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Abstract

Automated design of analog and radio-frequency
circuits using supervised or reinforcement learn-
ing from simulation data has recently been stud-
ied as an alternative to manual expert design. It
is straightforward for a design agent to learn an
inverse function from desired performance met-
rics to circuit parameters. However, it is more
common for a user to have threshold performance
criteria rather than an exact target vector of fea-
sible performance measures. In this work, we
propose a method for generating from simula-
tion data a dataset on which a system can be
trained via supervised learning to design circuits
to meet threshold specifications. We moreover
perform the to-date most extensive evaluation of
automated analog circuit design, including exper-
imenting in a significantly more diverse set of
circuits than in prior work, covering linear, non-
linear, and autonomous circuit configurations, and
show that our method consistently reaches success
rate better than 90% at 5% error margin, while
also improving data efficiency by upward of an
order of magnitude. A demo of this system is
available at circuits.streamlit.app

1. Introduction
Owing to the immense growth of consumer electronics over
the last few decades, integrated circuitry using commercial
CMOS/BiCMOS chip technologies has become a major
sector of the semiconductor industry (Kamal, 2022). More
specifically, fast innovation and skyrocketing demand in sev-
eral industry segments, such as wireless communication and
high-resolution imaging systems, has been driving interest
in analog, radio-frequency, and millimeter-wave circuits and
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systems (Kamal, 2022). Despite the economic and techno-
logical importance of these types of circuits, contemporary
design in research and industry is still predominantly man-
ual, using advanced electronic design automation tools such
as the Cadence Virtuoso (Martin, 2002) and the Keysight
ADS (Kouhalvandi et al., 2018) circuit simulators. This
heavy reliance on human design slows down and raises the
costs of the development of future generations of electronic
systems and should inevitably shift toward a more interac-
tive design approach where humans and machines co-design
analog circuits substantially faster.

A recent growing literature on automated circuit design has
considered the problem of finding the parameters of com-
ponents in a given circuit that would induce a desired set
of performance metrics (Mina et al., 2022). Learning to
output such circuit parameters is typically framed in the
supervised learning setting, where a model in a given model
class — often a neural network — is trained on a dataset
of simulated parameter–metrics pairs to solve the inverse
problem of mapping target performance metrics to circuit
parameters that meet these requirements. A limiting factor
in this approach is the large number of times that the circuit
needs to be simulated to collect enough data for accurate
learning. As we aim to support larger and more intricate cir-
cuits, precise simulation becomes slow, and data efficiency
requisite.

We address two inverse problems. For the simpler one, de-
scribed above and formalized in Section 2.1, a dataset is
created by simulating a circuit with parameter values on a
grid that covers a user-specified range. A neural network is
then trained on this data to predict circuit parameters that
would induce a desired performance vector. We evaluate
this approach on a much larger variety of useful circuit
topologies than has previously been done, and show that
this inverse function is smooth and regular enough to be
approximated from a much smaller number of examples
than achieved before, namely around 600–4000 points, de-
pending on circuit complexity, compared with 10,000 to
40,000 points in prior work (Fukuda et al., 2017b; Wang
et al., 2018b; Lourenço et al., 2018; M.V. & Harish, 2020b).

However, this approach has severely limited usability, be-
cause it requires the user to make a rather precise guess of a
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feasible combination of performance metrics for the model
to recover. As the number of metrics of interest grows, in
more complex circuits, the task of precisely specifying all
metrics becomes daunting. We instead envision an interface
for a user to specify a vector of performance thresholds, and
propose a second inverse problem of mapping these thresh-
olds into circuit parameters that satisfy them (Section 2.2).
While this problem is natural for reinforcement learning
algorithms (Settaluri et al., 2020), we propose a novel su-
pervised learning method for constructing, from the same
simulation data as in the simpler problem, a dataset for train-
ing and evaluating a model that predicts threshold-satisfying
parameters. We show that training a neural network on this
dataset solves this harder inverse problem an order of mag-
nitude more efficiently than existing reinforcement learning
methods, the latter using between 5500 and 40,000 simula-
tions (Wang et al., 2018a; Settaluri et al., 2020).

This work contributes: (1) a novel and vastly more data-
efficient method for generating, from circuit simulation data,
a dataset for supervised learning of circuit design agents for
the threshold specification problem; and (2) the to-date most
extensive evaluation of automated circuit design methods on
a diverse set of analog and radio frequency circuits, demon-
strating the success of the method while also identifying a
challenging circuit topology for future research. A demo of
our proposed system is available at circuits.streamlit.app.

2. Problem Statement
Human design through the use of advanced electronic design
automation (EDA) tools (Afacan et al., 2021) is currently the
primary method for designing electronic circuits. However,
human-led design is a slow process and is falling behind
the human–computer co-design processes for digital cir-
cuits (Renner & Ekárt, 2003). In order to bridge the gap and
allow for faster design of analog circuits, we aim to facilitate
a system that can automatically generate the parameters of
an analog circuit to meet a set of performance requirements.
A good system should be able to function with good ac-
curacy across a variety of different circuit topologies. In
this paper, we therefore examine the problem of designing a
diverse group of analog circuits, including single-stage am-
plifiers, multi-stage operational amplifiers, power amplifiers,
low-noise amplifiers, nonlinear circuits such as mixers, and
autonomous circuits such as voltage-controlled oscillators.
It is noteworthy that the selected performance metrics, them-
selves diverse across the various circuits, exhibit different
kinds of correlations and tradeoffs.

2.1. Exact Specification

For a specified circuit topology, let n be the number of com-
ponent parameters, such as resistances, transistor widths,
and voltages. Let X1, . . . , Xn be the operational ranges

Figure 1. The problem of automated design by threshold speci-
fication. A user specifies threshold constraints on the circuit’s
performance metrics. A design agent then generates a circuit that,
when simulated, meets the constraints.

of each of these parameters, and X =×n

i=1
Xi the de-

sign space. We assume the availability of a simulator
f : X → Y , where Y = Rk

+ is the positive orthant of
the real vector space of k performance metrics of interest.

