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Abstract

Temporal-difference learning algorithms, such as Q-learning, maintain and it-
eratively improve an estimate of the value that an agent can expect to gain in
interaction with its environment. Unfortunately, the value updates in Q-learning
induce positive bias that causes it to overestimate this value. Several algorithms,
such as Soft Q-learning, regularize the value updates to reduce this bias, but none
provide a principled schedule of their regularizers such that early in the learning
process updates are more agnostic, but then increasingly trust the value estimates
more as they become more certain during learning. In this paper, we present a
closed-form expression for the regularization coefficient that completely eliminates
bias in entropy-regularized value updates, and illustrate this theoretical analysis
using a proof-of-concept algorithm that approximates the conditions for unbiased
value estimation.

1 Introduction

Reinforcement learning (RL) algorithms infer a control policy for an agent interacting with its
environment from data consisting of agent–environment interaction and the reward obtained in each
time step of this interaction. The control policy should select action a when the current state is s, if
this leads to high expected future accumulated reward, also known as the value Qps, aq. A popular
way of learning a successful control policy is therefore via estimating the value function.

Temporal-difference (TD) algorithms [1] maintain and iteratively improve a value estimate, by
updating the estimate in a given time step of the interaction based on the estimated value in a later
time step. A key example is the Q-learning algorithm [2], which adjusts the value estimate toward the
sum of the immediate reward and the estimated value of the apparently best (greedy) action in the
following time step.

Most TD algorithms are consistent, up to representational concerns, in the sense that a full tabular
parametrization of the value estimate is guaranteed asymptotic convergence to the optimal value.
Before convergence, however, Q-learning is known to be positively biased, that is, to overestimate
the value. This makes the value estimate unreliable for downstream decisions, such as the exploration
policy that collects further interaction data.

Several works have addressed this bias and proposed algorithms with reduced bias [3, 4, 5, 6, 7]. In
particular, Fox et al. [7] have shown that the Soft Q-learning (SQL) algorithm [8, 7, 9] is an unbiased
value estimator, provided oracle scheduling of a single parameter — the inverse-temperature β —
throughout the learning process. Intuitively, early in the learning process when uncertainty is high, β
should be low to induce “softer“, more agnostic updates. As uncertainty decreases through learning,
β should be increased to induce “harder“, more trusting value updates. Despite this intuition, most
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publications of this type still use constant β, often simply 1 [8, 9, 10, 11, 12, 13, 14], possibly for
lack of a principled recipe for scheduling β [7, 15, 16].

In this work, we take a major step toward realizing an annealing schedule by which the inverse-
temperature β is adjusted to induce an unbiased value estimator. Our theoretical analysis applies to
domains with a finite action space, once they are transformed into equivalent domains with a binary
action space. We find a closed-form expression for the value of β that completely eliminates bias
in entropy-regularized value updates, subject to conditions on the distribution of the current value
estimator. We propose the Entropy-regularized Q-learning (EQL) algorithm, which approximately
satisfies these conditions, and experiment in a small domain to illustrate the theoretical analysis.

The main purpose of this work is to highlight the often overlooked benefit of having a scheduled,
rather than fixed, inverse-temperature in information-theoretic RL methods; and more generally of
annealing regularizers as optimization progresses. The theoretical analysis we present is, to our
knowledge, the first principled approach to provably unbiased TD value estimation, and may lead to
even more practical algorithms that perform iterative updates with just the right amount of confidence.

2 Preliminaries

We consider a Markov Decision Process (MDP) with state transition distribution p, such that pps1|s, aq
is the probability that the environment state becomes s1 after action a is taken in state s. An agent
controls the process using policy π, by observing the current state s and selecting an action a with
probability πpa|sq. Each step of the agent–environment interaction is annotated with a real reward r
that depends only on that step’s state and action.

This work focuses on MDPs with binary action spaces, a P t0, 1u. We note that any MDP with a
finite action space can be transformed into an equivalent one with binary actions, by encoding each
action as a sequence of bits and augmenting the state to maintain the prefix of this sequence before it
is complete and the action applied.

Given a dataset of interaction steps ps, a, r, s1q, a learning algorithm should infer a control policy
that is expected to achieve high return, i.e. accumulated discounted reward R “

ř

tě0 γ
trt, where t

counts time steps in an interaction process and 0 ď γ ă 1 is a discount factor. Value-based algorithms
achieve this by maintaining an estimate of the state–action value function

Qπps, aq “ Eat|st„π @tą0rR|s0 “ s, a0 “ as

of some policy π. The Q-learning algorithm aims to estimate the value function of the optimal policy,
Q˚ “ maxπ Q

π , by updating on each experience tuple ps, a, r, s1q

Qps, aq Ð Qps, aq ` αpr ` γmax
a1

Qps1, a1q ´Qps, aqq,

with α ą 0 a learning rate.

