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Abstract— Automating precision subtasks such as debride-
ment (removing dead or diseased tissue fragments) with Robotic
Surgical Assistants (RSAs) such as the da Vinci Research Kit
(dVRK) is challenging due to inherent non-linearities in cable-
driven systems. We propose and evaluate a novel two-phase
coarse-to-fine calibration method. In Phase I (coarse), we place
a red calibration marker on the end effector and let it randomly
move through a set of open-loop trajectories to obtain a large
sample set of camera pixels and internal robot end-effector
configurations. This coarse data is then used to train a Deep
Neural Network (DNN) to learn the coarse transformation
bias. In Phase II (fine), the bias from Phase I is applied to
move the end-effector toward a small set of specific target
points on a printed sheet. For each target, a human operator
manually adjusts the end-effector position by direct contact
(not through teleoperation) and the residual compensation bias
is recorded. This fine data is then used to train a Random
Forest (RF) to learn the fine transformation bias. Subsequent
experiments suggest that without calibration, position errors
average 4.55mm. Phase I can reduce average error to 2.14mm
and the combination of Phase I and Phase II can reduces
average error to 1.08mm. We apply these results to debridement
of raisins and pumpkin seeds as fragment phantoms. Using
an endoscopic stereo camera with standard edge detection,
experiments with 120 trials achieved average success rates of
94.5%, exceeding prior results with much larger fragments
(89.4%) and achieving a speedup of 2.1x, decreasing time per
fragment from 15.8 seconds to 7.3 seconds. Source code, data,
and videos are available at https://sites.google.com/
view/calib-icra/.

I. INTRODUCTION

Surgical robots [13], such as Intuitive Surgical’s da
Vinci [[12} [14], are widely used in laparoscopic procedures
worldwide [1} |4, 23]]. Existing surgical robotics platforms
rely on pure teleoperation through a master-slave interface
where the surgeon fully controls the motions of the robot.
To reduce tedium and fatigue in long or repetitive proce-
dures, recent work has highlighted several opportunities for
autonomous execution of surgical subtasks [36] including
debridement [15], suturing [24, 31-33]], and palpation for
tumor detection [6].

The da Vinci and other Robotic Surgical Assistants (RSAs)
such as Applied Dexterity’s Raven II [9]] are cable-driven and
designed to be compliant as not to damage anatomy. Cable-
driven robots are susceptible to issues such as cable-stretch,
hysteresis, and other problems described in [8} 21} [22| 29].

The da Vinci Research Kit (dVRK) is a research platform
built from the components of the da Vinci [12, |14]]. The
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Fig. 1: Calibration pipeline. Phase I: the dVRK, wrapped with
red tape, randomly explores its workspace. The robot positions and
orientations are recorded by a camera and its internal joint sensors.
After data cleaning, we train a Deep Neural Network (DNN) to map
from camera position (not images) and robot orientation (extracted
from the images) to base position. Phase II: we apply the DNN on
a calibration grid and a human directly corrects the resulting end-
effector positions. The residuals are stored and used as training data
for Random Forests (RFs). We apply the combined DNN and RF
pipeline to debridement.

robotic arm consists of a 3 DoF manipulator to which a mod-
ular 4 DoF instrument is attached. The tool is commanded to
some position and orientation defined in the global remote
center coordinate frame. However, each modular instrument
has slightly different kinematics and cable tension. This can
lead to errors in positional control of the tool in the global
coordinate frame.

Experiments indicate that this imprecision is systematic
and repeatable, suggesting it maybe possible to anticipate
and correct for bias in the commanded position of the robot.
An offline calibration procedure can learn the direction and
magnitude of this bias. The robot can use its internal system
model as a starting point, and a spatial residual factor can
be learned from visually tracking the tool in an experimental
environment.