The problem of design from exact specification is that of
finding a function g ≈ f−1 : Y → X such that, when a
user specifies target performance y ∈ Y , the system can
suggest a design x̂ = g(y). Upon suggesting x̂, it can be
simulated to measure its performance ŷ = f(x̂). The error
of the system is measured by the relative difference in its
performance metrics

δi =
|yi − ŷi|

yi
. (1)

For evaluation, the relative error is averaged across multiple
test points as well as across the k metrics. We also measure
the success rate as the fraction of test points with relative
error within a given margin.

We note that, in a real-world system, users can input a target
performance vector y for which no circuit exists with low
error. The system can use the simulator to check that the
predicted circuit g(y) is incorrect, but it is a hard problem
to determine whether another circuit would be correct, par-
ticularly if the instance is out-of-distribution for the data
used to train the system. We therefore focus on evaluating
the system on in-distribution data y ∈ f(X), and leave the
challenging and interesting question of out-of-distribution
generalization to future work.

2.2. Threshold Specification

When manual circuit design is challenging, guessing a feasi-
ble performance vector y ∈ f(X) can be just as challenging,
particularly if it consists of many metrics that are subject
to intricate tradeoffs. Instead, it would be easier for a user
to specify performance thresholds that the designed circuit
should meet. We denote by λi the threshold direction of met-
ric i, i.e. λi = 1 or −1 respectively whether it is majorative
(the more the better) or minorative (the less the better).

The problem of design from threshold specification (Fig-
ure 1) is that of finding a function g : Y → X such that,
when a user specifies target performance thresholds y ∈ Y ,
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the suggested design x̂ = g(y) aims to meet the thresholds
y by having its simulated performance ŷ = f(x̂) satisfy
λŷ ≥ λy element-wise. The error of this system is mea-
sured by the relative amount of threshold violation

δi =
max{λi(yi − ŷi), 0}

yi
. (2)

As before, we measure success rate by the fraction of test
data for which the thresholds for all metrics are met up to a
given error margin.

To evaluate a system solving the threshold specification
problem, we should use threshold queries that follow a sim-
ilar distribution to that of real users. Leaving user studies to
future work, we approximate this distribution by perturbing
simulated performance metrics similarly to Lourenço et al.
(2018). Given the measured performance y = f(x) of a
simulated circuit x, we sample standard uniform perturba-
tions u ∼ Uk for the k metrics, independent and identically
distributed (i.i.d), and use the perturbed vector

ỹi = (1− ϵλiui)yi (3)

as the threshold query. Here ϵ is the perturbation magnitude
hyperparameter; in this work we use ϵ = 0.2. Note that, by
construction, λy ≥ λỹ, so that there always exists a circuit
(namely, x) that meets the threshold ỹ.

3. Related Work
3.1. Digital Circuits vs. Analog Circuits

Digital circuit automation and computer-assisted de-
sign (CAD) has progressed steadily over the past few
decades (Micheli, 1994; Brunvand, 2010). The invariant
architecture of the building blocks in digital design allows
the application of graph-theoretic approaches that treat the
problem of digital circuit design as a graph connectivity
problem, which has led to a large body of work in optimiza-
tion of digital design (Boyd et al., 2005; Kunz & Pradhan,
1994; Grover & Chaudhary, 2014). Analog circuits, on
the other hand, involve a set of unique design challenges
that are not considered in the digital domain. First, ana-
log circuits have a broad range of architectures, and each
building block may be optimized individually with respect
to a performance metric before all the blocks are integrated
into the circuit. Second, in digital design, there is a small
set of critical performance metrics and in most cases only
power consumption, area, and speed are considered. In
contrast, in the analog domain, a variety of performance
metrics are present, and optimization of an analog circuit
becomes a higher-dimensional problem. Third, in analog
circuits, passive components such as capacitors, inductors,
and resistors are also deployed, completely changing the
dynamics of the circuit design and weakening the relation
between graph-theoretic properties and circuit performance.

3.2. Automated Analog Circuit Design

Automating the design of analog circuits has been studied
before, particularly in operational amplifiers (op-amps) that
are specified by their voltage gain, bandwidth, and power
consumption (for a survey, see Mina et al. (2022)). Wang
et al. (2018a) propose a reinforcement learning (RL) ap-
proach to designing 3-stage amplifier circuits from thresh-
old specification. Similarly, Settaluri et al. (2020) adopt
RL to design 2-stage operational amplifiers. While RL is
readily amenable to threshold constraints, it suffers from
poor data efficiency compared with supervised learning
approaches (Mina et al., 2022). Vural et al. (2015) use
supervised regression to design another type of circuits, a
4-bit current-steering Digital-to-Analog converters (DAC),
from exact specification of the performance metrics. Other
works have used supervised learning to design various op-
amps (Harsha & Harish, 2020; Lourenço et al., 2018; Mur-
phy & McCarthy, 2021) with varying — and often incom-
parable — data efficiency (Mina et al., 2022).

In this paper, we step beyond the scope of op-amp design
to additionally investigate the design of other critical ana-
log circuit blocks, in particular radio-frequency electronic
circuits that are commonly used in cellular communication
applications (Razavi, 2012). It is noteworthy that some of
the selected circuits, e.g., mixers and oscillators, are among
the most nonlinear analog circuits with high sensitivity to
variations in design parameters. We further show that de-
sign agents for amplifiers as well as more intricate circuits
can be learned by supervised regression from much smaller
datasets than previously accomplished. Finally, we learn to
design these circuits from threshold specification, in contrast
to most previous supervised learning works. Lourenço et al.
(2018) previously considered this setting, and proposed a
method that we reproduce in this paper under the name Dm

ϵ .
We show that this method can lead to suboptimal perfor-
mance, analyze the reason through an ablation study, and
propose a new method that mitigates this issue.

