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Abstract
Working memory (WM) is essential for planning and decision-
making, enabling us to temporarily store and manipulate in-
formation about potential future actions and their outcomes.
Existing research on WM, however, has primarily considered
contexts where stimuli are presented simultaneously and en-
coded independently. It thus remains unclear how WM dy-
namically manages information about reward and value during
planning, when actions are evaluated sequentially in time and
their cumulative values must be integrated to guide choice. To
address this gap, we developed an information-theoretic model
of WM allocation during planning, implemented using varia-
tional recurrent neural networks. In this model, an agent opti-
mizes plan quality while maintaining reward information un-
der WM constraints. To test our model, we designed a task in
which participants sequentially observed the rewards available
at different future states before executing a sequence of ac-
tions, attempting to maximize cumulative rewards. Our results
suggest that humans preferentially maintain rewards that are
most informative for plan selection, integrating both local and
global factors. These findings bridge theories of WM limita-
tions with models of human planning, revealing how cognitive
constraints shape decision-making strategies.
Keywords: working memory; planning; information theory;
reinforcement learning; variational autoencoder

Introduction
Planning is fundamental to human behavior, requiring us to
evaluate potential outcomes of different action sequences to
make optimal decisions. Consider planning a road trip: to de-
cide on a route, we might assess each potential route by eval-
uating features like the cost, travel time, and scenery at each
stop, combining these assessments into an overall judgment.
While computational models of human planning have pro-
vided valuable insights into decision-making processes, they
typically assume that people can perfectly encode and main-
tain information about each evaluated option indefinitely. In
reality, planning relies critically on working memory (WM)
to temporarily store and manipulate information about differ-
ent alternatives, and WM’s limited capacity constrains how
much information can be maintained. This fundamental ten-
sion between the computational demands of planning and the

limitations of human memory shapes how people approach
complex decisions, yet we still lack a comprehensive under-
standing of how people optimize planning strategies under
these constraints.

To understand how working memory supports planning,
we must first acknowledge how planning differs from the
tasks typically studied in working memory research. The field
of working memory has extensively characterized how indi-
viduals distribute limited cognitive resources when remem-
bering multiple items (Vogel et al., 2001; Awh et al., 2007;
Chunharas et al., 2022). However, these works primarily fo-
cus on contexts where people must remember independent
pieces of information, such as lists of words or visual fea-
tures. In these classical WM paradigms, the relevance of each
item to the task is independent of other items — remember-
ing one word in a list, for instance, has no bearing on the
importance of remembering other words. However, planning
presents a fundamentally different challenge: the relevance
of any single piece of information depends on its relationship
to other encoded information. For example, when planning
a road trip, the value of remembering the scenic quality of
one stop depends entirely on how it contributes to the overall
attractiveness of that route relative to alternatives. This inter-
dependence of information value is not captured by existing
models of working memory.

A second critical challenge in understanding how WM sup-
ports planning is the temporal nature of information acquisi-
tion. Unlike traditional WM tasks where all items are pre-
sented simultaneously (e.g., Stocker and Simoncelli, 2006;
Sims, 2016; Jakob and Gershman, 2023), planning typically
unfolds sequentially. In planning, we evaluate potential ac-
tions one at a time. The importance of precisely maintain-
ing earlier actions only becomes apparent as we evaluate
later choices. For instance, discovering a highly scenic lo-
cation later in planning might change how precisely we need
to maintain information about earlier stops along that route.



While prior WM research has demonstrated that people can
prioritize goal-relevant information in simple tasks (Ravizza
et al., 2021), it remains unclear how they manage these dy-
namic interdependencies during sequential planning, espe-
cially when dealing with continuous rewards that require pre-
cise representation.

In this paper, we examine how humans dynamically man-
age continuous reward information with WM during sequen-
tial planning. We developed an information-theoretic model
that directly addresses both the interdependence of reward in-
formation and the temporal nature of planning, characteriz-
ing optimal encoding strategies under WM constraints. To
address the interdependence of reward information, we de-
fine an information channel that encodes the potential rewards
in all candidate plans into a single, integrated representation,
as proposed previously (Fox and Tishby, 2012), rather than
treating them as independent components. To address the
temporal nature of information acquisition in planning, we
define a metalevel Markov Decision Process (MDP) where
each state represents a mental representation of the possible
plans, and the agent learns to optimally map previous reward
representations and new action evaluations to updated repre-
sentations (Callaway et al., 2022).