In this paper, we show that after applying a two-phase cal-
ibration procedure shown in Figure[T} the dVRK can achieve
positional control in the workspace within Imm of error
while operating at the maximum speed of approximately
6cm/sec. Furthermore, the dVRK can efficiently extract
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fragments (sizes shown in Table[l) in a surgical debridement
task with 94.5% reliability. In Phase I, the dVRK collects
training data by automatically exploring trajectories in the
workspace with random targets, using red tape on the end-
effector to track its location. The training data input consists
of tool position relative to camera frame and (discretized)
SO(3) rotations relative to base frame. The output consists of
tool position relative to base frame. As detailed in Section
using rotations as input is useful in tasks such as debridement
where we can determine the orientation of fragments in
advance using OpenCV ellipse fitting on the camera image
of the workspace. A Deep Neural Network (DNN) is trained
on this data. In Phase II, we correct the DNN’s errors in the
predicted versus actual base frame coordinates. The dVRK’s
end-effector moves to target locations in a printed calibration
grid, and a human directly corrects the positions. We train a
Random Forest (RF) to predict these corrections.

Our approach is based on four prior papers on automated
surgical debridement and/or calibration [|15} [21} |25} 29], and
extends them with three contributions:

1) An alternative and cheaper calibration method com-
pared to [I5) 21, [29]], using automatic data collec-
tion with DNNs and manual movements with RFs.
We evaluate three calibration algorithms (rigid body,
DNN, DNN+RF) and test various DNN settings; see
Sections [V] and [Vl

2) Experimental results with more challenging fragments:
pumpkin seeds and raisins. Sizes are shown in Table [[}
the fragments from [15, [21] (about 10mm each in
width, length, and thickness) had volume about 3.3x
larger and were made of foam rubber to be forgiv-
ing of gripper orientation error. Similarly, fragments
from [25]] were glued onto a highly elastic surface to
tolerate errors. In contrast, pumpkin seeds easily slide
out of the gripper.

3) Faster execution: 2.1x speedups over prior work [21]].

II. RELATED WORK

We use the da Vinci Research Kit (dVRK) [12] |14] as
our RSA, which is a research platform based on Intuitive
Surgical’s da Vinci surgical system [3]] and which has been
frequently used in surgical robotics research [18], |25] 33135].
Calibration is critical for the dVRK and other robots to reli-
ably perform fine-grained manipulation tasks. The majority
of work in calibration of kinematic parameters, reviewed
in [11], has focused on modeling linearities in kinematic
chains. Examples include work on autonomously calibrating
both a stereo vision system and robot manipulators [5]] and
jointly calibrating multiple cameras [[19]. Since the dVRK
has inherent non-linearities, we must incorporate non-linear
models in our calibration procedure.

To account for actuator imprecision, one could use vi-
sual servoing [17]] as part of an automation pipeline. For
instance, [20]] trained a large convolutional neural network
to predict the probability that specific motions would lead to
successful grasps. To servo, they sampled a set of candidate
commands and evaluated the likelihood of grasp success
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Fig. 2: The dVRK end-effector (“large needle driver”) and its three
axes of rotation. We denote these as ¢, (yaw), ¢, (pitch), and ¢,
(roll). The gripper tips are opened to their maximum width (10mm).

based on their trained network. In [18]], the authors applied
visual servoing of the dVRK for needle insertion and picking
tasks, but required large amounts of task-specific expert
demonstrations to train a visual servoing policy. Learning
a positional compensation rather than an end-to-end policy
may be far more sample efficient as the magnitude of the
motion to learn is often smaller.

Surgical debridement [2} |7, 27] is the process of removing
dead or damaged tissue to allow the remaining part to
heal. Automated surgical debridement was first demonstrated
in [15]. Using the Raven II, the authors debrided at a rate
of 91.8 and 60.3 seconds per fragment for the autonomous
single-arm and two-arm cases, respectively, and had success
rates of 89.4% for the single-arm. Mahler et al. [21]] used cal-
ibration to avoid replanning steps and sped up debridement
by 3.8x with the two-arm setup to get a rate of 15.8 seconds
per fragment with comparable success rates, but they did not
report benchmarks on the slower one-arm scenario. Murali
et al. [25]] used more realistic fragments but had them glued
onto highly elastic tissue to tolerate several millimeters of
calibration error, and they did not achieve notable speed-ups
over [21]] nor did they discuss their calibration procedure.

