
Proceedings of Machine Learning Research vol 283:1–21, 2025 7th Annual Conference on Learning for Dynamics and Control

Realizable Continuous-Space Shields for Safe Reinforcement Learning

Kyungmin Kim
1,*

, Davide Corsi
1,*

, Andoni Rodrı́guez
2,3,*

,

JB Lanier
1
, Benjami Parellada

4
, Pierre Baldi

1
, César Sánchez

2
, Roy Fox

1

1University of California, Irvine, USA
2IMDEA Software Institute, Madrid, Spain
3Universidad Politécnica de Madrid, Madrid, Spain
4Universitat Politècnica de Catalunya, Barcelona, Spain

Editors: N. Ozay, L. Balzano, D. Panagou, A. Abate

Abstract

While Deep Reinforcement Learning (DRL) has achieved remarkable success across various do-
mains, it remains vulnerable to occasional catastrophic failures without additional safeguards. An
effective solution to prevent these failures is to use a shield that validates and adjusts the agent’s
actions to ensure compliance with a provided set of safety specifications. For real-world robotic
domains, it is essential to define safety specifications over continuous state and action spaces to
accurately account for system dynamics and compute new actions that minimally deviate from the
agent’s original decision. In this paper, we present the first shielding approach specifically designed
to ensure the satisfaction of safety requirements in continuous state and action spaces, making it
suitable for practical robotic applications. Our method builds upon realizability, an essen-
tial property that confirms the shield will always be able to generate a safe action for any state in
the environment. We formally prove that realizability can be verified for stateful shields,
enabling the incorporation of non-Markovian safety requirements, such as loop avoidance. Finally,
we demonstrate the effectiveness of our approach in ensuring safety without compromising the pol-
icy’s success rate by applying it to a navigation problem and a multi-agent particle environment1.
Keywords: Shielding, Reinforcement Learning, Safety, Robotics

1. Introduction

Deep Reinforcement Learning (DRL) has achieved impressive results in a wide range of fields, from
mastering complex games like Go (Silver et al., 2016) and Dota 2 (Berner et al., 2019) to real-world
applications in healthcare (Pore et al., 2021), autonomous driving (Tai et al., 2017), and robotics
(Aractingi et al., 2023). However, even advanced DRL algorithms (Schulman et al., 2017) face
considerable challenges when analyzed on specific corner cases, where they persist in demonstrating
a proclivity to commit critical mistakes (Corsi et al., 2024a; Szegedy et al., 2013). Such limitations
present a threat to the reliability of DRL systems, particularly when deployed in safety-critical
applications, where even a single failure can have potentially catastrophic consequences (Srinivasan
et al., 2020; Marvi and Kiumarsi, 2021; Katz et al., 2019; Corsi et al., 2021).

Traditional techniques to address safety concerns aim to embed this aspect as part of the learning
process; some examples include reward shaping (Tessler et al., 2018), constrained reinforcement
learning (Achiam et al., 2017; Ray et al., 2019), and adversarial training (Pinto et al., 2017). While
these approaches can significantly enhance the overall reliability of the policy, their guarantees are

* These authors contributed equally to the work.
1. The full version of the paper, including the appendix, is available at https://arxiv.org/abs/2410.02038.

© 2025 K. Kim, D. Corsi, A. Rodrı́guez, J. Lanier, B. Parellada, P. Baldi, C. Sánchez & R. Fox.

https://arxiv.org/abs/2410.02038

KIM CORSI RODRÍGUEZ LANIER PARELLADA BALDI SÁNCHEZ FOX

Offl ine Online

Realizable?

Yes No

Real i zabi l i t y Check
Input: system configuration

 Env.

Obser vation

Safe Action

Hmm...
maybe new

r equi r em ents?

Shield
State

Sh

Sh

Figure 1: In the offline process, the realizability check verifies whether the system is realizable given
the system configuration—i.e., the environment dynamics, safety requirements, and input domain.
If not realizable, the system must be modified. Once proved realizable (i.e., a Proper Shield),
the shield can be safely deployed in the environment for the online process.

typically empirical and their benefits are provided only in expectation (Srinivasan et al., 2020; He
et al., 2023). Although these may be sufficient for many problems, they cannot guarantee the safety
of a system, limiting their applicability in highly safety-critical contexts.

To face this limitation, a promising family of approaches provides formal safety guarantees
through the adoption of an external component, commonly referred to as a shield (Garcıa and
Fernández, 2015; Corsi et al., 2024b). A shield acts as a protective wrapper over the agent to ensure
that its actions remain within safe boundaries, effectively preventing it from making dangerous or
undesired decisions (Alshiekh et al., 2018). However, most shielding techniques in the literature
face a fundamental challenge: there are states where no action satisfies all safety criteria simultane-
ously. This issue is particularly critical in robotics. When an agent encounters a scenario where no
safe action is available from the shield, it is left uncertain about how to proceed, as a default safe
action is not always feasible in complex and dynamic environments. Therefore, it is essential to
develop a shield that can always provide an action satisfying the given specifications for any state
of the system, which we define as a Proper Shield.

