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Despite their successes, DRL-based policies often suffer from poor reliability on specific corner cases and unexpected
iInput configurations, which limits their use in safety-critical domains. As a case study, we apply our approach to a real-
world robot navigation problem combining the strenghts of shielding and verification of DNNSs.
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@ Split the input domain into potentially safe regions [2] before a formal verification step on the generated subdomains [1].
@ Generation of a provable safe set where the shield is not needed, while the agent is potentially unsafe elsewhere.
@ Clustering and Symbolic Representation step to reduce the complexity of the online checking process.
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L Seed Full Shield Verification-Guided Shield | Gain (%)
1.0 Mapless Navigation Active Time (%) | Overhead || Active Time (%) | Overhead =| earn the shield during the
12 100 40.0x 28.6 14.1x 64.8 . o
66 100 32.5% 32.4 13.1x 59.7 training loop (eliminating the
239 100 36.3 % 44.5 21.5% 40.7 .
. 251 100 31.1x 37.6 13.2x 57.6 need to keep it enabled at
104 100 4.8 % 61.7 3.6 25.1 .
225 100 4.4 53.1 3.5 20.5 = A novel solution to prove
239 100 4.5% 2.1 1.8% 60.0 .
00 243 100 45x 1.3 1.6x 71.1 wether a shield can always
0 100 200300 400 500 | 45, 100 4.6 3.4 1.5 67.4 - -
' ' ' ' return a valid and safe action.
This table highlights the advantage of using our approach, we drastically reduce the =An automatic approach to
number of calls to the solver, increasing the performance of the agent towards a real- design safety requirements.

time execution while preserving the safety guarantees.
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