4. Method
We use supervised learning to approximate the inverse of
the simulator function mapping circuit parameters to perfor-
mance metrics (Figure 2). We interface an external simulator
to generate a dataset D0 consisting of circuit parameter vec-
tors x ∈ Rn and their respective measured performance
metrics vectors y ∈ Rk. We (optionally) pass this dataset
through a filtering pipeline that prepares it for solving the
threshold specification problem (Section 2.2). Finally, we
employ a supervised learning algorithm, such as gradient-
based optimization, to train a design agent. In this section
we describe the system components: the simulator, the agent
model, and several alternatives for the filtering pipeline.
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Figure 2. Proposed method for automated design from threshold
specification. Circuit parameters are sampled within a user-defined
range, simulated, and measured. Performance metrics are ran-
domly adjusted to sample threshold queries. A data filtering pro-
cess then generates training data for supervised learning a circuit
design agent that generates circuits to meet threshold requirements.

4.1. Simulator

In this work, we use the NgSpice simulator (Nenzi & Vogt,
2011). The circuit topology and its fixed parameters, as well
as the simulation parameters, are provided to the simulator
via a format called netlist (Lannutti et al., 2012). In addi-
tion to the netlist, the simulator loads analysis commands
that determine how it measures the performance metrics of
interest. For some circuits, multiple analysis commands are
given to measure the circuit under distinct conditions.

The external simulator is wrapped by a Python interface to
allow easy access to two functionalities. First, to generate
simulation data, a user inputs the range and step size of each
circuit parameter, and the simulator loops through this grid
to output a dataset D0 of parameter–metrics pairs. Second,
to evaluate the trained model, predicted circuit parameters
are input to the simulator, and the measured performance is
compared with the target performance.

4.2. Agent Model

Before the raw data from the simulator can be put through
the model, we apply a few data pre-processing steps. The
different features of the data have vastly different scales. In
order to allow the model to learn across such different scales,
we first shift and scale all values to the range [−1, 1]. This
normalization is applied both to the performance metrics
before they are fed to the model and to the ground-truth cir-
cuit parameters used for training, and an appropriate inverse
operator is applied to the model’s parameter predictions.

In this work, we experiment with three different agent mod-
els. The main model is a neural network with an architecture
of a simple multi-layer perceptron, trained with the Adam
optimizer (Kingma & Ba, 2015). The network takes in a
vector of desired performance metrics and predicts a vec-
tor of circuit parameters, which is then compared with the
ground-truth parameters using an absolute (L1) loss. The
sizes of the first and last layers of the network are adjusted

to reflect the number of performance metrics and circuit
parameters, respectively, which are different for each exper-
iment described in Section 5. The architecture is otherwise
constant across experiments and detailed in Appendix A.1.
An alternative model we consider is ensembles of decision
trees trained with the Random Forests algorithm (Breiman,
2001). Finally, to assess the need for any learning at all, we
compare with a lookup method that memorizes the training
data and selects, for each test performance vector, the train-
ing circuit that minimizes the relative performance error.

4.3. Filtering Pipeline

The problem of design from exact specification (Section 2.1)
can be solved by supervised learning, in which the training
set is the simulation dataset D0, inverted so that perfor-
mance metrics y are inputs and circuit parameters x are
outputs. However, this method is unlikely to be sufficient
for the threshold specification problem (Section 2.2), in
which some threshold vectors are out-of-distribution for D0,
because no circuit has them as its exact performance. We
therefore propose a filtering pipeline that constructs, from
the same D0, a second dataset which, when used for super-
vised learning, trains a model that predicts circuit parameters
from threshold specification.

To prepare a circuit for the threshold specification problem,
two properties of the metrics vector need to be provided.
First, because some metrics, such as gain or bandwidth, are
majorative (the more the better), while others, such as power
consumption, are minorative (the less the better), we need to
know for each metric i its threshold direction λi ∈ {−1, 1}.
Second, a specification asking for the highest gain at power
consumption at most p is different from one asking for the
lowest power consumption that achieves gain at least g. We
may therefore have a preference order over metrics, such
that we lexicographically prefer improving yi over improv-
ing yj , whenever i < j, as long as all threshold constraints
are approximately met. We say that y is lexicographically
better than y′ if there exists i such that yj = y′j for all j < i
and λiyi > λiy

′
i.

The filtering pipeline starts by finding, for each performance
vector y ∈ D0, all feasible performance vectors y′ ∈ D0

that meet the threshold specification y, i.e.

F (y;D0) = {(x, y′) ∈ D0|λy′ ≥ λy}. (4)

The design agent needs to map the threshold specification y
to one such x ∈ F (y), but it may not be immediately clear
which one. We hypothesize that, crucially to learning with
high success rate from small datasets, our training dataset
must be systematic in selecting a representative of F (y).
This systematicity manifests as a pattern that the learning
algorithm can generalize, whereas including the entire F (y)
or selecting from it sporadically might lead to conflicts that
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impede generalization.

We propose to select the lexicographically best training-set
circuit that meets the threshold

D̄∗
0 = {(x, y)|y ∈ D0, x = argmaxF (y;D0)}, (5)

where we select for x a single representative (x, y′) of F (y)
that maximizes y′ lexicographically. In the notation D̄∗

0 ,
the bar denotes feasibility of x for y and the star denotes
selection of the best representative.

We note that, by definition, all members of F (y) have
good circuit parameters that meet the threshold y. How-
ever, adding all of them to our training set, similar to the
method proposed by Lourenço et al. (2018), would create
conflicts where the same network input y is mapped to dif-
ferent outputs. By breaking “ties” in a consistent way — and
in accordance with user-specified preference over metrics
— we create a dataset more conducive of learning. The new
dataset D̄∗

0 has the same size as the simulation dataset D0

and the same set of performance vectors. The circuit param-
eter vectors in D̄∗

0 are those that define its Pareto frontier,
that is, for which no other simulated circuit is better in all
performance metrics. Thus, D̄∗

0 consistently maps feasible
performance vectors to frontier circuits.