In the logic community, ensuring this property is equivalent to guaranteeing the realizability of
the shield. Alshiekh et al. (2018) proposed a method to design a proper shield using Linear Temporal
Logic (LTL). Their approach uses the synthesis of the shield as a formal tool to automatically
guarantee the realizability of the system. However, this method is limited to discrete states and
actions, as the LTL synthesizer is not designed to handle continuous spaces. This constraint is
overly restrictive for real-world reinforcement learning applications such as robotics where the state
and action spaces are often continuous, high dimensional and nonlinear. More in general, despite
its necessity and importance, little has been explored regarding continuous-space proper shields in
robotics. Compared to discrete spaces, ensuring a proper shield in continuous spaces is significantly
more challenging, as theoretically demonstrated by Rodrı́guez et al. (2025).

In this work, we extend a proper shield to continuous spaces, addressing a gap in existing meth-
ods. Our approach builds on the theoretical foundations provided by Rodrı́guez and Sánchez (2023),
which solve the realizability problem for specific fragments of LTLt, an extension of LTL that al-
lows to include real values in the specification. While their work focuses purely on logical formu-
lations with no direct connection to sequential decision-making, we adapt these ideas to develop a
practical framework for generating a proper shield for continuous control tasks. As shown in Fig. 1,
realizability checks are part of an offline procedure conducted prior to deployment. Crucially, work-

2

CONTINUOUS SAFETY SHIELD FOR RL

ing in continuous spaces allows us to encode a more accurate, model-based representation of the
physical world within the specifications. Additionally, working with real values allows us to inte-
grate optimization techniques to ensure that the shield not only returns safe actions but also provides
decisions closely aligned with those proposed by the agent. This ensures that the agent’s behavior
remains both effective and optimal while adhering to strict safety constraints.

Additionally, we formally prove that realizability can be verified for shields with non-Markovian
safety requirements. While the realizability of continuous non-Markovian requirements is typically
undecidable, we address this challenge by introducing a so-called anticipation fragment of LTLt that
eliminates operators requiring infinite memory, assuming deterministic dynamics. This fragment
is expressive enough to capture relevant safety requirements under assumptions that are common
in practical scenarios. For example, in our case study, we encode a rule to avoid loops within a
specified time window (e.g., do not visit the same region for i timesteps) to enhance success rates.

We demonstrate the effectiveness of our shielding approach in a mapless navigation domain,
with additional experiments in a particle world multi-agent environment. In the mapless naviga-
tion domain, the shield effectively protects the agent from obstacles in an unknown environment,
highlighting the shield’s ability to enforce safety without relying on pre-defined maps or global
knowledge. We guarantee the realizability of safety requirements, ensuring that the agent has al-
ways at least one safe action available. Furthermore, with the integration of optimization techniques
and non-Markovian requirements, we achieve the safety of the system with a minimal impact on
the policy performance. In the particle-world multi-agent environment, our shield prevents unsafe
interactions among multiple agents in a shared, continuous space.

In summary, the contributions of this paper are as follows: (1) We introduce continuous-space
proper shields for safe control. A detailed comparison with alternative shielding techniques is pro-
vided in Tab. 4 in the Appendix. (2) We propose a shield that enables formal realizability proofs
for non-Markovian requirements by introducing the ‘anticipation fragment’ of LTLt, a decidable
subset designed for stateful shields. This fragment effectively captures safety requirements under
reasonable assumptions for practical use. (3) We demonstrate the merits of our method on robotic
applications, including a mapless navigation domain and a particle-world multi-agent environment.

2. Preliminaries

We model interaction with an environment as a Partially Observable Markov Decision Process
(POMDP), defined by a tuple (X,A,O, P,R,⌦, �), with a state space of X , action space A, and
observation space O. P : X ⇥ A ! �(X) represents the state transition function, where �(·)
denotes the set of all probability distributions over the given set. R : X ⇥ A ! R is the reward
function. ⌦ : X ! �(O) represents the observation function, and � 2 (0, 1] is the discount factor.
Our objective is to learn a policy ⇡ : O ! �(A) that maximizes the expected sum of discounted
rewards over time. This is defined as E

hP
T

t=0 �
tR(xt, at)

i
, where xt and at are the state and action

at time t until the episode horizon T .

2.1. Concepts in Temporal Logic and Reactive Systems

LTL. Linear Temporal Logic (LTL) is a formal system for reasoning about the behavior of discrete-
time systems over an infinite timeline. Concretely, it is a modal logic that extends propositional logic
with temporal operators that allow the expression of properties about the future evolution of the sys-
tem. Some key temporal operators in LTL include: (1) # (next): The property holds in the next

3

KIM CORSI RODRÍGUEZ LANIER PARELLADA BALDI SÁNCHEZ FOX

timstep; and (2) ⇤ (always): The property holds at all future timsteps. Using these operators, LTL
formulas can express a wide range of temporal properties, such as safety (“something bad never
happens”). For instance, while in classic propositional logic we can express v1 ! v2, in LTL we
can also express ⇤(v1 ! #v2), which means that at every step, if v1 holds, then v2 must hold in
the next timestep.