We use a different debridement model by using small
fragments with inclusion sizes that are close to the maximum
width of the gripper (10mm). As an additional challenge,
one of our fragment types (pumpkin seeds) is smooth and
easily slides on our workstation surface. Moreover, inspired
by [15]’s timing comparisons involving human execution,
we focus on optimizing speed jointly with accuracy. These
factors require high precision in control.

III. PROBLEM STATEMENT
A. Definitions and Notation

Throughout the paper, we use the following notation:

o The camera position x. = (cz, cy,c,) € R? is the end-
effector (i.e., tool) position with respect to the camera
frame. These are determined from left and right camera
pixels and their disparity.

e The base position x, = (by,by,b,) € R? is the end-
effector position with respect to the base frame.

« The robot orientation ¢ = (¢y, ¢p, ) € R? is the yaw,
pitch, and roll of the end-effector in the base frame. See
Figure |2| for how the axes are oriented for our dVRK
instrument (the orientation is non-standard).
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Fig. 3: Overall view of our setup. We use the dVRK arm labeled
above for our experiments. The endoscopic stereo camera contains
two separate lenses and is located 7.5 inches above the 7.5cm X
7.5cm workspace.

Fragment Length Width Thickness
Pumpkin 1244+08 6.8+0.3 24+£0.3
Raisins 123+15 59+£1.1 42=£05

TABLE I: FRAGMENT DIMENSIONS. In millimeters, the average
length (longer axis), width (shorter axis), and height of ten instances
of each type, &+ one standard deviation.

B. Assumptions

Setup of dVRK. The setup is shown in Figure 3| We use
one dVRK arm with a gripper end-effector, called a large
needle driver (see Figure [2), that can be opened up to 75°,
or a gripper width of 10mm. We assume access only to
the perception available in current da Vinci deployments:
a 1920x1080 stereo endoscopic camera. These are located
above a 7.5cm x 7.5cm flat elastic silicone-based tissue
phantom. We do not assume access to a motion capture
system as in [21]] or force sensing as in [28]]. All grasps
during debridement are pinch grasps. Finally, we assume that
at any time we can query the current z; and ¢ of the end-
effector, and the two endoscopic lenses to obtain pixels of a
world point, from which we can infer z. using disparity.
Debridement. We assume that there are initially eight frag-
ments on a white sheet of paper on the tissue phantom, and
that all are small enough to be gripped by a fully open gripper
in the correct position and orientation. While the fragments
may be of arbitrary orientation, we assume that they are non-
overlapping with a minimum of 3mm of space between any
two fragments. As fragments, we use pumpkin seeds and
raisins with sizes shown in Table [

Rotations. To maintain reliability of debridement, we con-
strain the dVRK gripper tips to touch the workstation plane
with fixed ranges of rotation. The yaw values need the full
range [—90°,90°] so that the gripper can reliably grasp
arbitrarily-oriented fragments in their minor elliptical axis.
Thus, we make the simplifying assumption that the pitch

and roll can be known conditioned on a yaw.

We additionally assume that before debridement, we can
use OpenCV to fit an ellipse to all fragments to get an
angle of orientation along the major axis. This angle can be
translated into a yaw value for the dVRK. We furthermore
discretize the yaw values into five choices, -90°, -45°, 0°,
45°, and 90°. Each value corresponds to a distinct training
data for non-linear regressors, which we describe in Sec-
tion During debridement applications, each elliptical
angle is mapped to the nearest yaw value, and then pitch and
roll are determined from that (see Figure [).

C. Evaluation

Calibration. To compare calibration algorithms, we use a
printed grid with black circles overlaid on our silicone tissue.
For each circle, we get the left and right camera pixels of its
center via OpenCV contour detection, and with the disparity,
we can determine z.. The calibration provides us with x,
and the dVRK’s closed end-effector moves to x;. A human
then identifies the location of the end-effector in pixel space.
The distance in pixels between the circle center and the end-
effector tip (i.e., its lowest point) is the calibration error, and
the goal is to minimize this quantity. See Figure 5] for details.
Debridement. Our objective is to debride as many fragments
as possible while minimizing the time per fragment. A
fragment is successfully debrided when the dVRK is able
to grasp it and move it above a receptacle outside of the
workspace without collisions with other fragments, while
using both grippers. We defer a detailed discussion on the
debridement setup to Section

IV. METHODOLOGY

Our method has two phases. The first phase quickly
and automatically obtains a large amount of coarse data.
The second phase uses the results of Phase I and human
intervention to generate a small amount of high quality data.