To test this information-theoretic model of planning, we
developed a modified version of the Mouselab task (Call-
away et al., 2022), where participants are sequentially pre-
sented with rewards at different nodes in a decision tree. By
revealing rewards sequentially, the task creates increasing de-
mands on WM as participants must maintain earlier node re-
wards while processing new information. To derive predic-
tions for the optimal WM allocation policy in this task, we
trained a variational recurrent neural network (VRNN). This
model combines the ability to compress multivariate contin-
uous information through its variational component with the
capacity to track sequential dependencies through its recur-
rent architecture. This provides a computationally tractable
framework for modeling working memory allocation during
sequential planning.

Comparing model predictions with behavioral data, we
show that people preferentially encode rewards that are most
informative for plan selection. Specifically, participants
maintained more precise representations when rewards were
on higher-valued paths or when competing options were sim-
ilar in overall value. These findings demonstrate how hu-
mans strategically distribute limited WM resources during
planning, adapting their encoding precision based on both the
interdependence of rewards and the sequential nature of infor-
mation acquisition.

Results
To investigate how people allocate WM resources during se-
quential planning, we designed a decision-making task where
participants navigated a decision tree. Participants observed
the reward at each node in the tree sequentially before select-
ing the path with the highest cumulative value. After path se-

lection, we assessed the encoding precision of action rewards
through participants’ recall error for different node rewards.
We contrasted participants’ choices and recall errors with the
predictions of a resource-rational agent that allocates WM re-
sources optimally, implemented using a VRNN.

Behavioral Experiment
Participants We recruited 112 participants with normal or
corrected-to-normal vision through UCSD’s Sona system.
Fourteen subjects were excluded due to low performance, re-
sulting in 98 participants being analyzed.

Stimuli The primary stimulus in this experiment was a
game board designed as a 7-node decision tree. The reward
at the central node of this board was always set to 0. The re-
wards at other nodes were visually represented as diamonds
with varying orientations, each having a value ranging from
−4.5 to 4.5 (Figure 1.a). The reward at each node was ran-
domly sampled from a normal distribution N(0,5). Partici-
pants were trained to associate these orientations with their
corresponding reward values before starting the main experi-
ment.

Task Each trial consisted of three phases: reward presenta-
tion, path selection, and reward recall (Figure 1.b). During
reward presentation, participants observed the reward at each
node in the decision tree sequentially for 1.5 seconds each
without inter-stimulus intervals, following a depth-first man-
ner, exploring one complete path before moving to the next.
Subsequently, during path selection, they were asked to con-
trol a plane to travel from the central node to one of the leaf
nodes, aiming to accumulate the maximum possible rewards
in the nodes they had visited. Once the plane moved, it could
not return to a visited node. After completing the route, we
asked participants to recall the reward at selected nodes in
random order. Specifically, they were prompted to match the
diamond orientation on a probed node with the correspond-
ing pattern from their memory. They did this by continuously
adjusting a slider to control the diamond orientation until it
matched their recollection (Figure 1.c). The participants were
required to select the best path and recall two selected nodes
in the practice trial without errors to proceed to the actual ex-
periment. To ensure that the participants’ primary goal was
to maximize their points during plan selection rather than per-
fectly encoding each node, we only probed an average of two
nodes per trial.

Procedure Before the main experiment, participants com-
pleted a tutorial where they practiced path selection and mem-
ory recall separately, followed by a complete practice trial.
They then completed up to 60 experimental trials. We in-
centivized participants’ performance in path selection by in-
forming them that the experiment would conclude when 120
points of reward had been accumulated across all trials. This
corresponded to the average number of points they would get
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Figure 1: a: Diamond orientations corresponding to reward
values. The possible reward values R ∼ N(0,5). The ori-
entations representing negative rewards were pointing to the
left, and the orientations representing positive rewards were
pointing to the right. b: Overview of the experimental trial
process, with each participant completing a maximum of 60
trials featuring randomly sampled rewards. c: Participants re-
ported their reward estimations by adjusting the handle on the
slider until the orientation at the probed node matched their
recall.

after completing 40 trials perfectly. The reward at each node
of the decision tree was randomly sampled across each trial
and across participants. We revealed the decision tree with
the true node rewards after each trial.

Model
We formalize planning under WM constraints as a sequential
decision problem in which an agent evaluates a sequence of
actions and their rewards before selecting the optimal plan.
At each step, the agent observes the reward associated with
a new action and updates its mental representation of the en-
tire space of candidate plans. We assume that storing reward
information with WM incurs a cognitive cost that increases
with encoding precision. We hypothesize that during plan-
ning, people adaptively balance this cost against the benefit
of choosing the plan that delivers the best outcome.