Satisfiability and Realizability. Given an LTL formula ', the satisfiability problem determines
if there is any possible execution that satisfies the specified temporal properties; i.e., we say ' is
satisfiable if there is a possible assignment of the variables in ' such that ' is satisfied. More
formally, given variables v = {v0, v1, ...} in ', if 9v s.t. '(v) holds, then ' is satisfiable. A re-
active system is a type of system that continuously interacts with its environment by responding to
inputs and adapting its behavior accordingly. To ensure such a system can meet the requirements
under all possible conditions, we need a property stronger than satisfiability: realizability. In
realizability, the variables of ' are divided into an uncontrollable player (i.e., the inputs pro-
vided by the environment) and a controllable player (i.e., the outputs provided by the system). Then,
a formula ' is realizable if for all possible valuations of the input variables, the output variables can
be assigned so that the ' is not violated.

Realizability for Continuous Domains. LTL is a powerful tool for reasoning about temporal
properties. However, it lacks the expressiveness needed to handle continuous values, which are es-
sential for realistic robotics applications to accurately encode environment dynamics in continuous
spaces. To address this, we use Linear Temporal Logic modulo theories (LTLt), an extension of
LTL that allows formulas to include variables from a first-order theory T . While this has a precise
meaning in formal verification2, for simplicity in this paper, it means that LTLt enables specifying
more complex properties involving both the temporal behavior of a system and real values data. A
recent development by Rodrı́guez and Sánchez (2024b) solved the problem of realizability for cer-
tain fragments of LTLt. This makes it feasible to create realizable continuous-space shields using
LTLt to ensure such expressive properties; for example, (v1 > 2.5) ! #(v2 > v1). Note that
another powerful operator in LTLt is �v, which, given v, allows access to the value of v in the
previous timestep. However, this expressivity comes at the expense of the LTLt not being decidable
anymore (i.e., realizability checking procedures are not guaranteed to terminate).

3. Realizable Continuous Shields with Non-Markovian Requirements

A deep reinforcement learning shield is an external component that works on top of a policy to
ensure compliance with a set of safety requirements '. A Proper Shield is a special case of a
shield that can provide safe alternatives to unsafe actions for all states in the system.

In this paper, to address the complexity of real-world robotic problems, our shield is designed
to be stateful, enabling it to handle non-Markovian requirements. The shield maintains an internal
state h 2 H , which is updated after each time step and, by construction, represents only safe
states (i.e., states where ' has not been violated), as any violation in the past would contradict the
safety specifications. Depending on the task, h can range from being empty (for purely Markovian
requirements) to capturing the full state-action history. In all cases, h represents a subset of the
complete history relevant for enforcing safety. Formally, we define a Proper Shield as follows:

2. We invite the reader to read the supplementary material (Appendix E) for further insights.

4

CONTINUOUS SAFETY SHIELD FOR RL

Definition 1 (Proper Shield)

Let A be the action space, O the observation space, H the set of shield states, and ' : A⇥O⇥H !
{true,false} which encodes a set of safety specifications. We define a Proper Shield as a
function ⇣ : A ⇥ O ⇥ H ! A such that for all a 2 A, o 2 O, and h 2 H , the safety condition
'(⇣(a, o, h), o, h) = true holds.

Intuitively, a Proper Shield is a function ⇣ designed to always return an action a such that '
holds when starting from the initial state. The shield ⇣ is combined with an external agent ⇡ (in our
case, an RL agent) to ensure that the composition ⇣(⇡(o), o, h) never violates '. At each time step,
given the shield’s internal state h: (1) ⇡ receives observation inputs o from the environment and
produces an action a; (2) we check whether '(a, o, h) holds; and (3) if '(a, o, h) holds, the shield
does not intervene, but if there is a violation, it overrides a with a corrected action â = ⇣(a, o, h)
such that '(â, o, h) now holds for that step, as described in Fig. 1 (right).

Ensuring that ' is realizable is essential, as unrealizability could lead to situations where no
safe action is possible for a given state. In such cases, computing â is not possible because the
formula is unsatisfiable (UNSAT). In our framework (see Fig. 1, left), we check the realizability of
' as part of an offline process prior to deployment, treating the observation o and shield state h as
uncontrollable variables, while considering the action a as a controllable variable.

Alshiekh et al. (2018) showed that a proper shield can be constructed using LTL, but their ap-
proach is limited to discrete state and action spaces. This restricts its applicability to robotics tasks
and fails to capture accurate environment dynamics. In contrast, our shield leverages the more ex-
pressive specification language, LTLt, enabling the construction of a continuous-space proper shield
that incorporates accurate dynamics directly into the specification. Moreover, given a continuous
space, we can minimize a distance metric between the correction â and the original candidate output
a. This allows us to optimize the shield’s safe-action correction by returning â such that it is the
closest safe value to the agent’s proposed action a.

