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2. Model-Based Reinforcement Learning (MBRL)

 Cooperation between a world model and behavior learning.
“ Promising with great sample efficiency in visual control tasks.
 Often struggles in distracting environments.

1. Visual Control with Distraction

“* Visual control task: Control actions based on visual information.
> e.g. DeepMind Control suite (DMC)
 Add distractions for a more challenging and realistic setup.

Representation learning Examples Drawbacks

Reconstruction-based  Dreamer [1], efc. Unnecessary

information included

TD-MPC [2],
DreamerPro [3], etc.

Reconstruction-free Sample inefficient

3. Method

< Assumption: Task-relevant components are straightforward to
identify within images, given available prior knowledge.

< Use prior knowledge with segmentation foundation models.

 SD: Reconstruct task-relevant components only.

<« SD,;- When GT mask for task-relevant components are available.

 SD . Use PerSAM [4] fine-tuned with a single data point.

approx.

(@) Dreamer target (b) SD; target (c) target

 To make SDappmx_ more robust to noisy targets, we devise
selective L, loss.

 ldentify pixels where predicted labels may be wrong but the
world model decoder is correct, ignoring L, loss for such pixels
to avoid providing wrong signals.

masKk.«timate = Maskgan V 7maskgp

Naive L2 loss 1s
undesirable.
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4. Experimental Results
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* Dreamer” is trained in a clean environment whereas the other
methods are trained in a distracting environment.

» QOverall, SDGT matches Dreamer®, and SDapme_ eventually reaches
SD ., while Dreamer falls short.
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