
Design Choices

1. Shared exploration policy

2. Shared replay buffer

3. Independent replay sampling
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Reducing Variance in Temporal-Difference Value Estimation via Ensemble of Deep Networks

Overview

• Ensemble mean reduces variance of     

Q value estimates

• How to sample experience to keep 

ensemble members decorrelated?

Motivation

Variance in  hinders learning:


•  is less likely optimal

• Can cause instability

• Because similar states can appear less so

• Target network can stabilize but adds bias

• Can add bias due to the Jensen gap
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Related Work

• Ensemble-DQN [1], EBQL [2]

• Train all members on the same experience

• Averaged-DQN [1]

• Average snapshots of the same learner

• Many more (see paper)
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Combining with Existing Methods

• Rainbow techniques [3]

• Dueling nets, noisy exploration, multi-step

• Individually prioritized experience replay

• Distributional RL via mean distribution of Q

• Not used: double Q-learning

• UCB exploration [4]
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