A. Phase I: Coarse Motion Bias with DNN
The goal in this phase is to collect the dataset

XDNN - {((‘rca ¢)(1)axl()l))7 Y ((xCa ¢))(N)7xl(;N))}a (1)

where each (z.,¢)® is the concatenation of a camera
position and a rotation vector and xl(f) is a base position.
The rotation is part of the input, which follows from our
rotation assumptions in Section |I1I| since the ¢, values (and
consequently, ¢, and ¢,) are determined using OpenCV.

To build Xpnn, wWe automatically execute trajectories of
the dVRK. For each trajectory, its starting location is one
of the four workspace corners. Then, its target position
(b, by, b,) is randomly chosen, though each coordinate is
constrained within pre-determined safe ranges (e.g. b, is
restricted to be level with the workspace).

Once the starting and target locations are set, each tra-
jectory is split into a series of shorter, linear movements,

'While -90°and 90°technically represent the same world space angle, we
observed that the dVRK needs slightly different pitch and roll values (see
Figure E} for these cases to comfortably grip the fragments.
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Fig. 4: For each fragment, we compute its angle of orientation (by fitting an ellipse) and approximate it with the nearest yaw value in our
discretization: -90°, -45°, 0°, 45°, 90°. Each yields hand-tuned pitch and roll values that we observed empirically allowed both tips to
touch the workspace simultaneously when lowering the end-effector to the surface. Above, the pumpkin seed is rotated counter-clockwise
across consecutive images, and the resulting yaw, along with our chosen pitch and roll values, are listed below (see Figure [2). For all five,
moving downwards (adjusting b. only) a few millimeters is sufficient to get the gripper in a spot where it can reliably grasp the seed.

Fig. 5: Evaluating calibration methods. Left: the end-effector after
the dVRK attempts to touch the center of a target circle. Right:
calibration error is the pixel-wise distance between the tip of the
closed end-effector (colored red, pixel location (892,160)) and the
center of the target circle (colored blue, pixel location (888,192)).

involving an adjustment in the end-effector position of about
Imm. After each of these shorter movements, we pause the
trajectory and record the position x; and rotation ¢.
Forming Apnn also requires the camera position z. at
these points, so before executing the trajectories we apply
red tape to the end-effector, thus allowing the dVRK to use
HSV thresholding to detect the location of red contours.
This is a substantially cheaper alternative than the sensors
used in [21f], though it is less reliable, because (as seen
in Figure [3), the cameras are oriented directly above the
workspace, and the dVRK’s wrist can block the red tape
from view. As we show in Section we need to perform
data cleaning to exclude these cases from Apnn.
Consequently, to increase the set of candidate data points
for Apnn prior to cleaning, at each time we paused the
trajectory, we additionally executed three random rotations at
the same robot position, with ¢, ¢, and ¢, values randomly
chosen in [—90°,90°], [—15°,25°] and [—180°, —150°].
Once the data Xpnn 1S collected, we can use it to
train a Deep Neural Network fpnn : R® — R3 to map

(Cma Cy, Cz, ¢y7 ¢pv (157“) to a predicted (bma byv bz)'
B. Phase II: Fine Motion Bias with RF

In our second phase, we collect five datasets:
(@M, @™ ey, )

for each ¢, € {—90°,—45°,0°,45°,90°}, where each :c,(f)
and € refer to a predicted base position and a residual error
vector, respectively.

(¢y)
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Fig. 6: Fine-tuning the calibration. Left: the dVRK’s closed end-
effector attempts to move to the center of a circle via fpnw, but
it is off by several millimeters. Right: a human moves the end-
effector through direct contact to the center of the circle, and the
world-space transformation is stored as training data.