This problem is inherently dynamic and recursive. At any
given moment, the optimal encoding strategy depends not
only on the reward of the current action but also on the re-
wards of future actions that have yet to be evaluated. For ex-
ample, a low current reward might initially seem unimportant
to encode precisely, but could become critical if subsequent
actions in the same path yield high rewards. These dependen-
cies require the agent to consider the potential rewards of the
unevaluated nodes and the expected future relevance of each
evaluated node in plan selection.

To formalize the problem of reward encoding and main-
tenance during planning, we adapt the “passive POMDP”

framework of Fox and Tishby (2012). At each time step,
an agent observes the reward at a pre-specified state, Rt .
These rewards are integrated into the agent’s representation,
or mental state, following an encoding/maintenance policy,
p(Mt+1 | Mt ,Rt ). At the end of planning, when all rewards
have been observed, the agent executes the sequence of ac-
tions that yield the maximal expected value, given the agent’s
mental state at that moment. The agent’s goal is to learn an
optimal mental state updating policy that maximizes the ex-
pected value of the final decision while minimizing the cog-
nitive cost of maintaining information with WM.

We quantify the WM cost using information theory:
each mental state update incurs a cost proportional to
I(Mt+1;Mt ,Rt), that is, the mutual information between the
new mental state and the combination of the previous mental
state and the observed reward. This term thus captures both
how much new information is encoded (Rt ) as well as how
much old information is maintained (Mt ). A precise encod-
ing that preserves small differences in reward distributions
requires higher mutual information and thus higher cost. The
cost of maintaining information increases with the duration
it must be held with WM, making early observations more
costly to retain. By adjusting this compression at each step,
the agent manages its total WM load during planning.

Implementation with a Variational Recurrent Neural Net-
work We implemented this model using a Variational Re-
current Neural Network (VRNN; Chung et al., 2015). The
mental state M was implemented as the hidden state of a re-
current neural network, specifically a 128-dimensional vec-
tor. At each time step, the VRNN received a newly observed
reward (Rt ) and the previous mental state (Mt ) and produced
a new mental state (Mt+1).

The mapping p(Mt+1 | Mt ,Rt) was implemented using a
variational approach (c.f. Kingma, 2013). The model learned
a stochastic encoder that transformed Mt and Rt into parame-
ters (means and standard deviations) of a probability distribu-
tion over latent variables Zt . The specific values zt were then
sampled from this distribution using the reparameterization
trick and were passed to a decoder network that produced the
new mental state, Mt+1. The mutual information term was
approximated as the KL divergence between the variational
posterior distribution q(Zt | Mt ,Rt) and a learned prior p(Zt)
over those parameters. By backpropagating from the final
choice outcome and the accumulated WM costs, the VRNN
learned to compress reward information in a way that maxi-
mized final payoffs while minimizing total memory complex-
ity. This implementation provides a computationally efficient
and scalable model of WM-bounded planning.

Encoding Strategies under WM Constraints
We hypothesized that humans integrate reward information
across multiple nodes to determine each node’s relevance for
decision-making. This relevance is determined by two fac-
tors:



1. Path optimality: The likelihood that the path containing
the node is optimal, which increases with greater cumula-
tive values and higher path ranks.

2. Reward distinctiveness: The magnitude of reward differ-
ences between competitors. Here, competitors are defined
as sibling nodes or competing paths in the decision tree.

For our analyses, we define path rank based on cumulative
values across the decision tree’s four paths, where rank 1 in-
dicates the highest-value path and rank 4 the lowest. We ex-
amined how path optimality and reward differences influence
recall accuracy using both model simulations and behavioral
data. All analyses used repeated measures correlations with
Bonferroni correction for multiple comparisons.

Reward estimates improve with reward magnitude and
reflect the use of prior information. We observed
a significant negative correlation between node reward
and recall error, both in simulations (r = −0.099, p <
0.001, degree of freedom (df) = 12538) and behavioral data
(r =−0.120, p < 0.001, df = 13627; see Figure 2.a and 2.b).
This may suggest that participants preferentially encoded
more rewarding actions because they may contribute to a po-
tentially optimal plan.

We also observed a significant positive correlation between
the absolute node reward and recall error, both in simula-
tions (r = 0.523, p < 0.001, df = 12538) and behavioral data
(r = 0.287, p < 0.001, df = 13627). This suggests that par-
ticipants may be using a recall strategy where they tend to
estimate a reward number closer to the prior mean to reduce
the error, since the rewards are drawn from a normal distribu-
tion centered at 0.