4.3.1. THRESHOLD QUERIES

In Section 2.2, we discussed how performance metrics mea-
sured in simulation are perturbed to generate threshold
queries (Eq. (3)). We denote thus perturbed data by

Dϵ = {(x, (1− ϵλu)y)|(x, y) ∈ D0, u ∼ Uk i.i.d}. (6)

Note that the distribution of threshold queries y ∼ Dϵ is
different than the distribution of simulated metrics vectors
y ∼ D̄∗

0 . To avoid a mismatch of the training and test distri-
butions, we combine the filters to form a dataset of threshold
queries with a principled selection of target circuits:

D̄∗
ϵ = {(x, ỹ)|ỹ ∈ Dϵ, x = argmaxF (ỹ;D0)}. (7)

D̄∗
ϵ is a dataset mapping ϵ-perturbed metrics vectors ỹ to

circuits whose (unperturbed) simulated metrics are feasible
for the threshold query ỹ, selecting the lexicographically
best such circuit.

4.3.2. BASELINE AND ABLATION

We compare our dataset construction methods, D̄∗
0 and D̄∗

ϵ ,
with a baseline that closely follows Lourenço et al. (2018).
We define Dm

ϵ as the union of m i.i.d. samples of Dϵ

Dm
ϵ =

m⋃
t=1

Dϵ[ut]; ut ∼ Uk i.i.d. (8)

In our experiments, m = 20. The reasons are that by con-
struction, in each (x, ỹ) ∈ Dm

ϵ the circuit x is feasible for

the threshold query ỹ, i.e. λf(x) ≥ λỹ ; and that the training
distribution ỹ ∼ Dm

ϵ is identical to our evaluation distribu-
tion ỹ ∼ Dϵ. Note that, in contrast to most of the literature
on analog circuit design automation via supervised learn-
ing, which employs a simulation dataset akin to D0, Dm

ϵ

is suited for the threshold specification problem (Lourenço
et al., 2018).

Unfortunately, the dataset Dm
ϵ can be very confusing to

learn from. Because the simulator function f is not nec-
essarily injective, there may exist multiple circuits with
similar performance vectors. Moreover, such vectors have
overlapping supports of their perturbation distributions. The
result is that Dm

ϵ will tend to have similar threshold queries
mapped to vastly different circuit parameters, rendering
their prediction difficult.

We propose an ablation that more directly demonstrates
this issue. In D̄m

ϵ , we select for each ỹ ∈ Dϵ the m
lexicographically-best feasible circuits, rather than only the
single best in D̄∗

ϵ (Eq. (7)):

D̄m
ϵ = {(x, ỹ)|ỹ ∈ Dϵ, x ∈ top-mF (ỹ;D0)}. (9)

We expect this method to perform suboptimally, more simi-
larly to Dm

ϵ than to D̄∗
ϵ . This would provide evidence that

the main aspect impacting the prior method, compared with
the novel one, is the existence of multiple targets for each
query, rather than the other differences — namely, the selec-
tion of circuits from the feasible set F (y), or the preference
of lexicographically better circuits.

To summarize, we consider six datasets: (1) D0 is the simu-
lation data; (2) Dϵ has perturbed performance metrics that
resemble the threshold query distribution, and is used for
method evaluation; (3) D̄∗

0 and (4) D̄∗
ϵ are our proposed

methods, without and with perturbation to match the test
distribution; (5) Dm

ϵ is a baseline similar to Lourenço et al.
(2018); and (6) D̄m

ϵ is an ablation study.

5. Experiments
We experiment with our methods on a diverse group of seven
circuit topologies, detailed below. Best practices in circuit
design suggest that circuit parameters are chosen based on
their impact on performance metrics (Bandler & Chen,
1988; Hassan et al., 2016; Bandler & Rayas-Sánchez, 2023).
Only these parameters are used to optimize performance
for each circuit. We simulate each circuit in a parameter
grid consisting of approximately 4000 points, except for
the simplest two-stage amplifier with around 600 points, as
presented in Table 6 in Appendix A.5. A schematic of each
circuit shows the range and step size of each variable param-
eter, as well as color-coded tags illustrating the diversity of
the circuits to which our method applies. To facilitate result
reproduction, the code and data used in our experiments
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VDD 

Vin

RD

M1

Vout 

CL

Variable: resistance

[620Ω :5Ω:1450Ω]

Variable: width

 [2.88mm:0.2mm,6.63mm]
Vin

Vout

RD

Vb
M2

M1

Variable: width

[2mm:0.2mm:5mm]

Variable: resistance

[9KΩ:125Ω:11KΩ]

Variable: width

[8mm:0.25mm:11.5mm]

(a) (b)

Gain-power tradeoff

Linear

Gain-bandwidth tradeoff

Gain-swing tradeoff

Nonlinear

Noise-bandwidth tradeoff

Gain-power tradeoff

Gain-swing tradeoff

Figure 3. Schematics of analog voltage amplifiers: (a) common
source (CS) amplifier; (b) cascode amplifier. Color-coded tags
show circuit characteristics. Ranges and step sizes are marked near
each circuit parameter.

are available at github. 1 The supplementary details of the
circuits employed in our experiments can be found in Tables
8, 9, and 10 in Appendix A.5.

Our main method uses the D̄∗
ϵ dataset to train a neural net-

work and evaluate its success rate in 10-fold cross-validation.
For each circuit topology, we perform three comparisons of
this method. First, we compare the main method with the
five other data construction methods described in the previ-
ous section. Second, we compare the gradient-based learn-
ing algorithm with Random Forests and a simple lookup
method (Section 4.2). Third, we study the sensitivity to
the amount of training data by varying it. We compare the
success rate of 10-fold cross validation, which uses 90% of
the data for training each fold, with using 5%, 10%, 20%
and 50% of the data for training. We do this by randomly
splitting the data into (respectively) 20, 10, 5, and 2 disjoint
subsets, training on one subset, testing on the rest, and then
averaging the result across the splits.

In all plots in this section, the solid curve is the average over
10 runs of data splitting and training, and the shaded area is
the standard-error of the mean (SEM) over those runs.

5.1. Analog Voltage Amplifiers

5.1.1. COMMON SOURCE (CS) AMPLIFIER

Due to its simplicity, the common source (CS) ampli-
fier (Figure 3(a)) is among the most popular amplifier con-
figurations using a CMOS transistor. As design variables,
we consider the width of the transistor and the resistance
of the load resistor RD. The target performance metrics, in
decreasing importance are: bandwidth, voltage gain, and
power consumption.