3.1. Non-Markovian Encoding in LTLt

By exploiting recent advancements in LTLt synthesis as discussed in the previous sections, it be-
comes possible to encode Markovian properties that can be synthesized to create a proper shield:

Example 1 Consider a simple agent that moves along a one-dimensional line, where its state is
represented by a single variable x 2 (0, 1]. The action space consists of a single action a 2 [�1, 1],
which specifies both the direction and magnitude of the step. The dynamics are given by xt+1 =
xt+at. Suppose we wish to enforce a simple safety requirement that ensures the agent never moves
to a position lower than zero. This requirement can be encoded as follows:

⇤([0 < x  1] ! ¬[a < �x])

Note that this requirement is highly simplified; the challenge for the solver arises from the expo-
nential growth in the number and complexity of such requirements. Nevertheless, properties of this
form are often sufficient to encode essential safety requirements, such as collision avoidance. How-
ever, for real-world problems, we often need to incorporate requirements that extend beyond simple
input-output relationships, involving multiple steps in the environment and sequences of the agent’s
decisions. In such cases, it is necessary to encode non-Markovian requirements (or multistep prop-
erties) in a decidable fragment of LTLt, that guarantees an automatic realizability check. To better
explain our approach we rely on a running example:

5

KIM CORSI RODRÍGUEZ LANIER PARELLADA BALDI SÁNCHEZ FOX

Example 2 Let us revisit the agent from Example 1. We may now want to ensure that, once the
agent visits a specific region of the state space, it will never return to the same position within a
finite time horizon i. Specifically, we subdivide the state space into a finite number of intervals
r 2 R, where r = [rl, ru]. This requirement requires a non-Markovian constraint as it involves
consideration of multiple steps in the environment. We can formally encode the property using an
LTLt formula ' = A ! G, where A represents the assumptions, and G specifies the guarantees the
system must uphold under those assumptions:

[A] ⇤[x = �a+�x] [G] ⇤[
^

r2R
[x 2 r] ! ⇤[1,i]¬[x 2 r]]

where (i) A (left) is an environment assumption that describes the dynamics of the scenario and
allows to compute the next state given the current state and the action. Specifically, the operator
�x represents a specific value that the variable x has taken in the previous timestep; and (ii) G
(right) are the guarantees by the system, in this case, stating that if x 2 r in a given timestep, then
x /2 r throughout i timesteps; i.e., the region r will not be re-visited for i timesteps.

Example 3 Note that using the operator � is a very natural way to define A. However, this means
that ' is encoded in a fragment of LTLt that is not decidable, because � introduces unbounded
memory to the program, as it allows an uncontrolled infinite nesting of the operator which at the
same time may end up in an infinite recursion. Thus, realizability checking is not guaranteed to
terminate and we need to rewrite A in a fragment of LTL that does not include �, specifically:

[Ã] ⇤[
^

r2R
[(x+ a) 2 r] ! #[x 2 r]],

which means that when the result of applying an action to a state falls within the region r, the state
itself must belong to r in the next time step. This simple reformulation allows us to eliminate the
operator �, making realizability of the formula decidable while still preserving dynamic prediction
in the subset of information relevant to the requirement G.

An essential observation that makes this transformation possible is that we are (i) assuming to
have access to a safety-relevant subset of the robot’s dynamic, often called safety-dynamics in the
literature (Yang et al., 2023); and (ii) we encoded the requirement for a finite number of regions
r 2 R and a finite horizon i. In our example, we can anticipate the constraints-relevant components
of the next state given the action and the current state of the system. Thus, we can anticipate any
unsafe action of the agent, and potentially override it (whenever the specification realizable).

Theorem 2 If ' is an LTLt formula where the subset of the next values of the environment variables
that appear in ' are isolated and can be fully determined from the current environment and system
values, then ' can be rewritten without the use of � (proof in Appendix D).

Definition 3 (Anticipation Fragment) The class of LTLt formula that can be translated to not
using � is called the anticipation fragment of LTLt.

Corollary 4 If ' belongs to the anticipation fragment, then the realizability of ' is decidable.

6

CONTINUOUS SAFETY SHIELD FOR RL

4. Case Study: Mapless Navigation with Reinforcement Learning

To ground and demonstrate our theoretical framework in a realistic robotics scenario, we consider a
mapless indoor navigation task that couples continuous control with partial observability, providing
a challenging setting for provably safe decision making.

In this task, an agent must reach a target position while avoiding static obstacles in a previously
unseen rectangular room. Each episode randomizes the agent’s start pose, goal location, and place-
ment of rectangular obstacles. Observations combine (i) a 23-ray lidar scan (360° field of view)
that returns normalized distances to the nearest obstacles with (ii) the robot’s planar position, head-
ing, and goal coordinates. Actions are continuous linear and angular velocities. We train policies
for 500 episodes with PPO (Schulman et al., 2017), which has proven effective on similar naviga-
tion benchmarks (Amir et al., 2023). Appendix B provides additional details on the environment
setup, reward function, and hyperparameters. Fig. 2 plots the resulting learning curves. Critically, a
trained unshielded policy succeeds in 98.1% of trials but still collides in 1.2% of episodes, a small
but unacceptable failure rate that motivates the shielding specification introduced next.

4.1. Continuous Shield for Safe Navigation

In this section, we delineate the safety requirements we aim to enforce and how we specify them
using LTLt to ensure robust and reliable performance. As discussed in the introduction, this section
assumes access to the full system dynamics. However, in practice, this assumption can often be
relaxed by relying solely on a partial model that captures the safety-relevant aspects of the dynamics.