Preferential encoding of rewards following positive re-
wards. We observed a significant negative correlation be-
tween the middle node reward and leaf node recall error, both
in simulations (r = −0.079, p < 0.001, df = 40007) and be-
havioral data (r = −0.075, p < 0.001, df = 6252; see Fig-
ure 2.c and 2.d), even after accounting for leaf node reward
(model: r = −0.049, p < 0.001, df = 40006; participants:
r = −0.080, p < 0.001, df = 6252; see Figure 2.e). This re-
sult shows that leaf node recall precision increases with mid-
dle node reward magnitude. This might reflect a strategic al-
location of memory resources, where early positive rewards
suggest a path is potentially optimal, leading to enhanced en-
coding of subsequent rewards.

Memory error decreases with relative plan quality. Path
rank, defined by the cumulative value of each path, was sig-
nificantly correlated with leaf node recall error (Figure 2.f
and 2.g). Both the model (r = 0.061, p < 0.001, df =
40007) and behavioral data (r = 0.152, p< 0.001, df= 6252)
showed a significant positive correlation between the rank of
a path and recall error for the leaf node, even when control-
ling for leaf node reward (model: r = 0.092, p < 0.001, df =
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Figure 2: a: In this analysis, we examine how node reward in-
fluences recall. The decision tree components highlighted in
blue represent independent variables, and the component with
a question mark represents the dependent variable. b: Line
plot showing the relationship between node reward versus re-
call error. c: In this analysis, we examine how the middle
node reward influences leaf node recall. d: Line plot show-
ing the relationship between middle node reward versus leaf
node recall error. e: Heatmap showing the recall error for
different combinations of middle node and leaf node rewards.
The x-axis represents the reward value of the leaf node in a
path, and the y-axis represents the reward value of the middle
node. Color intensity indicates the magnitude of recall error
of the leaf node. f: In this analysis, we examine how the rela-
tive path rank influences leaf node recall. g: Leaf node recall
error for paths with different ranks.

40006; participants: r = 0.114, p < 0.001, df = 6252). This
indicates that rewards in relatively higher-valued paths are en-
coded with less error, aligning with the goal of maximizing
the probability of selecting the best path.

Memory error decreases when alternative actions have
similar reward values. We found a significant positive cor-
relation between the reward difference with sibling nodes
and recall error in both model simulations (r = 0.070, p <
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Figure 3: a: In this analysis, we examine how the sibling node
reward influences recall error. b: Line plot showing the rela-
tionship between the reward difference between a node and
its sibling versus recall error. c: Heatmap showing the recall
error for different combinations of node and sibling node re-
wards. The x-axis represents the reward value of the target
node, and the y-axis represents the reward value of its sibling
node. Color intensity indicates the magnitude of recall error,
with darker colors corresponding to lower error values.

0.001, df = 40007) and behavioral data (r = 0.144, p <
0.001, df = 6252; see Figure 3.a and 3.b). This correla-
tion remained significant even after controlling for node re-
ward (model: r = 0.185, p < 0.001, df = 40006; participants:
r = 0.168, p < 0.001, df = 4627; see Figure 3.c). When the
sibling node has a similar reward, the agent may need to retain
both rewards with less error to differentiate between them.

Memory error for non-optimal plans decreases when the
optimal plan has similar values. We assumed the com-
petitor of a non-best path is the best path. For leaf nodes
in non-best paths, recall error decreased as the reward differ-
ence between the best and the non-best path decreased (see
Figure 4.a and 4.b). There was a significant positive corre-
lation between the reward difference and leaf node recall er-
ror in both simulations (r = 0.154, p < 0.001, df = 30007)
and behavioral data (r = 0.099, p < 0.001, df = 4627). This
effect persisted after controlling for the non-best path value
(model: r = 0.074, p < 0.001, df = 6229; participants: r =
0.064, p < 0.001, df = 6737; see Figure 4.c).

Similarly, we assumed the competitor of the best path is
the second-best path. For leaf nodes in best paths, in sim-
ulation data, recall error significantly decreased as the re-
ward difference between the best and second paths decreased
(r = 0.081, p < 0.001, df = 1995). However, this correla-
tion was not significant in behavioral data (r = 0.017, p =
0.413, df = 2231). This discrepancy between model predic-
tions and human behavior may suggest that participants pref-
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Figure 4: a: In this analysis, we examine how the path values
of the best path and a non-best path jointly influence recall er-
ror for the leaf node of the non-best path. b: Line plot show-
ing the relationship between the reward difference between a
non-best path and the best path versus the recall error for the
leaf node of the non-best path. c: Heatmap showing the non-
best path leaf node recall error for different combinations of
best path and non-best path values. The x-axis represents the
non-best path value, and the y-axis represents the best path
value. Color intensity indicates the magnitude of recall error
of the non-best path leaf node.

erentially encode the rewards in the best path, regardless of
the value of the competitors for the best path.