As shown in Figure 4(a), our model achieves near-perfect

1https://github.com/indylab/Circuit-Synthesis

(a) (b)

Figure 4. Success rate of designing a CS amplifier: (a) Exact
specification: training on D0 with varying data sizes and testing
on exact metrics y ∼ D0; (b) Threshold specification: training
on varying datasets and testing on threshold metrics y ∼ Dϵ.

(a) (b)

(c) (d)

Figure 5. Success rate of designing a cascode amplifier: (a) Exact
specification; (b–d) Threshold specification, comparing: (b)
different data sizes of the D̄∗

ϵ dataset; (c) different datasets; and
(d) different agent models.

success at 5% error margin on the exact specification prob-
lem (Section 2.1), even while using 6 times less data than
the best previous work (Devi et al., 2021). In the threshold
specification problem (Section 2.2), our model trained on
the D̄∗

ϵ dataset also achieves perfect success at 5% error
margin, whereas training on the naı̈ve D0 baseline dataset
only achieves 85% success. Note, however, that all other
data processing methods also achieve perfect success on this
simple circuit. Further results appear in Appendix A.2.

5.1.2. CASCODE AMPLIFIER

The CS amplifier has limited gain and exhibits a trade-off
between critical performance metrics. The cascode amplifier
shown in Figure 3(b) enhances the amplification bandwidth
compared with a CS stage (Ko & Lin, 2006).

As illustrated in Figure 5, this more challenging circuit
shows more sensitivity to the amount of training data, both
in (a) the exact specification and (b) the threshold speci-
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Vb1 Vb1 

VDD 

Vb2

 

Vb3 Vb3 

Vb2

 

Vin+ Vin- 

Vb5 Vb5 

Vout+ Vout- 

Vb4 Variable: width

 [25mm:0.5mM:30mM]

Variable: width

[52mm:0.5mm: 55.5mm]

Variable: width

[6mm:0.5mM:9mM]

Nonlinear

Noise-bandwidth tradeoff

Gain-power tradeoff

M1 

MT 

M2 

Figure 6. Schematic of a two-stage amplifier.

fication settings. It is also more difficult for the baseline
methods to achieve high success rate, particularly when
a low error margin is needed: the simulation dataset D0

and the “non-injective” datasets Dm
ϵ and D̄m

ϵ all tend to
generate circuits with higher than 1%, 2%, and rarely even
5% threshold violation (Figure 5(c)). Finally, Figure 5(d)
demonstrates the typical underperformance of the lookup
method, showing that learning is needed; while also demon-
strating an uncommon case where Random Forests slightly
underperforms the neural network.

5.1.3. TWO-STAGE AMPLIFIER

The circuits of Figure 3 both suffer from limited gain. Two-
stage amplifiers, as shown in Figure 6, are excellent replace-
ments of single-stage amplifiers and in particular allow si-
multaneously achieving higher gain and voltage swing (Gray
& Meyer, 1982).

Owing to their widespread use, two-stage amplifiers have
been among the most popular benchmark circuit configura-
tions examined in prior automation work (Mina et al., 2022;
Settaluri et al., 2020). Other than the baseline dataset Dm

ϵ

and ablation dataset D̄m
ϵ , all other datasets achieve perfect

success on this relatively easy circuit (Figure 7(a)), using
10 times less data than in the best previous work (Fukuda
et al., 2017b; Wang et al., 2018b; Lourenço et al., 2018;
M.V. & Harish, 2020b). The underperformance of the “non-
injective” datasets supports our hypothesis that a systematic
selection of representative circuits for similar performance
levels is needed to facilitate learning of circuit design agents
for threshold specification.

5.2. (Non)-Linear Radio Frequency Circuits

5.2.1. LOW-NOISE AMPLIFIER (LNA)

The cascode low-noise amplifier (LNA) with inductive de-
generation is a popular configuration to design an LNA
for an RF receiver (Lerdworatawee & Namgoong, 2005).

The circuit, depicted in Figure 8(a), can obtain a high gain
and minimal loss of input power across a large bandwidth
without suffering from additive noise of circuit components
(mainly transistors). This circuit has four parameters (three
inductor values and one cascode transistor width) and three
metrics: the noise figure (signal-to-noise ratio between the
input and output), the return loss, and the power gain.

Our findings indicate that the LNA simulation function has
a smooth surface, making it easy to invert for all methods,
including the baseline, and resulting in perfect success even
at very low error margins (Figure 7(b)). Only the ablation
method D̄m

ϵ performs suboptimally, suggesting that it is
even more prone to inconsistencies than the baseline Dm

ϵ .

5.2.2. POWER AMPLIFIER (PA)

A wireless communication transmitter requires a power am-
plifier to amplify the transmitted signal and deliver more
power to the antenna, in order to mitigate the propagation
loss of the electromagnetic waves and cover a longer opera-
tional distance (Niknejad et al., 2012). An efficient design
of a two-stage differential cascode amplifier (Abbasi et al.,
2010) that can provide sufficient power gain, while showing
efficiency in terms of power consumption, may depend on
multiple design parameters (Figure 9(a)).

Similar to LNA, nearly all data filtering methods performed
well for the PA circuit, although with higher cross-run vari-
ance, with the exception of the baseline Dm

ϵ and the ablation
D̄m

ϵ (Figure 7(c)). We conclude that both LNA and PA —
highly non-linear circuits with intricate tradeoffs, whose de-
sign has never before been automated — are easily learned
within the operational range tested in this work.

5.2.3. MIXER

An essential component in frequency conversion of modern
radio-frequency and millimeter-wave circuits is a mixer.
Given two input signals at frequencies f1 and f2, a mixer
can generate desired signals at subtraction and summation
frequencies, i.e., f∆ = |f1 − f2| and fΣ = f1 + f2. Shown
in Figure 8(b) is a common schematic for mixers known as a
Gilbert Cell (Gilbert, 1968). This circuit operates by having
radio frequency (RF) and local oscillation (LO) signals as
the inputs and multiplying them to generate a signal with
the summation or subtraction frequencies.