Markovian Requirements for Collision Avoidance. In navigation tasks, ensuring collision avoid-
ance is crucial under all circumstances. To achieve this, we encode specifications by leverag-
ing the robot’s dynamics, which our framework supports for continuous spaces. Given an action
a = [a0, a1], the robot first rotates by a1 and then translates by a0, where a0 2 [�L0, L0] and
a1 2 [�L1, L1] and LN is a step size. Positive a0 indicates forward motion and positive a1 means
a right turn. As the next pose of the robot is predictable through the dynamics, we can design re-
quirements that strictly avoid collisions in the next timestep. Since robot rotation and translation
are performed sequentially in the environment dynamics, requirements for each can be designed
separately. Specifically, the red area in Fig. 3 (left) shows the robot’s trajectory when it makes a
maximum right turn of L1. To conservatively prevent collisions from right turns, we prohibit turn-
ing right if any lidar value li is below a certain threshold T i. These thresholds are precomputed
based on the robot’s dynamics and maximum step size L1 and they vary for each lidar (highlighted
in blue). Formally, the specification for a right turn is: 9i s.t. (li  T i) ! a1  0. The same
principle applies to left turns. For translation, we limit the maximum distance that we can translate
based on the minimum distance of potential obstacles that any lidars sense in the direction of travel.
Consider the ith lidar with value li at an angular position ✓i relative to the robot’s horizontal line,
measured clockwise from the left. Note that ✓i is known by construction as part of the system. After
the robot rotates by a1, the angular position w.r.t. the new horizontal line becomes ✓̂i = ✓i � a1.
If this lidar reveals that the obstacle is in the path of forward translation, the translation a0 cannot
exceed the distance to the obstacle; otherwise, a collision will occur. Formally, the requirement for
forward translation w.r.t. the ith lidar is: li|cos✓i0|  W

2 ! a0 +Hf < li|sin✓i0|, where W is the
robot’s width and Hf is the lidar’s forward offset. For forward translation, this requirement must

7

KIM CORSI RODRÍGUEZ LANIER PARELLADA BALDI SÁNCHEZ FOX

Figure 2: Average success rate and collision rate
obtained during the DRL training process for 500
episodes (x-axis) without any shield applied (aver-
aged over 5 different random seeds).

Figure 3: Description of collision avoid-
ance requirements that include the dy-
namic of the robot as part of the formula.

hold for all lidars in front of the robot. Similar requirements apply for backward translation, with
different signs, offsets, and considering lidars at the back.

Non-Markovian Requirements for Loop Avoidance. While safety remains paramount in au-
tonomous systems, ensuring collision avoidance, etc. alone can lead to overly conservative behavior,
often characterized by repetitive or looping actions. The agent then can be particularly inefficient,
wasting time and energy. To address this issue, we introduce a set of important non-Markovian
requirements. These prohibit repeating the same action in a state for a certain time window. This
encourages the agent to explore new actions, potentially helping it escape from being stuck. We
encode these requirements using a queue constructed from the shield state of length LQ. Each
queue element consists of the robot’s pose (x/y position and rotation) and actions, represented as
(x, y, r, a0, a1). To effectively check for repeated tuples of continuous values, we quantize the pose
and action space into grids of GP and GA cells, respectively. In this way, the shield does not allow
an action (a0, a1) in a state (x, y, r) if any of the previous tuples in the queue falls into the same
cell. Although these requirements incorporate stateful memory as an additional input, making them
non-Markovian, our approach enables the realizability check with such inputs.

4.2. Realizability and Shielding Implementation

GA

3 5 30

LQ

1 31 0 0
13 288 6 0
100 336 30 0

Table 1: Number of episodes where the
shield returns unsat out of 500 tests, with
realizable configurations in green and others
in red. realizability checking identi-
fies unsatisfiable specifications that empiri-
cal evaluation might overlook.

We specify the above requirements in LTLt and pro-
vide them to the offline realizability check
process to guarantee that these requirements are
always satisfiable. Our realizability check
process follows the implementation established in
Rodrı́guez and Sánchez (2023); Rodrı́guez and
Sánchez (2024a,b); Rodrı́guez et al. (2024). After
realizability for our requirements is guaran-
teed, at test-time, we deploy our agent with an online
shield to provide safe alternative actions when the
agent suggests an action that violates our constraints.
The overall algorithm for deploying the online shield
is presented in Appendix C.