These findings support our hypothesis that humans strate-
gically allocate WM resources when encoding reward infor-
mation during planning. The systematic relationships be-
tween recall error and both local factors (middle node re-
ward and sibling node differences) and global factors (path
rank and competitor differences) suggest that humans adap-
tively modulate reward encoding precision based on decision-
relevant features. This adaptive strategy helps maximize de-
cision quality under WM constraints.

Discussion
In this study, we developed and tested a VRNN model of how
people strategically allocate working memory resources dur-
ing planning. Our modeling results show that an action re-
ward’s influence on plan selection depends on the broader
context: the rewards of other actions and the values of al-
ternative plans. Our experimental results showed that partici-
pants were likewise sensitive to these contextual factors, more
accurately recalling rewards that were more contextually rel-
evant.

In particular, we found evidence for contextual effects both
within and between paths in the decision tree. Starting with



within-path effects, we found that leaf nodes in paths with
higher total values and better ranks were maintained with
more precision, even after controlling for individual node re-
wards. This finding demonstrates that during planning, WM
encoding prioritizes information about the potentially optimal
plans to maximize decision quality.

Turning to between-path effects, we found that participants
maintained more precise representations when reward differ-
ences between sibling nodes were smaller, suggesting that
people increase encoding precision in response to closely val-
ued alternative actions that could affect plan selection. Sim-
ilarly, leaf nodes in non-optimal paths were encoded more
precisely when their total value approached that of the opti-
mal path. This pattern reveals that people increase encoding
precision when subtle value differences between plans could
influence the final choice.

More broadly, these findings contribute to a fuller under-
standing of how reward influences working memory. Prior re-
search has established that rewards can enhance WM perfor-
mance (Wallis et al., 2015; Beck et al., 2010; Kennerley and
Wallis, 2009), with behavioral (Hu et al., 2016) and neural
(Krawczyk et al., 2007; Gazzaley et al., 2005) evidence show-
ing that participants prioritized encoding of goal-relevant in-
formation while suppressing encoding of task-irrelevant in-
formation. However, most of these studies examined reward
effects in relatively simple contexts where the relevance of
information was explicitly defined. Our results extend these
findings to more complex planning scenarios where informa-
tion relevance depends on multiple interacting factors. We
show that humans can dynamically optimize WM allocation
by integrating information across the entire decision tree.
This optimization considers not just reward magnitude, but
also the relationships between rewards, their position in the
decision tree, and their potential impact on plan selection.

Our finding that early positive rewards lead to enhanced en-
coding of subsequent rewards also aligns with efficient search
strategies observed in human planning. Prior work on best-
first search and pruning has shown that humans prioritize ex-
ploring and evaluating actions in promising paths while re-
ducing consideration of paths following negative outcomes
(Huys et al., 2012; Hunt et al., 2021; Callaway et al., 2022).
Our results reveal a parallel but distinct mechanism in work-
ing memory: beyond just prioritizing which actions to eval-
uate, people also modulate how precisely they maintain in-
formation about these actions. This may suggest two com-
plementary ways humans optimize planning under cognitive
constraints: through selective evaluation of actions, as shown
in previous work, and through strategic allocation of memory
precision, as demonstrated in our study.

Previous work (Ying et al., 2023) modeled planning under
WM constraints using metalevel MDP and showed that path
value influences reward encoding in a binary reward planning
task. Our current work addresses two limitations of this prior
research. First, we use continuous rewards; this puts a greater
burden on working memory and allows for more finely graded

control of memory precision. Second, we allow the format
of the representation to be learned; this allows the model to
directly represent integrated reward information, such as the
total value of a path. This allowed us to make (and con-
firm) finer-grained predictions about how people’s memory
for one reward would depend on other rewards in the deci-
sion tree. This more general approach can also accommodate
more complex planning scenarios, such as tasks with deeper
decision trees or stochastic rewards.

In conclusion, our study shows that humans strategi-
cally leverage task-relevance to allocate working memory
resources during multi-step planning, preferentially encod-
ing information that is most likely to contribute to optimal
decision-making. By dynamically adjusting memory preci-
sion based on both local features (such as reward magnitude
and sibling similarity) and global properties (such as path
ranking and competitor values) of the decision context, peo-
ple optimize their WM resources to focus on potentially opti-
mal plans. Future work could explore how these mechanisms
operate in scenarios that better reflect everyday planning chal-
lenges, such as modeling how planning strategies adapt to in-
creased WM load or how reward encoding strategies adjust
for planning scenarios where path values are uncertain.
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