The mixer is a sufficiently complex circuit that different data
filtering methods achieve different performance when learn-
ing to design it (Figure 7(d)). Our proposed method, D̄∗

ϵ ,
achieves near-perfect success even at very low error mar-
gins, and only our other method, D̄∗

0 , matches it at 5% error.
Interestingly, the naı̈ve perturbed dataset Dϵ also performs
much better than the baseline and ablation methods.
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(a) (b) (c) (d) (e)

Figure 7. Comparing success rate in the threshold specification problem for different training datasets in five circuits: (a) two-stage; (b)
low-noise amplifier (LNA); (c) power amplifier (PA); (d) mixer; (e) voltage-controlled oscillator (VCO).
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Figure 8. Schematics of: (a) low noise amplifier (LNA); (b) mixer.
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5.2.4. VOLTAGE-CONTROLLED OSCILLATORS (VCO)

A critical circuit block in RF applications is the oscillator,
specifically voltage-controlled versions with frequency tun-
ing capability (Dai & Harjani, 2003), which is responsible
for generating a sustainable periodic output autonomously.
Shown in Figure 10 is a CMOS cross-coupled VCO (Ha-
jimiri & Lee, 1999). VCO’s desired behavior is to vary out-
put frequency within a required tuning range with control
voltage variation (Razavi, 2012). The transistors consume
DC power to compensate for any physical losses while the
electromagnetic energy exchange among the capacitors and
the inductors leads to a sustainable oscillation.

Automatically designing a VCO circuit proved a challenging
task for all of the tested method (Figure 7(e)). The order
of relative performance was similar to the mixer, with our
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Vcont 
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Nonlinear
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Noise-bandwidth tradeoff

Mv 

MT 

M1 

Figure 10. Schematic of a voltage-controlled oscillator (VCO).

proposed method, D̄∗
ϵ outperforming the others with 83.5%

success rate at 5% error margin. Achieving near-perfect
success on this circuit therefore remains an open challenge
for future research.

5.3. Clustering Effect Analysis

Since our approach involves the replacement of circuit pa-
rameters with alternative parameters within the parameter
space that yield improved performance, fewer distinct pa-
rameters remain after filtering than initially simulated. In
situations where multiple performance metrics are mapped
to the same parameter vector, it becomes intriguing to in-
vestigate the potential impact of this clustering on the per-
formance of our algorithm. After constructing our dataset,
we count the number of distinct circuits in the constructed
dataset as well as the perplexity of the resulting dataset. The
resulting perplexity is defined as PP (p) = 2H(p) where
entropy is estimated over the constructed dataset based on
the counts of the distinct parameters. In the majority of
circuits, the number of distinct parameter vectors in the con-
structed dataset is only approximately 3-12% of its size. In
the majority of circuits, the number of distinct parameter
vectors in the constructed dataset is only approximately 3-
12% of its size. Specifically, for the Cascode circuit, we
find 489 distinct circuits, which are 12% of the dataset size,
while the resulting dataset’s perplexity is 286. In the case
of more advanced circuits like Mixer and VCO, we observe
a distinct count of 2-3% of the data size. The resulting per-
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plexity is 45 for Mixer and 68 for VCO, both amounting to
roughly 1% of their respective dataset sizes. The evident
clustering effect observed in our construction method holds
significant implications. One plausible hypothesis we put
forward is that this clustering phenomenon could potentially
be advantageous for training Machine Learning Models. By
leveraging this clustering effect, we can effectively sidestep
issues arising from overlapping mappings, enabling us to
construct sample-efficient dataset.

5.4. Performance Metric Ordering Variations

In our study, we subjected the LNA circuit to an assessment
using two distinct orders of performance metrics: Order
A (Power Gain, S11, NF), and Order B (S11, NF, Power
Gain). We optimized for maximizing Power Gain and min-
imizing S11 and NF in both orders. Notably, the circuits
generated by Order A showcased an average Power Gain
that was larger (thus better) by 0.84 dB compared to those
generated by Order B. Additionally, these circuits exhib-
ited an average S11 that was higher (thus worse) by 0.53
dB in comparison. We conducted a similar analysis for
the Common Source Amplifier, Cascode Amplifier, and
Two-Stage circuits. By prioritizing the order of the band-
width during dataset construction, we observed circuits with
higher average bandwidth. Similarly, with regards to power
consumption, which we aimed to minimize, assigning the
highest priority to power consumption led to the production
of circuits with lower power consumption. We conclude that
the user-specified order of performance metrics effectively
creates the desired preference over them.

6. Conclusion
We present a data filtering pipeline that can generate, from a
circuit simulation dataset, a training dataset for supervised
learning of a circuit design agent for threshold specifica-
tion. In extensive experiments with several baselines on
a variety of linear, nonlinear, and autonomous analog and
radio-frequency circuits, we find that our proposed method
performs near-perfectly in all but the hardest circuit. This
supports our hypothesis that a systematic selection of repre-
sentative circuits can alleviate the “non-injective” property
of the simulator function, which is vastly exacerbated by
the threshold specification setting. The results also show
the sample efficiency of our method. While not directly
comparable with previous work, we often use a number of
simulations an order of magnitude or more smaller than
ever before, and learning from even 5% of this data is of-
ten highly successful as well. Lastly, we also show that
our method is, to some extent, model agnostic by training
with different machine learning methods and comparing
their performance. To the best of our knowledge, this is the
first time that a wide collection of analog circuits at various

frequencies and of varied operations have been extensively
examined and shown capable of being automatically de-
signed. We believe that the methods and results of this work
can help the growth of the circuit design industry by address-
ing the rapidly increasing demand for advanced electronic
chipsets.
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A. Appendix
A.1. Model Architecture

In this work, we propose a Multi-layer perceptron (MLP) architecture with seven layers for the task at hand. The first layer
takes in a vector of size equal to the number of performance metrics for the circuit and outputs a vector of length 200. The
last layer takes in a vector of length 200 and outputs the same number of parameters as in the circuit. The middle five
layers are constant across all circuits and have the following [input, output] size configurations: [200, 300], [300, 500], [500,
500], [500, 300], [300, 200]. Each layer is separated by the Rectified Linear Unit (ReLU) activation function. We trained
each MLP model for 100 epochs using the Adam optimizer (Kingma & Ba, 2015) with a default learning rate of 0.001.
Additionally, we also trained a Random Forest (RF) model with the default number of trees (100) and default arguments.