8

CONTINUOUS SAFETY SHIELD FOR RL

No Shield Collision Shield Collision & Loop Shield Optimizer

Success Collision Success Collision Success Collision Success Collision

Expert A 0.87 ± 0.05 0.03 ± 0.03 0.87 ± 0.04 0.00 ± 0.00 0.90 ± 0.02 0.00 ± 0.00 0.92 ± 0.02 0.00 ± 0.00
Expert B 0.88 ± 0.03 0.03 ± 0.02 0.87 ± 0.03 0.00 ± 0.00 0.90 ± 0.02 0.00 ± 0.00 0.90 ± 0.02 0.00 ± 0.00
Moderate A 0.77 ± 0.04 0.01 ± 0.01 0.76 ± 0.04 0.00 ± 0.00 0.79 ± 0.04 0.00 ± 0.00 0.80 ± 0.05 0.00 ± 0.00
Moderate B 0.85 ± 0.02 0.04 ± 0.02 0.85 ± 0.02 0.00 ± 0.00 0.87 ± 0.02 0.00 ± 0.00 0.87 ± 0.02 0.00 ± 0.00
Unsafe 0.22 ± 0.03 0.78 ± 0.03 0.40 ± 0.05 0.00 ± 0.00 0.47 ± 0.02 0.01* ± 0.01 0.69 ± 0.03 0.01* ± 0.00

Table 2: Comparison of success rate and collision rate with different settings of the shield on the
mapless navigation environment. Mean scores over 5 seeds (100 runs per seed) with standard devi-
ations are presented. *These collisions arose due to the partial observability in the environment and
can be prevented by increasing the number of 1D lidar sensors.

5. Experimental Results

Realizability Check. A crucial aspect of our shield is that it guarantees a safe action in any state
through a realizability check. Ensuring realizability by hand is challenging with
complex requirements like ours, and statistics-driven safety checks are also unreliable. In Table 1,
we evaluate a shielded agent for 500 episodes with multiple different queue lengths (LQ) and ac-
tion grid sizes (GA) without performing a realizability check beforehand. We then tally
the number of times we encountered a unsat output from the shield due to no safe action be-
ing available. Finally, we verify the realizability of each shield specification and highlight
the realizable configuration in green. We see that performing a realizability check can warn us
about potentially unsatisfiable and thus unsafe specifications even when empirical evaluations do
not indicate a problem. For instance, no unsat situations occurred for our shield with evaluating
(LQ, GA) = (100, 30), however, our realizability check reveals that there still are potential
situations where (100, 30) is not satisfiable. For subsequent experiments, we use one of the verified
realizable configurations, (LQ, GA) = (30, 13).

Online Shielding. In Table 2, we report the analysis of 5 different RL agents with different ca-
pabilities. Expert A and Expert B are fully trained PPO models. Moderate A and Moderate B
are checkpoints collected during an intermediate phase of learning and are more prone to making
mistakes and failing the task. Finally, Unsafe is Expert A deployed without access to lidar data,
simulating a dangerous agent oriented toward unsafe behavior and collisions. We believe that the
addition of unsafe models is particularly valuable for our analysis to show that the shield can be
effective with any model and guarantee safety independently of the input policy.

The first column shows the success rate and collision rate when each policy is executed without
any external shielding component. Although the success rates for the well-trained agents could
be considered satisfactory, all agents made some collisions with an obstacle. The second column
shows each policy’s performance with the collision avoidance shield added, clearly demonstrating
the effectiveness of our shield, which reduces the number of collisions to zero. However, the shield
alone leads to overly conservative behavior, resulting in the unsafe trajectories being converted
into timeouts with oscillating behavior rather than successful episodes. Crucially, the third column
shows the complete version of our shield (i.e., with collision and loop avoidance requirements),
showing that the satisfaction of both properties allows the agent to recover from the conservative
behavior and increase the success rate while ensuring the safety of the policy. Finally, the last
column shows a small additional impact of optimizing the shield’s choice of safe action. Since

9

KIM CORSI RODRÍGUEZ LANIER PARELLADA BALDI SÁNCHEZ FOX

(a)

(b)

obstacles destination starting point end point

Figure 4: An unshielded agent collides
with obstacles (brown) and avoids them
when a collision shield is applied. By in-
troducing non-Markovian requirements,
the agent also avoids oscillations and
reaches its target destination (yellow).

No Shield Safety Shield

Success Collision Success Collision

Model A 0.56 ± 0.05 0.44 ± 0.05 0.93 ± 0.02 0.00 ± 0.00
Model B 0.53 ± 0.07 0.47 ± 0.07 0.95 ± 0.01 0.00 ± 0.00
Model C 0.64 ± 0.03 0.36 ± 0.03 0.96 ± 0.00 0.00 ± 0.00
Model D 0.66 ± 0.02 0.34 ± 0.02 0.97 ± 0.01 0.00 ± 0.00

Table 3: Results on the Particle World environ-
ment. The No Shield agent operates without awareness
of the safety requirements and, as a result, is not trained
to avoid collisions. In this setting, a single collision is
sufficient to terminate the episode unsuccessfully. Due
to the full observability of the environment, it is pos-
sible to exploit the system’s dynamics to account for
all potential sources of collision, thereby reducing the
collision rate to zero.

we operate in a continuous space, our shield can employ an optimizer to return a safe action that
minimizes distance to the original policy output. In this navigation domain, we minimize |â1 � a1|
where a1 is the agent’s original angular velocity and â1 is the angular velocity of the shielded
action. Fig. 4 illustrates a policy’s behavior both with and without a shield employed for collisions
and loops. A detailed discussion on the broader relationship between shielding and other safety-
oriented reinforcement learning methods is provided in Appendix F.

