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FARR produces a Nash equilibrium equivalent to robust RL only on These perturbed MuJoCo environments can be made insurmountably difficult.
tasks with a target minimum achievable reward A: For any target task difficulty A, FARR avoids producing unwanted infeasible tasks
and trains a protagonist agent robust to the feasible tasks for any given A:

e Robust Reinforcement Learning maximizes worst-case
performance in parameterizable environments. It can be
challenging to apply Robust RL to complex configurable
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play a two-player zero-sum game. The adversary selects the
hardest task variations but is penalized if a pre-specified threshold Actual feasible tasks for a target minimum achievable reward A are in green.
reward of at least A can't be achieved by a best-response agent: G Traditional robust RL minimax produces overly difficult task mixtures outside the
feasible set of tasks. FARR produces a worst-case distribution inside the
, , Protagonist Adversary target feasible set:
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