The rationale for this second phase is that, after obtaining
fpnN, the calibration may still be imperfect due to noisy
data (e.g. slight perception mismatches when locating the
red tape among the two cameras). Since our debridement
scenarios require fine-grained calibration, as in [21} [29], we
model the residuals using a non-linear function.

Figure [6] visualizes a step in this process. We use the same
printed calibration grid of black circles, with the centers
known via OpenCV contour detection. From our Section [[1I
assumptions, we have five discretized yaws and thus five
rotation vectors ¢ (see Figure |4). For each ¢, we command
the dVRK’s closed end-effector to touch the center of each
circle in the grid while maintaining that rotation. All rotations
use the same calibration function fpnn to get x, from
(Te, D).

In this process, the dVRK’s end-effector tip may not reach
the exact center of the circles, as judged by a human. Con-
sequently, for each circle, once the dVRK’s end-effector has
stopped moving, a human directly (not through teleoperation)
adjusts it to the center of the circle. For the ith circle of yaw
¢y, we record the world-space transformation and store it in
the data XI({%*) as €,

With these datasets, it is then possible to train five random
forests i) : R3 — R3, each of which maps a predicted
(b, by, b,) from fpnn to a residual vector (e, €y, €2 ).

For a given fragment in the workspace, we can de-
tect (cgz,cy,c.) and its orientation angle. The orien-
tation angle then maps to the nearest yaw value in
{—90°, —45°,0°,45°,90°}, and thus the pre-computed pitch
and roll values. The result from calibration is the mapping
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V. CALIBRATION EXPERIMENTS
A. Phase I

We ran the dVRK arm for 57 trajectories, which collec-
tively provided 5256 initial data points {((x., ¢), z3)}2235.
Different trajectories have different lengths, and they con-
tribute to this dataset in proportion to their length — the
longer the trajectory, the more data. We cleaned the data by
keeping those points where the left and right cameras both
detected a pixel center (of the red tape) corresponding to the
same workspace location, resulting in 1939 examples.

To determine the architecture for fpNn, we ran a prelim-
inary search over several hyperparameter settings for fully
connected networks, and settled on three hidden layers with
300 units each, and with the ReLU activation [26]. After
running experiments with this network, we later ran more
extensive hyperparameter searches by varying the number of
layers (1-4), number of hidden units in each layer (30 each
or 300 each) and the nonlinearity (ReLU, sigmoid, or tanh).
All training used Adam [16] on the squared Lo loss.

Figure [/| shows the performance of the top 12 of these
24 hyperparameter settings, reported as average squared
Lo losses over a 10-fold cross validation of Xpnn after
1000 training epochs. We additionally benchmarked against
linear regression (including the Euler angle vs quaternion
formulation) and Random Forest regression. The architecture
in our experiments obtains an average squared Lo loss of
2.06mm?. Several other networks, however, have lower loss
values, with the best one using one hidden layer of 300 units
with the sigmoid. This obtains a loss of 1.21mm?. We will
explore this and similar alternatives in future work.

B. Calibration Performance

We benchmark the calibration performance of various
methods by following the procedure in Section com-
manding the dVRK end-effector to reach the center of each
circle in the calibration grid and measuring how far the result
is from the true center. We test the following:

o Rigid Body Transformation (RBT). Following [21]],
we initially test a rigid body transformation where
we map the camera to base positions by means of a
rotation and a translation We determine the rigid body
by solving an orthogonally constrained least squares
problem with singular value decomposition [[10].

e Deep Neural Network (DNN). Using only the function
foNn (see Section [IV-A).

« DNN and Random Forest (DNN+RF). Using a DNN
and then a Random Forest, i.e. Equation E} We used
100 trees for each, with no specified depth, the default
behavior of scikit—-learn [30].

2For the RBT, we divide the data of 1939 elements into five groups, one
for each of the yaw values. Each data point is assigned to the group with
the closest yaw to its actual ¢,.

