an inference policy.

Rate-distortion problem Optimization of the tradeoff between the rate
I[s; §] of information that the reconstruction has on the source and the
expected distortion E[d(s, 3)].

Notation: inputs: ps(s), d(s, §); output: ¢(5|s).

Reactive, memoryless agent Agent without an internal memory state,

consisting of a memoryless policy.

Reactive, memoryless policy Probability distribution of the agent’s ac-
tion given its most recent observation.

Notation: m(a|o;).

Retentive agent Memory-utilizing agent, consisting of an inference policy

and a control policy.

Sample-based learning Learning based on update equations that utilize

samples of the world dynamics.

Source Probability distribution of a signal s. A distortion d(s, §) between
the signal and its reconstruction is sometimes also considered part of
the definition of the source.

Notation: pg(s).

Source coding Stochastic encoding of a source signal into an intermediate
representation and decoding its reconstruction.

Notation: encoder: g(z|s); decoder: § = h(z).
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State Time-dependent property of a system that separates the past and the
future of the system.
Notation: closed system, joint world-agent system: s;; world: wy;

agent memory: my.

State dynamics, transition Probability distribution of the next state given
the current state and any inputs.

Notation: closed system: p(s;1|s;); open system: p(wgyq|wy, ay).

Stationary distribution Marginal distribution of the state that remains

the same after a step of the dynamics.
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