A.2. Comparing Methods

(a) (b) (c)

Figure 11. Comparing different ML methods in three circuits: (a) cascode; (b) low-noise amplifier; (c) voltage-controlled oscillator.

(a) (b) (c)

Figure 12. Comparing different ML methods in three circuits: (a) two stage; (b) mixer; and (c) power amplifier.

We compared the performance of three different machine learning methods: Neural Network (NN), Random Forest (RF),
and Lookup Table (LT) using a ten-fold cross-validation setup with 90 % of the data used for training. The purpose of this
work was to demonstrate that our method is model-agnostic, and thus, we did not attempt to fine-tune the NN or RF models.
The lookup table approach was implemented by searching for the circuit with the lowest error in the training dataset for a
given testing circuit. The NN and RF models were trained as specified in Section A.1. The results in table 1 suggest that all
three methods perform similarly, with most of the circuits achieving 95-100% accuracy and a margin of 1%. This suggests
that even a simple model like RF can produce good results. The detailed plots are presented in 12.

Table 1. Circuit Method Comparison at 1 %
ML/Circuit CS Cascode Two Stage LNA PA Mixer VCO
Lookup 0.94 ± 0.005 0.888 ± 0.005 0.961 ± 0.011 0.998 ± 0.001 0.958 ± 0.004 0.997 ± 0.001 0.833 ± 0.015
NN 0.854 ± 0.023 0.971 ± 0.004 0.964 ± 0.02 0.998 ± 0.0 0.945 ± 0.005 0.994 ± 0.001 0.847 ± 0.022
RF 0.953 ± 0.004 0.944 ± 0.005 1.0 ± 0.0 0.995 ± 0.001 0.95 ± 0.005 0.996 ± 0.001 0.853 ± 0.024
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Table 2. Circuit Data Size Comparison for D0 at 1 %
%/Circuit CS Cascode Two Stage LNA PA Mixer VCO
0.05 0.295 ± 0.036 0.207 ± 0.029 0.566 ± 0.04 0.944 ± 0.005 0.712 ± 0.026 0.319 ± 0.037 0.375 ± 0.033
0.1 0.278 ± 0.041 0.13 ± 0.025 0.676 ± 0.077 0.933 ± 0.012 0.711 ± 0.02 0.282 ± 0.055 0.342 ± 0.049
0.2 0.351 ± 0.047 0.292 ± 0.067 0.719 ± 0.078 0.991 ± 0.003 0.759 ± 0.029 0.364 ± 0.05 0.38 ± 0.089
0.5 0.54 ± 0.053 0.492 ± 0.065 0.813 ± 0.106 0.992 ± 0.007 0.689 ± 0.091 0.387 ± 0.021 0.452 ± 0.011
0.9 0.539 ± 0.051 0.583 ± 0.053 0.927 ± 0.022 0.998 ± 0.001 0.73 ± 0.014 0.396 ± 0.032 0.454 ± 0.055

Table 3. Circuit Data Size Comparison for D̄∗
ϵ at 1 %

%/Circuit CS Cascode Two Stage LNA PA Mixer VCO
0.05 0.83 ± 0.018 0.803 ± 0.019 0.817 ± 0.021 0.972 ± 0.003 0.874 ± 0.026 0.927 ± 0.01 0.819 ± 0.009
0.1 0.751 ± 0.035 0.815 ± 0.029 0.962 ± 0.015 0.985 ± 0.003 0.927 ± 0.01 0.942 ± 0.013 0.82 ± 0.013
0.2 0.849 ± 0.029 0.886 ± 0.019 0.978 ± 0.004 0.991 ± 0.002 0.944 ± 0.013 0.969 ± 0.017 0.838 ± 0.019
0.5 0.917 ± 0.027 0.962 ± 0.009 0.938 ± 0.0 0.996 ± 0.003 0.963 ± 0.002 0.995 ± 0.002 0.814 ± 0.017
0.9 0.847 ± 0.04 0.971 ± 0.004 0.973 ± 0.018 0.997 ± 0.001 0.945 ± 0.006 0.995 ± 0.001 0.787 ± 0.037

(a) (b) (c) (d)

Figure 13. Comparing different datasizes for D0 in circuits: (a) cascode; (b) low-noise amplifier (LNA); (c) voltage-controlled oscillator
(VCO); (d) mixer.

(a) (b) (c)

Figure 14. Comparing different datasizes for D0 in circuits: (a) common source amplifier (CS) ; (b) two-stage; (c) power amplifier (PA).

A.3. Comparing Datasizes

In this study, we assess the performance of various circuits by utilizing subsamples of varying sizes, including 5%, 10%,
20%, 50%, and 90% of the data. The 90% subsample corresponds to a range of 2700-3600 points, while the 5% subsample
corresponds to approximately 150-200 points. Results indicate that the accuracy of the Two Stage circuit linearly increases
from 56% to 93% as the subsample size increases from 5% to 90%. Similarly, for the D̄∗

ϵ method, accuracy increases from
81% to 97%. Notably, all circuits exhibit an accuracy higher than 80%, even when using only 5% of the data. However, the
accuracy of the D0 circuit is observed to drop to 20% for certain subsamples.