Mapping Yaw ¢, Mean £ SE Med. (Min, Max)
RBT -90 399 +1.8 36.8 (26.4, 60.0)
RBT -45 53.6 £1.5  50.7 (43.2, 78.1)
RBT 0 52.0 + 2.6 53.7 (29.0, 85.7)
RBT 45 72.0+5.3 664 (32.0,167.2)
RBT 90 441+ 1.4 43.1 (29.1, 67.2)
RBT [-90,90] 47.1+£2.1 483 (19.7, 75.1)
DNN -90 26.7+1.5 220 (12.7,47.8)
DNN -45 28.3+0.8 294  (18.3,38.9)
DNN 0 22.7+1.0 226 (11.4,39.4)
DNN 45 21.5+ 1.3 21.0 (7.0, 39.1)
DNN 90 22.5+2.3 250 (2.2, 53.3)
DNN [-90,90] 23.1+1.6 21.0 (3.6, 48.8)
DNN+RF -90 105+1.0 8.0 (1.0, 25.0)
DNN+RF -45 14.2+1.1 14.1 (1.0, 29.1)
DNN+RF 0 12.8+1.2 12.0 (1.4, 27.2)
DNN+RF 45 12.1£1.2 11.6 (2.0, 30.0)
DNN+RF 90 89+1.0 8.4 (1.0, 28.0)
DNN+RF  [-90,90] 14.74+14 13.0 (2.2, 34.9)
TABLE II: CALIBRATION ERROR RESULTS (IN PIXELS). The

first six are RBT estimators. The next six are based on a DNN,
and the last six combine the DNN with RFs. These are conditioned
on yaw values. For each mapping, we evaluated its accuracy by
measuring the pixel-wise error distance from the dVRK’s closed
end-effector to the center of the circles in our calibration grid (see
Section [I). Error values are in pixels and based on 35 distances,
one for each circle in the printed calibration grid. As stated in
Section Imm in the workspace is roughly 11.3 pixels.

We test using all yaws in our discretization. In addition, we
add a sixth “yaw setting” where, for each circle, we randomly
choose a yaw value in [—90, 90], so that the dVRK maps each
random yaw into the closest value in the discretization.

Table |llf lists the errors (in pixels) based on all 35 circle
centers of the above algorithms. The RBT exhibits substantial
calibration errors, which is likely due to coarse data. The
average pixel error among the six settings is 51.45. The
DNN performs substantially better with improvements across
the entire set of ¢, choices, roughly halving the error in
pixel space (24.13 pixels). Adding Random Forests halves
the errors again (12.20 pixels). The standard error of the
mean implies that the differences are statistically significant.

We measured Imm in various locations of the workspace
in terms of pixels and found the average correspondence to
be roughly Imm to 11.3 pixels. This is distance in (b, by)
only, not including b, since the vertical distance can’t be
captured using a single camera imageE] The RBT, DNN, and
DNN+RF workspace errors are roughly 4.55mm, 2.14mm,
and 1.08mm, respectively.

VI. DEBRIDEMENT EXPERIMENTS
A. Debridement Setup and Failure Modes
We benchmark DNN and DNN+RF on debridement tasks
using pumpkin seeds and raisins. (We do not test the RBT
since its calibration performance is substantially worse than
the DNN alone.) We follow the setup described in Section
Prior to each trial, we inspected the contours of all eight

3Errors in b, are typically less problematic than errors in by and by
because the tissue phantom is elastic and the gripper can press a few
millimeters in it. We also fine-tune a vertical offset beforehand.
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Fig. 7: Average squared L2 loss of different algorithms on the data from Phase I (see Section , each taken over a 10-fold cross
validation with one standard deviation shown with an error bar. Left: Random Forest regressors. Key: tA_dB where A is the number of
trees and B is the depth (or none in the case of N, which is the default setting of scikit-learn [30]). Middle: linear regression. Key:
EA and Q means angles are Euler angles or quaternions, respectively. Right: neural networks (top 12 out of 24). Key: uA_hB_C where A
is the number of units in each hidden layer, B is the number of hidden layers, and C is the activation.