Particle World Experiments To further demonstrate the generalizability and robustness of our
shielding approach, we also experiment in a multi-agent Particle World environment (Mor-
datch and Abbeel, 2017). Four agents are tasked with reaching target positions on the opposite side
of the map while maintaining a safe distance from one another (a screenshot of this environment
can be found in Fig. 5 of the Appendix). The primary safety requirement in this environment is to
ensure that the agents always keep a specified minimum distance between each other, illustrated as
circles around the agents. The results, summarized in Table 3, demonstrate that our safety shield can
be seamlessly applied to this new environment with a continuous state and action space. Notably,
our shielding technique in Particle World successfully eliminates all violations of the safety
requirements, effectively preventing any unsafe actions. This highlights the versatility and effec-
tiveness of our shielding approach, showcasing its potential for broader applications across various
continuous-space environments.

6. Conclusion

In this paper, we introduce the concept of Proper Shield and propose a novel shielding ap-
proach for continuous action spaces with guaranteed realizability. Our results show that this tech-
nique effectively ensures the safety of a reinforcement learning agent in a navigation task. A key
contribution is the theoretical and empirical integration of non-Markovian requirements into the
shielding process, mitigating overly conservative behavior and enabling recovery from loops or re-
peated actions while maintaining efficient goal-directed progress. Limitations and future directions
are discussed in Appendix G.

10

CONTINUOUS SAFETY SHIELD FOR RL

Acknowledgments

Authors Kim and Lanier were supported by a Hasso Plattner Foundation Fellowship. This work
was funded in part by the National Science Foundation (Award #2321786).

References

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, 2017.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI conference
on artificial intelligence, 2018.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European
control conference (ECC), pages 3420–3431. Ieee, 2019.

Guy Amir, Davide Corsi, Raz Yerushalmi, Luca Marzari, David Harel, Alessandro Farinelli, and
Guy Katz. Verifying learning-based robotic navigation systems. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2023.

Michel Aractingi, Pierre-Alexandre Léziart, Thomas Flayols, Julien Perez, Tomi Silander, and
Philippe Souères. Controlling the solo12 quadruped robot with deep reinforcement learning.
scientific Reports, 2023.

Clark W. Barrett, Cesare Tinelli, Haniel Barbosa, Aina Niemetz, Mathias Preiner, Andrew
Reynolds, and Yoni Zohar. Satisfiability modulo theories: A beginner’s tutorial. In For-
mal Methods - 26th International Symposium, FM 2024, Milan, Italy, September 9-13, 2024,
Proceedings, Part II, volume 14934 of Lecture Notes in Computer Science, pages 571–596.
Springer, 2024. doi: 10.1007/978-3-031-71177-0\ 31. URL https://doi.org/10.
1007/978-3-031-71177-0_31.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer-Verlag, Berlin, Heidelberg, 2007. ISBN 3540741127.

Wonhyuk Choi, Bernd Finkbeiner, Ruzica Piskac, and Mark Santolucito. Can reactive synthesis and
syntax-guided synthesis be friends? In Ranjit Jhala and Isil Dillig, editors, 43rd ACM SIGPLAN
Int’l Conf. on Programming Language Design and Implementation (PLDI 2022), pages 229–
243. ACM, 2022. doi: 10.1145/3519939.3523429. URL https://doi.org/10.1145/
3519939.3523429.

George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition-preliminary report. SIGSAM Bull., 8(3):80–90, 1974. doi: 10.1145/1086837.
1086852. URL https://doi.org/10.1145/1086837.1086852.

11

https://doi.org/10.1007/978-3-031-71177-0_31
https://doi.org/10.1007/978-3-031-71177-0_31
https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/3519939.3523429
https://doi.org/10.1145/1086837.1086852

KIM CORSI RODRÍGUEZ LANIER PARELLADA BALDI SÁNCHEZ FOX

Davide Corsi, Enrico Marchesini, and Alessandro Farinelli. Formal verification of neural networks
for safety-critical tasks in deep reinforcement learning. In Uncertainty in Artificial Intelligence,
2021.

Davide Corsi, Raz Yerushalmi, Guy Amir, Alessandro Farinelli, David Harel, and Guy Katz. Con-
strained reinforcement learning for robotics via scenario-based programming. arXiv preprint
arXiv:2206.09603, 2022.

Davide Corsi, Guy Amir, Guy Katz, and Alessandro Farinelli. Analyzing adversarial inputs in deep
reinforcement learning. arXiv preprint arXiv:2402.05284, 2024a.

Davide Corsi, Guy Amir, Andoni Rodriguez, Cesar Sanchez, Guy Katz, and Roy Fox. Verification-
guided shielding for deep reinforcement learning. The 1st Reinforcement Learning Conference
(RLC), 2024b.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 2015.

Luca Geatti, Alessandro Gianola, Nicola Gigante, and Sarah Winkler. Decidable fragments of ltlf
modulo theories (extended version). CoRR, abs/2307.16840, 2023. doi: 10.48550/arXiv.2307.
16840. URL https://doi.org/10.48550/arXiv.2307.16840.

Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang, Zheng Tian,
Jun Wang, Alois Knoll, and Yaodong Yang. Multi-agent constrained policy optimisation. arXiv
preprint arXiv:2110.02793, 2021.