A.4. Comparing Datasets

In addition to our previous results, we present a table of circuit evaluations for each method at a 1% margin. It can be
observed that the Power Amplifier, VCO, and Mixer circuits achieve the highest scores when utilizing our method. However,
for less complex circuits such as the Common Source Amplifier, the Dϵ method yields a 2% higher score compared to our
method.
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Table 4. Circuit Comparison Info at 1 %
D/Circuit CS Cascode Two Stage LNA PA Mixer VCO
D0 0.7 ± 0.036 0.519 ± 0.043 0.985 ± 0.01 0.996 ± 0.001 0.945 ± 0.005 0.486 ± 0.06 0.378 ± 0.054
Dϵ 0.957 ± 0.009 0.921 ± 0.033 0.99 ± 0.004 0.999 ± 0.0 0.97 ± 0.002 0.824 ± 0.019 0.713 ± 0.016
Dm

ϵ 0.542 ± 0.014 0.435 ± 0.026 0.877 ± 0.033 0.976 ± 0.003 0.37 ± 0.048 0.32 ± 0.011 0.54 ± 0.021
D̄m

ϵ 0.801 ± 0.038 0.578 ± 0.033 0.518 ± 0.048 0.8 ± 0.024 0.768 ± 0.092 0.401 ± 0.022 0.501 ± 0.015
D̄∗

0 0.847 ± 0.021 0.947 ± 0.019 0.984 ± 0.011 0.997 ± 0.001 0.943 ± 0.004 0.858 ± 0.025 0.827 ± 0.019
D̄∗

ϵ 0.936 ± 0.012 0.962 ± 0.007 0.981 ± 0.012 0.998 ± 0.001 0.948 ± 0.005 0.995 ± 0.001 0.835 ± 0.016

A.5. Comparing Circuits

As seen in Table 7, a comparison of our proposed method is conducted against previous methods. However, due to the lack
of standard benchmarks for circuits and limited data availability for many circuits, it should be noted that this comparison
should be viewed as a general guide rather than a comprehensive evaluation. Nonetheless, it can be observed that our method
demonstrates superior performance in comparison to previous methods, while also maintaining a small data size.

For each circuit, we also provide the following additional information:

1. The size of the train dataset, number of parameters, number of points per parameter in Table 6,

2. Average performance error across all the circuits in Table 5,

3. Performance metric range for every circuit in Table 8,9,

4. Parameters range for every circuit in Table 10.

Table 5. Average performance error % for every circuit using D̄∗
ϵ

Err/Circuit CS Cascode Two Stage LNA PA Mixer VCO
Mean
Error

0.06 ± 0.0 0.04 ± 0.0 0.03 ± 0.0 0.0 ± 0.0 1.29 ± 0.002 0.01 ± 0.0 1.13 ± 0.002

Table 6. Circuit complexity comparison
Circuit CS Cascode Two-Stage LNA PA Mixer VCO

train-data size 3340 4080 616 4096 3528 3136 4096
Number of Parameters 2 3 3 4 4 3 4
Points per parameter 1670 1360 205.3 1024 882 1045.3 1024
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Table 7. Comparing Results with the previous work
Performance Metric This Work (%) Best Reported (%) Related Works

C
S

Gain 0.135±0.035
< 2.6 Devi et al. (2021)Bandwidth 0.048 ± 0.12

Power Consumption 0.0044± 0.002

C
as

co
de Gain 0.0471±0.02

≈ 1
Lourenço et al. (2019)

Mina et al. (2022)Bandwidth 0.0433±0.01
Power Consumption 0.0222±0.007

2-
St

ag
e Gain 0.0226±0.018 1.1 Fukuda et al. (2017a)

Bandwidth 0.00001 ± 0.000003 NA
Power Consumption 0.0716±0.031 3.7 M.V. & Harish (2020a)

L
N

A GT 0.0028±0.001
< 5 Dumesnil et al. (2014)S11 0.007±0.001

NF 0.002±0.0005

PA

Power Gain 1.207 ± 0.14
NA NADrain Efficiency 1.361 ± 0.2

PAE 1.30 ± 0.19

M
ix

er Conversion Gain 0.005±0.0035
NA NAPower Consumption 0.86±0.002

Swing 0.66± 0.005

V
C

O Power Consumption 0.017± 0.1423
NA NAOutput Power 0.1423±0.01

Tuning Range 3.226±0.6293
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Table 8. Range of Analog Voltage Amplifiers Performance Metrics
Performance Metric CS Cascode Two-Stage

Min Max Min Max Min Max
Gain (db) 5.25 15.14 20.94 28.23 41.28 73.82

Bandwidth (Hz) 83.7M 5.99G 2.17G 8.5G 12.1M 1.01G
Power Consumption (mW) 0.57 1.34 0.38 0.56 1.32 2.00

Table 9. Range of Non-linear Circuits Performance Metrics
Performance Metric Min Max

L
N

A Power Gain(db) 12.76 15.8
S11 -19.1 -17.3

NF(db) 2.154 2.39

PA

Power Gain (db) 5.165 18.65
Drain Efficiency (%) 9.39 33.92

PAE(%) 3.79 28.67

M
ix

er Conversion Gain 0.61 5.95
Power Consumption (mW) 0.11 7.32

Swing (mV) 0.61 5.95

V
C

O Power Consumption (mW) 3.9 12.3
Output Power(mW) 5.11 19.67
Tuning Range (Hz) 451K 440M

Table 10. Design Parameters and Range of Variations
Circuit Variable Start Step End

CS M1[w] 2.8um 0.2um 6.6um
RD 620Ω 5Ω 1450Ω

Cascode
M1 [w] 8um 0.25um 11.5um
M2 [w] 2um 0.2um 5um
RD 9kΩ 125Ω 11kΩ

Two-Stage
M1[w] 25um 0.5um 30um
M2[w] 52um 0.5um 55.5um
MT [w] 6um 0.5um 9um

LNA

M1,2[w] 73um 0.5um 76.5um
Lg 9.4nH 0.2nH 10.8nH
Ls 747pH 1pH 754pH
Ld 3.7nH 0.1nH 4.4nH

PA

M1,2,3,4[w] 18um 0.5um 22um
M5,6,7,8[w] 27um 1um 34um

Vb1 785mV 5mV 815mV
Vb2 760mV 5mV 790mV

Mixer
M1[w] 8.55um 0.45um 11.7um
MT [w] 17.1um 0.9um 23.4um
VRF,DC 630mV 30mV 810mV

R 240 Ω 40Ω 520Ω

VCO

M1[w] 8.55um 0.45um 11.7um
MT [w] 145um 2um 159um
MV [w] 73um 2um 87um

L 3.6nH 0.1nH 4.3nH
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