Fig. 8: Properties of pumpkin seeds during debridement. These seeds slide and rotate on the paper surface. Type A errors frequently
result in the seed getting pushed out of the gripper’s control (first two images). This can also happen even if calibration is accurate and
the dVRK ends up in a reasonable location. The third image shows a gripper initially in an excellent spot to grab the seed, but one tip
can rotate the seed before it gets gripped (fourth image) which can cause it to snap out of control (fifth image). This is a type B error.

Fig. 9: Properties of raisins during debridement. Raisins are sticky
and elastic, and a gripper that grips it by the edge often pulls it
successfully out of the workspace (first two images). A type C
error is when the gripper pulls it out using one tip (third image).

fragments to check that perception was accurate (i.e., that
their centers were correctly identified). For each fragment, a
human judge classified its debridement outcome into one of
four possibilities:

e Success: When a fragment is pulled out of the
workspace using both grippers.

o Error Type “A”: True calibration errors. The gripper
ends up too far from the center of a fragment to suc-
cessfully grasp it. These are the most critical sources of
error, as they suggest flaws in the calibration procedure.

o Error Type “B”: A fragment was not pulled out of the
workspace despite accurate calibration. These happen
with pumpkin seeds, which are smooth and lack friction
with the paper surface. They can therefore slide out of

control of the gripper (see Figure [g).

o Error Type “C”: When a gripper “grabs” a raisin with
just one tip, implying that the fragment is pulled out
of the workspace despite inaccurate calibration. See
Figure [9] for details. We do not consider the case when
the dVRK grabs a raisin off-center using both tips, as
we consider this a more realistic debridement since it
does not involve puncturing a fragment.

The rationale for splitting outcomes into these cases is that
the “Success” metric provides a clear number as to how many
fragments were pulled out of the workspace without getting
punctured (i.e., excluding type C). In addition, distinguishing
between type A and B errors makes it clearer to identify if
failures are due to calibration or properties of the fragment,
gripper, and/or setup.

For each trial, the same human judge labeled the result
of all eight fragments. Certain failure cases were ambiguous
(e.g., may have been A or B), so to be conservative, all
ambiguous cases involving type A were labeled as type A.

One limitation of this setup is that evaluating the debride-
ment outcome is subjective. To partially mitigate this, we
ran our trials in a blind fashion: the choice of whether DNN
or DNN+RF was used for calibration was unknown to the
human judge until after labeling the outcome (success, A, B,
or C) of all eight seeds in a trial.



Trial DNN DNN+RF

1 AR A, By, - ~r~r~r~r~r—r—4B
2 =By By~ =y—y—r—B
3 A A A A, T T T T T T T
4 A, =By ==y —r—y— ~r~r~r~r—r—r—B
5 BB A, - A, T T T T T T T
6 A,B,~A,—,B,—, =By =
7 -/A,AA, -, B, T T T T T T T
8 Ay=y=y=r—r—1B, By=r=rv=r=r=r=r~
9 A, = A A, —y—r—r—  TrTrTrr—r—r—r—
10 By~ =r—r—1B, A N Y A A
11 y—r—/AAA,—, il it bt Rt Bt Bt B
12 BB, =, =B,y ~ =y~ Bry=r=r= -
13 A,—,—A,—-,— A, B, = ===y -
14 A,B,A,A,AA,—, A e
15 B, ===y —B, - B, =y ===y -
Count A:34, B:13, C:0 A:1, B:9, C:0
Success  73/120 110/120

TABLE III: DEBRIDEMENT USING PUMPKIN SEEDS. Results
of 15 trials with eight pumpkin seeds each, for the DNN and
DNN+RF cases following the setup in Section [VI-A] The columns
indicate the outcome of each fragment, separated by commas. A
dash (-) indicates a fragment that was successfully pulled out of
the workspace and the “Success” row indicates the total across 15
trials for each setting. Any other occurrence (2, B, or C) follows the
labeling as described in Section The average running time
for these 30 trials was 57.62 £ 1.17 seconds.

B. Debridement Results

We ran 15 trials for each fragment. Tables [III] and
list the debridement results for pumpkin seeds and raisins,
respectively. In particular, they contain the exact outcome of
each fragment and a tally of the error cases.