Tairan He, Weiye Zhao, and Changliu Liu. Autocost: Evolving intrinsic cost for zero-violation
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

Andreas Katis, Grigory Fedyukovich, Huajun Guo, Andrew Gacek, John Backes, Arie Gurfinkel,
and Michael W. Whalen. Validity-guided synthesis of reactive systems from assume-guarantee
contracts. In Proc. of the 24th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, (TACAS 2018), volume 10806 of LNCS, pages 176–
193. Springer, 2018. doi: 10.1007/978-3-319-89963-3\ 10. URL https://doi.org/10.
1007/978-3-319-89963-3_10.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification 2017.
Springer, 2017.

Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The marabou framework for veri-
fication and analysis of deep neural networks. In Computer Aided Verification 2019, 2019.

Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past. In Logics of
Programs, Conference, Brooklyn College, New York, NY, USA, June 17-19, 1985, Proceed-
ings, volume 193 of Lecture Notes in Computer Science, pages 196–218. Springer, 1985. doi:
10.1007/3-540-15648-8\ 16. URL https://doi.org/10.1007/3-540-15648-8_16.

12

https://doi.org/10.48550/arXiv.2307.16840
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1007/978-3-319-89963-3_10
https://doi.org/10.1007/3-540-15648-8_16

CONTINUOUS SAFETY SHIELD FOR RL

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel J
Kochenderfer, et al. Algorithms for verifying deep neural networks. Foundations and Trends®
in Optimization, 2021.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
In Proceedings of the AAAI conference on artificial intelligence, 2020.

Zahra Marvi and Bahare Kiumarsi. Safe reinforcement learning: A control barrier function opti-
mization approach. International Journal of Robust and Nonlinear Control, 2021.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Quan Nguyen and Koushil Sreenath. Exponential control barrier functions for enforcing high
relative-degree safety-critical constraints. In 2016 American Control Conference (ACC), pages
322–328. IEEE, 2016.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. In International conference on machine learning, 2017.

Ameya Pore, Davide Corsi, Enrico Marchesini, Diego Dall’Alba, Alicia Casals, Alessandro
Farinelli, and Paolo Fiorini. Safe reinforcement learning using formal verification for tissue
retraction in autonomous robotic-assisted surgery. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2021.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforce-
ment learning. arXiv preprint arXiv:1910.01708, 2019.

Andoni Rodrı́guez and César Sánchez. Boolean abstractions for realizability modulo theories. In
International Conference on Computer Aided Verification, pages 305–328. Springer, 2023.

Andoni Rodrı́guez, Guy Amir, Davide Corsi, César Sánchez, and Guy Katz. Shield synthesis for
LTL modulo theories. In Proc. of the 39th AAAI Conf. on Artificial Intelligence (AAAI 2025),
pages 15134–15142. AAAI Press, 2025.

Andoni Rodrı́guez and César Sánchez. Adaptive Reactive Synthesis for LTL and LTLf Modulo
Theories. In Proc. of the 38th AAAI Conf. on Artificial Intelligence (AAAI 2024), 2024a.

Andoni Rodrı́guez and César Sánchez. Realizability modulo theories. Journal of Logical and
Algebraic Methods in Programming, 2024b.

Andoni Rodrı́guez, Felipe Gorostiaga, and César Sánchez. Predictable and Performant Reactive
Synthesis Modulo Theories via Functional Synthesis. In Proc. of the 22nd International Sympo-
sium on Automated Technology for Verification and Analysis (ATVA 2024), 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 2016.

13

KIM CORSI RODRÍGUEZ LANIER PARELLADA BALDI SÁNCHEZ FOX

T Simão, S Tindemans, and M Spaan. Training and transferring safe policies in reinforcement
learning. In Sl: Adaptive and Learning Agents, 2022.

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforcement learning: Continuous
control of mobile robots for mapless navigation. In 2017 IEEE/RSJ international conference on
intelligent robots and systems (IROS), 2017.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2018.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. Advances in Neural Information Processing Systems, 2021.

Wei Xiao, Calin Belta, and Christos G Cassandras. Adaptive control barrier functions. IEEE Trans-
actions on Automatic Control, 67(5):2267–2281, 2021.

Wen-Chi Yang, Giuseppe Marra, Gavin Rens, and Luc De Raedt. Safe reinforcement learning via
probabilistic logic shields. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, pages 5739–5749, 2023.

Lijun Zhang, Lin Li, Wei Wei, Huizhong Song, Yaodong Yang, and Jiye Liang. Scalable constrained
policy optimization for safe multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 37:138698–138730, 2024.

14

	Introduction
	Preliminaries
	Concepts in Temporal Logic and Reactive Systems

	Realizable Continuous Shields with Non-Markovian Requirements
	Non-Markovian Encoding in LTLt

	Case Study: Mapless Navigation with Reinforcement Learning
	Continuous Shield for Safe Navigation
	Realizability and Shielding Implementation

	Experimental Results
	Conclusion
	Different Shielding Techniques
	Training Details
	Algorithm and Implementation Details
	Anticipation Fragment of LTLt
	First-Order Theories
	Safe Reinforcement Learning
	Limitations and Future Work

