
Count-Based Temperature Scheduling for Maximum 
Entropy Reinforcement Learning

Motivation

Empirical evidence from Soft Q Learning(SQL)[1] suggests that a 
state-independent linear scheduling can achieve good performance[2][3].

More insight can be gained from comparing two families of successful RL 
algorithms:
● G-Learning[2], SQL, Path Consistency Learning(PCL)[4], Soft Actor 

Critic[5]

● Relative Entropy Policy Search[6], Trust Region Policy Optimization[7], 
Trust-PCL

Combining the above two equations, we have:

We propose Count-Based Soft Q Learning based on SQL that uses a 
state-dependent temperature schedule in which ß grows linearly with the 
number of times that the algorithm updates the Q function, for any action.

Let n(s,a) be the count of sampled data points, then the inverse temperature 
in CBSQL is

with κ > 0 a constant hyperparameter.

Count-Based Soft Q Learning

Tabular Experiments

Rainbow Integrations to CBSQL

Multi-step learning with a tuned-number of steps can lead to faster learning 
in on-policy RL algorithms. In SQL the n step truncated return is

Unfortunately empirical policy entropy estimates are often very noisy and 
calls for further study. In this work we simply use 1-step returns for SQL and 
CBSQL.
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Fig1 . Noisy Chain-walk Problem

Fig2. Rewards averaged over 10000 runs on the Noisy Chain-Walk Problem

Atari Experiments

Experiments

We integrate CBSQL with Rainbow DQN[8], a state-of-the-art reinforcement 
learning algorithm for memoryless agents including multi-step learning, 
double-Q learning, prioritized experience replay, dueling networks, 
distribution RL and noisy networks. All these methods can be 
straightforwardly applied to soft Q learning except multi-step learning and 
distributional RL.

Multi-step learning

Distributional RL

We adapt distributional RL to SQL and CBSQL by defining a policy 
distribution of

over the values

Fig3. DQN, fixed-temperature SQL and CBSQL average rewards (with standard deviation). Raw score are averaged over 
the last 100 testing episodes across 3 runs.

Preliminary Results

Fig4. CBSQL results compared with DQN and fixed-temperature SQL, with Rainbow. Rewards are averaged over 5 runs.