An issue with this approach is that, when there’s uncertainty in the value estimate, maxa1 Qps1, a1q
can overestimate the true optimal value and introduce bias into the learning process. This is known as
the winner’s curse, and is captured by Jensen’s inequality

Ermax
a

Qps, aqs ě max
a
ErQps, aqs.

A greedy update policy πQ that selects the apparently best a1 for Qps1, a1q therefore puts too much
trust in the noisy estimator Q. Fox et al. [7] proposed to consider an additional cost term, which
penalizes the update policy for deviating from an agnostic (e.g., uniform) prior policy π0

r̃t “ rt ´
1

β
log

πQpat|stq

π0pat|stq
,

with β a tradeoff coefficient, in analogy to the inverse of the temperature in statistical physics. The
optimal policy is then the softmax distribution

πQpa|sq “ sm
a
pβQps, ¨q;π0p¨|sqq

def
“

π0pa|sq exppβQps, aqq
ř

a1 π0pa1|sq exppβQps, a1qq
.
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We denote the softmax distribution by sm : Rk Ñ ∆k, where ∆k is the simplex of k-dimensional
probability vectors, despite the name softmax that some software frameworks call it, to distinguish
it from the softmax expectation

softmax
a

pQ;βq
def
“ Ea„smapβQqrQpaqs,

which has the same type Rk Ñ R as the max operator.

Substituting the update policy πQ into the update equation yields the Soft Q-learning (SQL) algorithm

Qps, aq Ð Qps, aq ` α

ˆ

r `
γ

β
logEa1|s1„π0

rexppβQps1, a1qqs ´Qps, aq

˙

.

In the following, we assume a uniform prior π0, and omit it.

SQL replaces the “hard“ max operator of Q-learning with a “soft“ log-partition function, also known
as mellowmax [17]. Similarly to softmax, the log-partition operator has the property that, as β Ñ 0,
it converges to the prior Ea1|s1„π0

rQps1, a1qs, and as β Ñ 8, it returns to the hard max. Since
the log-partition function is continuous in β, Fox et al. [7] concluded by the intermediate value
theorem that there must be some β (generally different for each update iteration) for which the
update is unbiased. This parameter should generally increase throughout the learning process, i.e. the
temperature should decrease, hence the name annealing for such a process. However, the existence
proof of an unbiased β schedule is nonconstructive, and to our knowledge a principled annealing
schedule for TD algorithms has so far been unknown.

In this work, we replace Q-learning’s hard max with softmax, rather than with SQL’s log-partition.
This alternative is less well motivated than SQL, but allows analysis that reveals an unbiased β
schedule.

3 Why Unbiased Estimation

Estimation bias is of course not an issue when the exact bias is known, because it can simply be
subtracted. When we discuss biased estimators, what we really mean is that the uncertainty in the
bias (due to either the model or the data) is so much larger than the uncertainty in the estimator itself,
that subtracting a best guess of the bias would result in a worse estimator.

In light of this, we should be cautious of making decisions based on biased estimators. When we select
the maximum of two estimates, we implicitly take the biases of their estimators into consideration,
and the result may be much more uncertain than the estimators themselves.

An example of such decision making is an exploration policy interacting with the environment to
collect more experience. If this policy is based on a biased value estimator, it may give undue
preference to actions whose value is positively biased. We emphasize that this is different than
optimism under uncertainty, where under-explored choices are intrinsically motivated. Bias is not
the same as, for example, an upper confidence bound, in that it is not a principled and calculated
preference for optimism. Instead, bias can cause too much optimism that prevents exploitation, or
non-uniform optimism that starves some pathways from being well explored.

4 Unbiased Value Estimation

4.1 Single-step unbiased estimation

We start with the case of a single-step binary action a P t0, 1u, and an estimator of its value
Qpaq „ N pµa, σ2

aq having jointly Gaussian distribution. We are interested in an unbiased estimator
of the maximal value maxa µa.

Proposition 1. Let a P t0, 1u, andQpaq a value estimator such thatQp0q´Qp1q „ N pµA, σ2
Aq. For

β “ 2|µA|

σ2
A

, the softmax expectation ofQ is an unbiased estimator of the optimal value maxaErQpaqs.
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Proof. Without loss of generality, assume µ0 ě µ1, and let the estimated advantage of action 0 over
action 1 be A “ Qp0q ´Qp1q „ N pµA, σ2

Aq, with µA ě 0. Then
EQrsoftmax

a
pQ;βqs

“ EQ

„

exppβQp0qqQp0q ` exppβQp1qqQp1q

exppβQp0qq ` exppβQp1qq



“ EQ

„

Qp0q ´
exppβQp1qqA

exppβQp0qq ` exppβQp1qq



“ EQ

„

Qp0q ´
expp´ 1

2βAqA

expp 12βAq ` expp´ 1
2βAq



“ µ0 ´

ż 8

´8

dA
1

?
2πσA

exp

ˆ

´
pA´ µAq

2

2σ2
A

˙

expp´ 1
2βAqA

expp 12βAq ` expp´ 1
2βAq

“ µ0 ´

ż 8

´8

dA
1

?
2πσA

exp

ˆ

´
A2 ` µ2

A

2σ2
A

˙

A

expp 12βAq ` expp´ 1
2βAq

(1)

“ µ0,

where in (1) β “ 2µA

σ2
A

is substituted in the numerator to cancel out the cross term exppAµA

σ2
A
q, and the

integrand can be seen to be antisymmetric.