The results suggest that our DNN+RF calibration is highly
reliable. Overall success rates are 110/120 (91.67%) and
119/120 (99.17%) for pumpkin seeds and raisins, respec-
tively. These exceed the 89.4% success rate in the single-arm
scenario reported in [15[]; [21] did not report exact success
rates but said results were similar to those in [[15].

Failure cases due to calibration errors (type A) occur just
once out of 120 instances for both pumpkin seeds and raisins
(0.83% of the time). These are lower than the type A error
rates with the DNN only, which are 34/120 (28.33%) for
pumpkin seeds and 4/120 (3.33%) for raisins. The difference
in type A error rates in the DNN case for the pumpkin seeds
versus raisins is due to how raisins are elastic and can be
pulled successfully despite slightly inaccurate calibration.

We observe that type B errors only occur with pumpkin
seeds: 13 cases for DNN and 9 cases for DNN+RF, but
zero times for both raisin scenarios. Again, this follows
from properties of the fragments, workspace, and gripper.
In particular, most of the type B errors occurred when the
seeds had not been part of previous trials and thus retained
their natural smoothness. When the gripper grabs seeds, it
slightly deforms their edges, making them coarser and less
likely to slip out of control in future trials. To avoid this from
excessively biasing our results, we replaced seeds every 5
trials or after they experienced any significant damage.

Error type C, for raisins, occurred three times for DNN but
zero times for DNN+RF, providing some additional evidence

Trial  DNN DNN+RF

1 T T T T T T T T T T T T T T
2 A S A Y A A A Y Y A A
3 T T T T T T T T T T T T T T
4 sy Ay, o A S Y A A
5 71717171(:/71717 T T T T T T T
6 A S Y A A A S S A A
7 71717171(:/71717 T T T T T T T
8 A S S A A A A Y A A
9 v =B == A A A Y A A A
10 A S S A A A S S A A
11 e T e e e e
12 A S Y A A A S Y A A
13 e o SRS
14 == Cr—r =y s Ay
15 T T T T T T T T T T T T T T
Count A:4, B:0, C:3 A:1l, B:0, C:0
Success  113/120 119/120

TABLE 1V: DEBRIDEMENT USING RAISINS. Results following
the same setup and description as in Table [ITl} except that these use
raisins instead of pumpkin seeds as fragments. The average running
time for these 30 trials was 58.57 4 0.80 seconds.

that the extra RF correction is beneficial.

Average runtimes for each trial were 57.62 seconds for
pumpkin seeds and 58.57 seconds for raisins. These cor-
respond to debridement rates of 7.20 seconds for pumpkin
seeds and 7.32 seconds for raisins, more than an order of
magnitude faster than the 91.8 seconds reported in [15] and
more than 2.1x faster compared to the 15.8 seconds from [21]
who furthermore tested only the faster two-arm scenario.

To investigate runtime in more detail, we ran a frame-by-
frame analysis of a 25fps video of a pumpkin seed trial. We
considered six phases for each fragment: o seed, lower, grip,
raise, to receptacle, and drop & rotate. The average frame
count for each phase across the eight seeds was, respectively,
26.0, 16.1, 37.5, 24.0, 42.1, and 38.5. Moving back to the
receptacle (fo receptacle), opening the gripper to drop the
seed and then rotating (drop & rotate) for the next seed are
the slowest phases. We had to consider these as distinct steps
because our dVRK arm moves faster if it maintains a fixed
¢ while moving. A possible speed-up could involve figuring
out how to merge the two steps, rotating while moving back
to the receptacle, without loss in speed.

VII. CONCLUSIONS

This paper proposes and evaluates a novel two-phase
coarse-to-fine calibration method that combines a DNN with
a Random Forest to learn compensation bias. Experiments
suggest that this method can increase success rates for
debridement over prior results with much larger fragments
and achieving a 2x speedup. In future work we will apply
the method to other tasks and explore more efficient data
collection methods and avoiding the need to hand-tune
and discretize rotations. Other possibilities for future work
include future study of the DNN and RF combination and
alternatives, using more elaborate debridement setups with
clutter, and experiments with subtasks such as suturing.
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