This simple case already yields important intuition. As the advantage estimator A becomes more
certain during the learning process, β should increase inversely to its variance. Since the variance
of an estimator often decreases inversely to the amount of evidence, this result provides a formal
justification for the heuristic that schedules β linearly in the number of Q updates [7, 16].

Furthermore, if we consider the update policy π “ smapβQq, we see that

log
πp0q

πp1q
“ βA “

2AµA
σ2
A

„ N

˜

2

ˆ

µA
σA

˙2

, 4

ˆ

µA
σA

˙2
¸

.

Thus, the log-odds of selecting the greedy action 0 also increases inversely to A’s variance.

4.2 Entropy-regularized Bellman operator

We turn to present a TD algorithm for unbiased value estimation, based on an entropy-regularized
Bellman operator.
Definition 2 (Regularized Bellman operator). The regularized Bellman operator BF for some
objective F is given by

BF rQsps, aq “ Err|s, as ` γ Es1|s,a„prEa1|s1„πF
Q
rQps1, a1qss,

where πF
Q is optimal for F , i.e. for each state s

πF
Qp¨|sq “ argmax

πp¨|sq

Ea|s„πrFQ,πps, aqs.

The Bellman operator used in Q-learning is the special case where the objective is unregularized
FQ,π “ Q, so that πF

Q is the greedy policy. Here we use an entropy-regularized objective

FQ,πps, aq “ Qps, aq ´ β´1 log πpa|sq,

which is optimized by the softmax policy πQp¨|sq “ smapβQps, ¨qq.
Corollary 3. In a binary-action domain, let Q be a Gaussian-distributed unbiased estimator of
Q˚, and βpsq as in Proposition 1. Then BF rQs for F the entropy-regularized objective is also an
unbiased estimator of Q˚.

Proof.
EQrBF rQsps, aqs “ Err|s, as ` γ Es1|s,a„prmax

a1
Q˚ps1, a1qs (2)

“ Q˚ps, aq, (3)
where (2) follows from Proposition 1 and (3) from Bellman optimality.
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(a) (b) (c)

Figure 1: (a) Optimal state value in the grid world domain. Walls (black) are impassable. The
absorbing goal state has the highest value (darkest red). (b) Absolute error between the mean estimate
and the optimal value, averaged over all states and 10 runs. Standard deviation (shaded) is over the
runs. EQL (blue) is compared to β scheduling that is twice (green) and half (red) its theoretically-
motivated value, and to Q-learning having β “ 8 (cyan). (c) Bias in the state marked by a green dot
in (a), averaged over the 20 estimates and 10 runs. Standard deviation (shaded) is over the estimates.
The same four schedules are compared to the optimal value (black).

4.3 Entropy-regularized Q-learning

Entropy-regularized Q-learning (EQL) is an off-policy algorithm which, on experience ps, a, r, s1q,
updates

Qps, aq Ð Qps, aq ` αpr ` softmax
a1

pQps1, a1q;βq ´Qps, aqq,

where α is the learning rate and β the inverse-temperature. EQL is different than Q-learning and SQL
in that the softmax operator is used instead of, respectively, max and the log-partition. With careful
scheduling of α and β, which we detail below, EQL has the potential to maintain an approximately
unbiased estimator of Q˚.

The conditions of Corollary 3 require Q to always be a Gaussian-distributed unbiased estimator of
Q˚. Initializing such Q requires prior knowledge of Q˚. A reasonable assumption is that we know a
range in which Q˚ falls. In this case, we can initialize Q from a Gaussian distribution with standard
deviation on an order larger than that range, such that the initial bias is indiscernible in the noise.

Corollary 3 also requires that we know the distribution of Apsq “ Qps, 0q ´Qps, 1q for each state
s. It is unreasonable to know this exactly for an unbiased estimator, because then we would already
have the optimal policy, which selects action 0 whenever µApsq ě 0. Instead, we estimate this
distribution and use the estimate to select an approximate β. A remaining open question is how
sensitive Corollary 3 is to such approximation.

A naive implementation of EQL explicitly represents the distribution of Q, for example by represent-
ing its first and second moments, or as a set of particles sampled from that distribution. For each
experience step ps, a, r, s1q, β “ 2|µAps

1
q|

σ2
Aps

1q
is recovered from Q’s distribution, an estimate Qps1, ¨q

is sampled, and r ` softmaxa1pQps1, a1q;βq computed. Each update step then uses the average of
sufficiently many experience steps, such that this average is approximately Gaussian-distributed due
to the central limit theorem (CLT).

In summary, the update steps in EQL approximately preserve the conditions of Corollary 3, but may in
practice violate them in the following ways: (1) If the estimator is biased before the update, this bias
carries over to the updated estimator, but discounted by γ; (2) The updated estimator may not really
have a Gaussian distribution, e.g. due to averaging too few estimates for CLT; (3) The estimation of
β may not result in the prescribed value, e.g. under carried bias or misestimated uncertainty.

5 Experiments

In order to illustrate the theoretical results, we present a proof-of-concept implementation of EQL
in the same small grid-world domain as [7]. In the original domain, the states are the cells in
Figure 1a which are not walls (shown in black), and the actions are to move in the 8 directions. The
binary-action equivalent domain has the actions spell out the binary index of the desired direction in
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3 consecutive time steps, and each state is copied 1` 2` 4 times to also represent the index prefix of
length 0, 1, or 2. When the third bit is selected, the agent moves in the desired direction, but may
end up in another cell adjacent to the desired: the agent has probabilities 0.15 to slip in each cardinal
direction; 0.05 to slip in each intercardinal direction; and 0.2 to not slip and reach the desired cell. A
wall stops the agent from moving or slipping in that direction.

The expected reward is 0, except in the absorbing goal state (darkest red in Figure 1a) where it is 1.
The actual reward has Gaussian distribution with variance 1. The optimal expected return in each cell
is shown in Figure 1a. Due to the discount factor γ “ 0.95, the effective expected return in the goal
state is 20.

In order to compare different update parameters, and eliminate any indirect effect this may have
through the exploration policy, we use the same standard data sampling scheme [18, 7] in all
experiments: we sample a state s and an action a uniformly, and then sample the reward r and the
following state s1 using the domain’s distributions.

We initialize 20 value estimates by adding Gaussian noise with variance 1 to the optimal value
function. We then schedule α “ nps, aq´ω, where nps, aq is the number of updates of Qps, aq so
far, and ω “ 0.8 as suggested by Even-Dar and Mansour [19]. We schedule β using the empirical
mean and variance of our set of value estimates. In each update iteration, we update each of the 20
estimates once using one experience point ps, a, r, s1q. We note that this scheme is not proposed as an
efficient implementation of EQL, but rather only to illustrate its properties.

Figure 1b shows the absolute error between the empirical mean estimate and the optimal value,
averaged over all states and 10 runs of the algorithm (the shaded area is the standard deviation over
the runs). The blue curve has β scheduled according to the theory presented in Section 4. The green
and red curves have β twice and half of that, respectively. The cyan curve uses the mean of 20
Q-learning estimates in each of the 10 runs, which is equivalent to setting β “ 8. These results
suggest that the theoretically-motivated annealing schedule may help EQL converge faster.

Finally, Figure 1c shows the bias of the EQL estimator in a specific state (the green dot in Figure 1a)
and the greedy action. The bias is averaged over the 20 estimates and 10 runs (the shaded area is the
standard deviation over the estimates), and shown relative to the optimal value (black line). Note how
early bias in EQL (blue curve) is later reduced: this pattern is consistent with having no new bias
introduced by later updates, and early bias decay exponentially as it is discounted in each update.
These results suggest that EQL may indeed reduce bias in value estimators.

6 Conclusion

In this work, we presented a closed-form expression for the inverse-temperature parameter β that
makes softmax estimators unbiased for the optimal value. This β is given in terms of quantities
that can be estimated empirically, namely the mean and variance of the estimator of the advantage
of one action over the other in a binary-action setting. As a proof-of-concept, we developed a
simple temporal-difference algorithm that maintains an approximately unbiased value estimator, and
illustrated its properties in a simple domain.

Our theoretical analysis carries over completely to value function approximations that generalize better
and can learn faster in large state spaces, such as neural networks [20]. While the naive implementation
of EQL relied on a full tabular representation, recent advances in Bayesian deep learning provide
methods for efficiently representing and training distributions over models [21, 22, 23, 24]. These
methods provide powerful ways to maintain the distribution ofQ needed in EQL, and will be explored
in future work.

Related to our approach, Distributional RL defines a Bellman operator that operates on value
distributions [25, 26]. While Distributional RL models aleatoric value uncertainty, i.e. resulting from
the stochasticity of the process, this work is concerned with epistemic uncertainty, i.e. resulting from
incomplete learning. An interesting open question is how to combine the two approaches.
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